
Applied C and C++ Programming

Alice E. Fischer

David W. Eggert

University of New Haven

Michael J. Fischer

Yale University

August 2018

Copyright c©2018

by Alice E. Fischer, David W. Eggert, and Michael J. Fischer

All rights reserved. This manuscript may be used freely by teachers and students in classes at the
University of New Haven and at Yale University. Otherwise, no part of it may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the authors.

192

Part III

Basic Data Types

193

Chapter 7

Using Numeric Types

Two kinds of number representations, integer and floating point, are supported by C. The various integer
types in C provide exact representations of the mathematical concept of “integer” but can represent values
in only a limited range. The floating-point types in C are used to represent the mathematical type “real.”
They can represent real numbers over a very large range of magnitudes, but each number generally is an
approximation, using a limited number of decimal places of precision.

In this chapter, we define and explain the integer and floating-point data types built into C and show
how to write their literal forms and I/O formats. We discuss the range of values that can be stored in each
type, how to perform reliable arithmetic computations with these values, what happens when a number is
converted (or cast) from one type to another, and how to choose the proper data type for a problem.

We would like to think of numbers as integer values, not as patterns of bits in memory. This is possible
most of the time when working with C because the language lets us name the numbers and compute with
them symbolically. Details such as the length (in bytes) of the number and the arrangement of bits in those
bytes can be ignored most of the time. However, inside the computer, the numbers are just bit patterns.
This becomes evident when conditions such as integer overflow occur and a “correct” formula produces a
wrong and meaningless answer. It also is evident when there is a mismatch between a conversion specifier
in a format and the data to be written out. This section explains how such errors happen so that when they
happen in your programs, you will understand what occurred.

7.1 Integer Types

To accommodate the widest variety of applications and computer hardware, C integers come in two varieties
and up to three sizes. We refer to all of these types, collectively, as the integer types. However, more than
six different names are used for these types, and many of the names can be written in more than one form.
In addition, some type names have different meanings on different systems. If this sounds confusing, it is.

The full type name of an integer contains a sign specifier, a length specifier, and the keyword int.
However, there are shorter versions of the names of all these types. Figure 7.1 lists the commonly used
name, then the full name, and finally other variants.

A C programmer needs to know what the basic types are, how to write the names of the types needed,
and how to input and output values of these types. He or she must also know which types are portable (this
means that the type name always means more or less the same thing) and which types are not (because the
meaning depends on the hardware).

7.1.1 Signed and Unsigned Integers

In C, integers come in varying lengths and in two underlying varieties: signed and unsigned. The difference
is the interpretation of the leftmost bit in the number’s representation. For signed numbers, this bit indicates

195

196 CHAPTER 7. USING NUMERIC TYPES

Common Name Full Name Other Acceptable Names

int signed int signed

longlong signed longlong int longlong int signed longlong

long signed long int long int signed long

short signed short int short int signed short

unsigned unsigned int

unsigned longlong unsigned longlong int

unsigned long unsigned long int

unsigned short unsigned short int

Figure 7.1. Names for integer types.

the sign of the value. For unsigned numbers, it is an ordinary magnitude bit.
Why does C bother with two kinds of integers? FORTRAN, Pascal, and Java have only signed numbers.

For most purposes, signed numbers are fine. Some applications, though, seem more natural using unsigned
numbers. Examples include applications where the actual pattern of bits is important, negative values are
meaningless or will not occur, or one needs the extra positive range of the values.

On paper or in a computer, all the bits in an unsigned number represent part of the number itself. If the
number has n bits, then the leftmost bit has a place value of 2n−1. Not so with a signed number because
one bit must be used to represent the sign. The usual way that we represent a signed decimal number on
paper is by putting a positive or negative sign in front of a value of a given magnitude. This representation,
called sign and magnitude, was used in early computers and still is used today for floating-point numbers.
However, a different representation, called two’s complement , is used for signed integers in most modern
computers. In the two’s complement representation of a signed integer, the leftmost bit position has a place
value of −32768. A 1 in this position signifies a negative number. All the rest of the bit positions have
positive place values, but the total is negative.

7.1.2 Short and long integers.

Integers come in two1 lengths: short and long. On most modern machines, short integers occupy 2 bytes of
memory and long integers use 4 bytes. The resulting value representation ranges are shown in Figure 7.2.
As you read this list, keep the following facts in mind:

• The ranges of values shown in the table are the minimum required by the ISO C standard.

• On many 4-byte machines the smallest negative value actually is−32,768 for short int and−2,147,483,648
for long int.

• Unsigned numbers are explained more fully in Section 15.1.1.

• On many machines in the year 2000, int was the same as short int. On larger machines, it was the
same as long int.

• On most machines today, int is the same as long int.

• The constants INT_MIN, INT_MAX, and the like are defined in every C implementation in the header file
limits.h. This header file is required by the C standard, but its contents can be different from one
installation to the next. It lists all of the hardware-dependent system parameters that relate to integer
data types, including the largest and smallest values of each data type supported by the local system.

The type int is tricky. It is defined by the C standard as “not longer than long and not shorter than
short.” The intention is that int should be the same as either long or short, whichever is handled more
efficiently by the hardware. Therefore, many C systems on Intel 80x86 machines implement type int as

1Or three lengths, if you count type char (discussed in Chapter 8), which actually is a very short integer type.

7.1. INTEGER TYPES 197

Data Type Names of Constant Limits Range

int INT_MIN...INT_MAX Same as either long or short
short int SHRT_MIN...SHRT_MAX −32,767 . . . 32,767
long int LONG_MIN...LONG_MAX −2,147, 483, 647 . . . 2,147,483,647
longlong int LLONG_MIN 9,223,372,036,854,775,807
longlong int LLONG_MAX −9,223,372,036,854,775,807
unsigned int 0...UINT_MAX Same as unsigned long or short
unsigned short 0...USHRT_MAX 0 . . . 65,535
unsigned long 0...ULONG_MAX 0 . . . 4,294,967,295
unsigned longlong 0...ULLONG_MAX 0 . . . 18,446,744,073,709,551,615

Figure 7.2. ISO C integer representations.

short.2 We refer to this as the 2-byte int model. Larger machines implement int as long, which we refer
to as the 4-byte int model.

The potential changes in the limits of an int, shown in Figure 7.2, can make writing portable code a
nightmare for the inexperienced person. Therefore, it might seem a good idea to avoid type int altogether
and use only short and long. However, this is impractical, because the integer functions in the C libraries
are written to use int arguments and return int results. The responsible programmer simply must be aware
of the situation, make no assumptions if possible, and use short and long when it is important.

Integer literals. An integer literal constant does not contain a sign or a decimal point. If a number is
preceded by a - sign or a + sign, the sign is interpreted as a unary operator, not as a part of the number.
When you write a literal, you may add a type specifier, L, U, or UL on the end to indicate that you need a
long, an unsigned, or an unsigned long value, respectively. (This letter is not the same as the conversion
specifier of an I/O format.) If you do not include such a type code, the compiler will choose between int,
unsigned, long, and unsigned long, whichever is the shortest representation that has a range large enough
for your number. Figure 7.3 shows examples of various types of integer literals. Note that no commas are
allowed in any of the literals.

2However, the Gnu C compiler running under the Linux operating system on the same machine implements type int as long.

In this table, we assume that the type int is the same length as long, and that the maximum repre-
sentable int is long is .

Literal Type Reason for Type

0 int Type int is the default.
255U unsigned The U code means unsigned.
255L long The L code means long.
255UL unsigned long You can combine the U and L codes.
32767 int Largest possible 2-byte int

65536 long Too large for a 2-byte unsigned int

2147483647 long Largest possible 4-byte int

3000000000 unsigned long 3 billion, too large for long
6000000000 Compile-time error 6 billion, too large for any integer type

Figure 7.3. Integer literals in base 10.

198 CHAPTER 7. USING NUMERIC TYPES

These are the minimum value ranges for the IEEE floating-point types. The names given in this table
are the ones defined by the C standard.

Type Digits of Name of Minimum Value Range

Name Precision C Constant Required by IEEE Standard

float 6 ±FLT_MIN. . .±FLT_MAX ±1.175E−38 . . . ±3.402E+38
double 15 ±DBL_MIN. . .±DBL_MAX ±2.225E−308 . . . ±1.797E+308
long double 15 ±LDBL_MIN. . .±LDBL_MAX Same as double currently.

Figure 7.4. IEEE floating-point types.

7.2 Floating-Point Types in C

In traditional scientific notation, a real number, N , is represented by a signed mantissa, m, multiplied
by a base, b, raised to some signed exponent, x; that is,

N = ±m× b ±x

For example, we might write 1.4142 × 10−2. A floating-point number is represented similarly inside the
computer by a sign bit, a mantissa, and a signed exponent. Figure 7.4 lists the types supported by the
standard.

Floating-point literals. In traditional mathematical notation, we write real numbers in one of two ways.
The simplest notation is a series of digits containing a decimal point, like 672.01. The other notation, called
base-10 scientific notation, uses a base-10 exponent in conjunction with a mantissa: we write 672.01 as
6.7201× 102.

In C, real literals also can be written in either decimal or a variant of scientific notation: we write
6.7201E+02 instead of 6.7201× 102. A numeric literal that contains either a decimal point or an exponent
is interpreted as one of the floating-point types; the default type is double. (A literal number that has
no decimal point and no exponent is an integer.) There are several rules for writing literal constants of
floating-point types:

1. You may write the number in everyday decimal notation: Any number with a decimal point is a
floating-point literal. The number may start or end with the decimal point; for example, 1.0, 0.1, 1.

.1416, or 120.1,.

2. You may use scientific notation. When you do so, write a mantissa part followed by an exponent part;
for example, 4.50E+6. The mantissa part follows the rules for decimal notation, except that it is not
necessary to write a decimal point. Examples of legal mantissas are 3.1416, 341.0, .123, and 89.

The exponent part has a letter followed by an optional sign and then a number.

• The letter can be E or e.

• The sign can be +, -, or it can be omitted (in which case, + is assumed).

• The exponent number is an integer of one to three digits in the proper ranges, as given in Fig-
ure 7.4. If your system does not follow the standard, the ranges may be different.

3. Following the literal value a floating-point type-specifier may be used, just as for integers. (This
letter is not the same as the conversion specifier of an I/O format.) The specifiers f and F designate a
float, while l and L designate a long double. If a floating-point literal has no type specifier, it is a
double.

Figure 7.5 shows some examples of floating-point literals and the actual number of bytes used to store
them.

7.3. READING AND WRITING NUMBERS 199

Literal Type Size in Common Implementations

3.14 double 8 bytes
1.05792e+05 double 8 bytes
65536E-4f float 4 bytes
1.01F float 4 bytes
.02l long double 8, 10, or 12 bytes
171.L long double 8, 10, or 12 bytes

Figure 7.5. Floating-point literal examples

7.3 Reading and Writing Numbers

Two factors must be considered when choosing a format for reading a number: the type of the variable
in which the value will be stored and the way the value appears in the input. Similarly, when printing a
number, its type and the desired output format must be considered. In previous examples, we used only a
few of the many possible formats for numeric input and output, which we now discuss.

7.3.1 Integer Input

Each type of value requires a different I/O conversion specifier in the format string. An integer conversion
specifier starts with a % sign, followed by an optional field-width specifier (output only), and a code for the
type of value to be read or written. Figure 7.6 summarizes the options available for signed3 integers. The
use of %hi and %li will be illustrated by the program in Figure 7.25.

The %i code is new in ISO C,4 supplementing the traditional %d. With %i, input numbers can be entered
in either decimal or hexadecimal notation (see Chapter 15), whereas %d works only for decimal (base-10)
numbers. A representational error5 will occur if an input value has more digits than the input variable can
store. The faulty input will be accepted, but only a portion of it will be stored in the variable. The result
is a meaningless number that will look like garbage when it is printed. When a program’s output clearly
is wrong, it always is a good idea to echo the input on which it was based. Sometimes, this uncovers an
inappropriate input format or a variable too short to store the required range of values.

7.3.2 Integer Output

For output, the %d and %i conversion codes can be used interchangeably. We use %i in this text because it
is more mnemonic for “integer” and therefore less confusing for beginners.

When designing the output of a program, the most important things to consider are that the information
be printed correctly and labeled clearly. Sometimes, however, spacing and alignment are important factors
in making the output clear and readable. We can control these factors by writing a field-width specification
(an integer) in the output format between the % and the conversion code (i, li, or hi). For example, %10i
means that the output value is an int and the printed form should fill 10 columns, while %4hi means that
the output value is a short int and the printed form should fill 4 columns. If the given width is wider than
necessary, spaces will be inserted to the left of the printed value. To print the number at the left edge of the
field, a minus sign is written between the % and the field width, as in %-10i. The remainder of the field is
filled with blanks.6 If the width is omitted from a conversion specifier or if the given width is too small, C
will use as many columns as are required to contain the information and no spaces will be inserted on either
end (therefore, the effective default field width is 1). Using a field-width specifier allows us to make neat
columns of numbers, as will be illustrated by the program in Figure 7.25.

3Input and output for unsigned numbers will be discussed in Chapter 15, which deals with hexadecimal notation and bit-level
computation on unsigned numbers.

4Older compilers may not support %i.
5Other sources of representational error will be discussed in Section 7.5.
6A format string may specify a nonblank character to use as a filler.

200 CHAPTER 7. USING NUMERIC TYPES

Context Conversion Meaning and Use

scanf() %d Read a base-10 (decimal) signed integer (traditional C and ISO C)
%i Read a decimal or hexadecimal signed integer (ISO C only)
%u Read a decimal unsigned integer (traditional C and ISO C)

%hi or %hd or %hu Use a leading h for short int

%li or %ld or %lu Use a leading l for long int

printf() %d Print a signed integer in base 10
%i Same as %d for output
%u Print an unsigned integer in base 10

%hi or %hd or %hu Use a leading h for short int

%li or %ld or %lu Use a leading l for long int

Note: The code for short integers is h instead of s, because s is used for strings (see Chapter 12).

Figure 7.6. Integer conversion specifications.

Positive or negative? If an unsigned integer has a bit in the high-order position and we try to print
it in a %i format instead of a %u format, the result will have a negative sign and the magnitude may even
be small. Unfortunately, most programmers eventually make this careless mistake. The short program in
Figure 7.7 illustrates what can happen when an inappropriate conversion specifier is used. Two unsigned
numbers are printed, first properly, then with a signed format.

33000 is a short unsigned int
printed in hi it is: -32536

4200000000 is a long unsigned int
printed in li it is: -5632

In both cases, it is easy to see that the output is garbage because it has a negative sign. However, using a
different constant, the output is even more confusing; it is still wrong but there is no negative sign to give
us a clue.

3000000000 is a long unsigned int
printed in li it is: 24064

#include <stdio.h>

int main(void)

{

short unsigned hui = 33000;

long unsigned lui= 4200000000;

printf("%hu is a short unsigned int\n", hui);

printf(" printed in hi it is: %hi\n\n", hui);

printf("%lu is a long unsigned int\n", lui);

printf(" printed in li it is: %hi\n\n", lui);

}

Figure 7.7. Incorrect conversions produce garbabe output.

7.3. READING AND WRITING NUMBERS 201

Context Conversion Meaning and Usage

scanf() %g, %f, or %e Read a number and store in a float variable
%lg, %lf, or %le Read a number and store in a double variable
%Lg, %Lf, or %Le Read a number and store in a long double variable

printf() %f Print a float or a double in decimal format
%e Print a float or a double in exponential format
%g Print a float or a double in general format

Figure 7.8. Basic floating-point conversion specifications.

7.3.3 Floating-Point Input

In a floating-point literal constant (Figure 7.5), a letter (called the type specifier) is written on the end to
tell the compiler whether to translate the constant as a float, a double, or a long double value. An input
format must contain this same information, so that scanf() will know how many bytes to use when storing
the input value. In a scanf() format, the input conversion specifier for type float is %g; for double, it is
%lg; and for long double, it is %Lg. Figure 7.8 summarizes the basic conversion specifiers for real numbers.
For input, all the basic specifiers %g, %f, and %e have the same meaning and can be used interchangeably,
although the current convention is to use %g.

The actual input value may be of large or small magnitude, contain a decimal point or not, and be any
number of decimal digits long. The number will be converted to a floating-point value using the number of
bytes appropriate for the local C translator. (Commonly, this is 4 bytes for %g, 8 bytes for %lg, and 8 bytes
or more for %Lg.) However, sometimes, the number stored in the variable is not exactly the same as the
input given. This happens whenever the input, when converted to binary floating-point notation, has more
digits of precision (possibly infinitely repeating) than the variable can store. In this case, only the most
significant digits are retained, giving the closest possible approximation.

7.3.4 Floating-Point Output

Output formats for real numbers are more complex than those of integers because they have to control not
only the field width but also the form of the output and the number of significant digits printed. There are
three basic choices of conversions: %f, %e, and %g. The %f conversion prints the value in ordinary decimal
form, the %e conversion prints it in scientific notation, and the %g conversion tries to choose the “best” way
to present the number. This may be similar to %f, %e, or even %i, depending on the size of the number
relative to the specified field width and precision. Whatever precision is specified and whatever conversion
code is used, floating-point numbers will be rounded to the last position printed.7

All three kinds of conversion specifiers (%f, %e, and %g) can include two additional specifications: the
total field width (as described for an integer) and a precision specifier. These two numbers are written
between the % and the letter, separated by a period, as in %10.3f. In addition, either the total field width
or the precision specifier can be used alone, as in %10f or %.3f. The default precision is 6, and the default
field width is 1 (as it is for integers). If the field is wider than necessary, the unused portion will be filled
with blank spaces.

The %f and %e conversions. For the %f and %e conversions, the precision specifier is the number of digits
that will be printed after the decimal point. When using the %f conversion, numbers are printed in ordinary
decimal notation. For example, %10.3f means a field 10 spaces wide, with a decimal point in the seventh
place, followed by three digits. An example is given in Figure 7.9.

In a %e specification, the mantissa is normalized so that it has exactly one decimal digit before the
decimal point, and the last four or five columns of the output field are occupied by an exponent (an example
is given in Figure 7.10). For a specification such as %.3e, one digit is printed before the decimal point and
three are printed after it, so a total of four significant digits will be printed.

The %g conversion tries to be smart. The result of a %g conversion can look like an integer or the
result of either a %f or %e conversion. The precision specifier determines the maximum number of significant
digits that will be printed. The printf() function first converts the binary numeric value to decimal form,

7Note that this is different from the rule for converting a real number to an integer, which will be discussed later in this
chapter. During type conversion, the number is truncated, not rounded.

202 CHAPTER 7. USING NUMERIC TYPES

3 columns, rounded

-167.248

7 columns with 2 leading blanks

-167.2476 printed using %10.3f field specifier:

10 columns total

}
Figure 7.9. The %f output conversion.

3 columns, rounded

-1.672e+02

10 columns total

-167.2476 printed using %10.3e field specifier: }

Figure 7.10. The %e output conversion.

-167

10 columns total with three digits of precision.

-167.2476 printed using %10.3g field specifier:

Figure 7.11. Sometimes %g output looks like an integer.

-1.67e+03
 3 digits of precision, rounded

10 columns total

-1672.476 printed using %10.3g field specifier: }

Figure 7.12. Sometimes %g looks like %e.

-1.67e-05
 3 digits of precision, rounded

10 columns total

-.000016724 printed using %10.3g field specifier: }

Figure 7.13. For tiny numbers, %g looks like %e.

7.3. READING AND WRITING NUMBERS 203

-167.248

7 columns with two leading
blanks.

-167.2476 printed using %10g field specifier:
 (The default precision = 6.)

3 columns, rounded.

Figure 7.14. Sometimes %g looks like %f.

then it uses the following rules to decide which output format to use. Here, assume that, for a number N ,
with D digits before the decimal point, the precision specifier is S.

• If D == S, the value will be rounded to the nearest integer and printed as an integer (an example is
given in Figure 7.11).

• If D > S, the number will be printed in exponential format, with one digit before the decimal point
and S − 1 digits after it (an example is given in Figure 7.12).

• If D < S and the exponent is less than −4, the number will be printed in exponential format, with one
digit before the decimal point and S − 1 digits after it (an example is given in Figure 7.13).

• If D < S and the exponent is −4 or greater, the number will be printed in decimal format with D
digits before the decimal point and S −D digits after it (an example is given in Figure 7.14).

In all four cases, the precision specifier determines the total number of significant digits printed, including
any nonzero digits before the decimal point. Therefore, %.3g will print one less significant digit than %.3e,
which always prints three digits after the decimal point. Also, %.3g may print several digits fewer than %.3f.

Finally, the %g conversion strips off any trailing zeros or decimal point that the other two formats will
print. Therefore, the number of places printed after the decimal point is irregular. This leads to an important
rule: The %g conversion is not appropriate for printing tables. Usually %f is used for tables, unless the values
are of very large magnitude.

7.3.5 One Number may Appear in Many Ways

Figure 7.15 shows how the input values of 32.1786594, 2.3, and 12345678 might look if they were read into
a float variable, and then printed in a variety of formats. Each input was read using scanf() with the
%g specifier. The actual converted value stored in a float variable is shown beneath that. Output of these
values was produced by printf(), using the conversion formats shown.

Notes on Figure 7.15. Output conversion specifiers. When examining the various results, note the
following details:

Input at keyboard %g 32.1786594 2.3 12345678

Internal bit value 32.17865753173828125 2.2999999523162841796875 12345678

Output using %f 32.178658 2.300000 12345678.000000
%e 3.217866e+01 2.300000e+00 1.234568e+07
%g 32.1787 2.3 1.23457e+07
%.3f 32.179 2.300 12345678.000
%.3e 3.218e+01 2.300e+00 1.235e+07
%.3g 32.2 2.3 1.23e+07
%10.3f 32.179 2.300 12345678.000
%-10.3f 32.179 2.300 12345678.000

Figure 7.15. Output conversion specifiers.

204 CHAPTER 7. USING NUMERIC TYPES

First line. This line shows the values entered from the keyboard. In the first column, we input more than
the six or seven significant digits that a float variable can store; the result is that the last digits of the
internal value (on the next line) are only an approximation of the input.

Second line. This line shows the actual values stored in three float variables. Due to the limited number
of bits, the first two values cannot be represented exactly inside the computer. This may not seem surprising
for the first value, since a float has only six digits of precision, but even the value of 2.3 is not represented
exactly. This is because, just as there are repeating fractions in the decimal system (like 1/7), when certain
decimal values are converted into their binary representation, the result is a repeating binary fraction. The
stored internal value of 2.3 is the result of truncating this repeating bit sequence. By chance, even though
it is more than six digits long, the third value, 12345678, could be represented exactly. Even though the
stated level of precision is six decimal digits, longer numbers sometimes can be represented exactly, while
some shorter ones can only be approximated.

Main portion of table.

1. All output values are rounded to the last place that is printed.

2. An output too wide for the field is printed anyway, it just overflows its boundary, as in some of the
values in the last column.

3. The default output precision is six decimal places, so you get six digits after the decimal point
with %f and %e unless you ask for more or fewer. With %g, you get a maximum of six significant digits.

4. The %g conversion specifier works similar to %f for numbers that are not too large or too small. The
primary differences are that trailing zeros and trailing decimal points will not be printed and that the
precision specifies significant digits, not actual digits after the decimal point. For very large and very
small numbers, %g works almost like %e except that one fewer significant digit will be printed. Therefore,
the number 12345678 printed in %.3e becomes 1.235e+07, but printed in %.3g, it is 1.23e+07.

The programs in Figures 7.18 and 7.25 illustrate some ways in which format specifiers can be used to
achieve desired output results. To get a good sense of what the C language does with different floating-point
types, experiment with various input values and changing the formats in these programs.

Alternate output conversion specifiers. Some compilers will accept %lg (or %lf or %le) in a printf()

format for type double. However, %g is correct according to the standard and it is poor style to get in the
habit of using nonstandard features. The standard is clear on this issue. All float values are converted
to type double when they are passed to the standard library functions, including printf(). By the time
printf() receives the float value, it has become a double. So %g is used with printf() when printing
both double and float values.

However, this is not true for scanf(). According to the ISO C standard, you must use %g for float, %lg
for double, and %Lg for long double in input formats.

7.4 Mixing Types in Computations

Since we have introduced both the integer and floating-point data types that are typically used in calculations,
it is time to discuss how to use them effectively and convert values from one data type to another.

7.4.1 Basic Type Conversions

Two basic types of data conversion can occur, a length conversion and a representation conversion. The
length conversion occurs between two values of the same data category; that is, between two integers or
between two reals. These are safe conversions if they lengthen the data representation and thereby do not
introduce any representational error. For example, any number that can be represented as a float can be

7.4. MIXING TYPES IN COMPUTATIONS 205

#include <stdio.h>

int main(void)

{

float f = 0.1; // Precision limited to about 7 decimal places.

double d = 0.1; // Precision limited to about 15 decimal places.

double x = f; // Converted float; same precision as original value.

printf("0.1 as a float = %.17f\n", f);

printf("0.1 as a double = %.17f\n", d);

printf("0.1 converted from float to double = %.17f\n", x);

}

Output:

0.1 as a float = 0.10000000149011612

0.1 as a double = 0.10000000000000001

0.1 converted from float to double = 0.10000000149011612

Figure 7.16. Converting a float to a double.

represented with exactly the same precision using the double type. Unsafe conversions may happen if
the data representation is shortened.

A representation conversion involves switching between two categories, from integer to real or real
to integer. Even in systems where a float value and an integer value have the same number of bits, their
patterns are very different and incompatible. The computer hardware cannot add a float to a long—one
of them must first be converted to the other representation. Depending on the direction of the conversion,
it might be classified as safe or not. Therefore, let us examine the basic properties of type conversions more
closely.

Safe conversions. Converting from a “short” version of a data type to a “long” version is considered to
be a safe operation. All the bits stored in the shorter version still can be stored in the longer form, with
extra padding in the appropriate positions. Converting from a longer form to a shorter one may or may not
be safe. For integers, if the magnitude of the value in the longer form is within the representation range of
the shorter one, everything is fine. For real numbers, not only must the magnitude be within the proper
range, but the number of significant digits in the mantissa must be small enough as well.

Converting from a float to a double is safe but the effects can be misleading. The value is lengthened,
but it does not increase in precision. A float has six or seven decimal places of precision, and the precision
of a lengthened value will be the same; the extra bits in the double representation will be meaningless zeros.
For example, one-tenth is an infinitely repeating fraction in binary. We can store only a finite portion of this
value in a double and even less in a float. Consider the code in Figure 7.16. We initialize both f and d

to 0.1. In both cases, the number actually stored in the variable is only an approximation to 0.1. However,
the approximation stored in d is more precise. It is accurate up to the 17th place after the decimal point,
while f is accurate only up to the 8th place. When the value of f is converted to type double and stored in
x, it still is accurate only to eight places. The precision does not increase because there is no opportunity to
recompute the value and restore the lost bits.

Converting from an integer type to a floating-point type usually is safe, in the sense that most integers
can be represented exactly as floats and all can be represented exactly as doubles. The opposite is not
true; most floating-point values cannot be represented exactly as integers.

Unsafe conversions. When a value of one type is converted to a shorter type, the number being converted
can be too large to fit into the smaller type. We call this condition representation error. This is handled
quite differently for integers and floating-point numbers.

When a large integer is converted to a smaller integer type, only the least significant bits are transferred,
resulting in garbage. Converting a negative signed number to an unsigned type is logically invalid. Similarly,

206 CHAPTER 7. USING NUMERIC TYPES

These examples of casts use the following declarations:

float x; double t; long k; unsigned v;

The starred casts can cause run-time errors that will not be detected by the system and may cause the user’s
output to be meaningless.

Cast Nature of Change

* (float) t; Shortening (possible precision loss and magnitude may be too large)
(double) x; Lengthening (safe)
(double) t; No change (this is legal)
(float) k; Representation conversion (usually safe)
(int) x; Representation conversion (fractional part is lost)

* (short) k; Shortening (error if value of k is larger than 32,767)
* (signed) v; Type relabeling only (error if v > INT_MAX)
* (unsigned long) k; Type relabeling only (error if k is negative)

Figure 7.17. Kinds of casts.

it is a logical error to convert an unsigned integer to a signed type not long enough to contain the value.
The programmer must be careful to avoid any type conversions of this nature, because the C system gives
little or no help with detecting the error. Some compilers will display a warning message when potentially
unsafe conversions are discovered, others will not. At run time, if such an error happens, no C system will
stop and give an error comment.

The shortening action that happens when a double value is converted to a float has two potential
problems. First, it truncates the mantissa, discarding up to nine decimal digits of precision. Second, if the
exponent of the value is too large for type float, the number cannot be converted at all. In this case, the
C standard does not say what will happen; the result is “undefined” and you cannot expect the C system to
warn you that this problem has occurred. If it happens in a program, you might observe that some of the
output looks like garbage or that certain values are displayed as Infinity or NaN (not a number).8

When a floating-point number is converted to an integer type, the fractional part is lost. To be precise,
it is truncated, not rounded; the fractional part is discarded, even if it is .999999. To maintain the maximum
possible accuracy in calculations, C avoids converting floating-point values to integer types and does so
only in four situations, which are listed and explained in the next section. Remember that, in these cases,
rounding does not happen, so the floating-point value 1.999999999 will be converted to 1, not to 2.

A last source of unsafe conversions is the use of incorrect conversion specifiers in a scanf() statement.
For example, using a %g (for float) in a scanf() format when you need %lg (for double) will not be detected
by most compilers as an error. On these systems, the faulty program will compile with no warnings but will
not run correctly. It will read the data from the keyboard and convert it into the representation indicated by
the format. The corresponding bit pattern, whether the right length or not, will be stored into the waiting
memory location without further modification. This will put the wrong information into the variable and
inevitably produce garbage results.

7.4.2 Type Casts and Coercions

All the different conversions just mentioned can be invoked explicitly by the programmer by writing a type
cast. They might also be produced by the compiler because of a type-mismatch in the program code; we
call this type coercion.

Type casts. A type cast is an explicit operation that performs a type conversion. A cast is written by
enclosing a type name in parentheses and writing this unit before either a variable name or an expression.
Any type name can be made into a cast and used as an operator in an expression. Technically, a type cast
is a unary operator with precedence lower than all other unary operators but higher than all the binary
operators. When applied to an operand, it tells the system to convert the operand to the named type,

8More is said about these error conditions in Section 7.5.

7.4. MIXING TYPES IN COMPUTATIONS 207

This program uses type casts and compares the effects of rounding, casting, and assignment.

#include <stdio.h>

#include <math.h>

int main(void)

{

double x, y = 17.7;

int k, m, n;

k = (int) y; // Casting a float to type int truncates

m = y; // Assigning a float to an int variable causes truncation.

printf("Casting:\t y= %6.2f k= %3i x= %6.2f \n", y, k, x);

printf("Assignment:\t y= %6.2f m= %3i x= %6.2f \n", y, m, x);

n = rint(y); // Rounding before assignment.

printf("Rounding: y= %6.2f n= %3i \n\n", y, n);

x = (double) k; // Casting back does not restore the fractional part.

printf("Re-casting: y= %6.2f k= %3i x= %6.2f \n", y, k, x);

return 0;

}

Figure 7.18. Rounding and truncation.

if possible. Sometimes this adjusts the length of the operand, sometimes it alters the representation, and
sometimes it just changes the type labeling. Examples of casts are shown in Figure 7.17.

A cast from a floating-point type to an integer type truncates the value (in the same way that assignment
truncates). Casting does not round to the nearest integer; if rounding is needed, it must be done explicitly,
by using rint() before the value is converted or assigned to an integer variable.

Figure 7.18 contains a simple example of how information can be lost unintentionally during type con-
versions. We start with a float value, convert it into an int, and then convert it back again. The values of
y and x are different because information was lost when the value of y was cast to int. That information
cannot be recovered by converting it back again.

Notes on Figure 7.18. Rounding and truncation.

First box: truncation. In the first line, a cast is used to convert a floating value to an integer value, and
the result is stored in an integer variable. This truncates the fractional part of the number, which is lost
permanently. The second line has the same effect. The compiler sees that the type of the variable on the
left side of the assignment does not match the type of the value on the right, so it automatically generates
the (int) type cast to make the assignment possible. We say the compiler coerces the double value to an
int value. The first two lines of output, below, show the results.

Second box: rounding. This box contains a call on rint() which rounds y to the nearest integer, but
returns a value of type double. That value is immediately coerced to type int and stored in an integer
variable. The third line of output, below, shows the result.

Third box: casting back to type double. The value of y was previously cast to int and stored in k. Now
we take the value of k and cast it back to type double. Note that this does not (and can not) restore the
fractional part; once it is gone, it is gone. The fourth line of output, below, demonstrates these results.

208 CHAPTER 7. USING NUMERIC TYPES

This program demonstrates the effects of some type coercions. Unlike the program in Figure 7.18,
automatic type conversions (not explicit casts) cause the values to change here.

#include <stdio.h>

#include <math.h>

int main(void)

{

float t, w;

float x = 17.7;

int k;

k = x; // A. The = coerces the float value to type int.

t = k + 1.0; // B. The + coerces value of k to type double.

// The = coerces the sum to type float.

w = sin(x); // C. Calling sin() coerces x to type double.

// The = coerces the double result of sin() to float.

printf("x= %.2f k= %3i t= %.2f w= %.2f\n", x, k, t, w);

}

The output is

x= 17.70 k= 17 t= 18.00 w= -0.91

Figure 7.19. Type coercion.

The output.

Casting: y= 17.70 k= 17 x= 0.00
Assignment: y= 17.70 m= 17 x= 0.00
Rounding: y= 17.70 n= 18
Casting back: y= 17.70 k= 17 x= 17.00

Automatic type coercion. All of the arithmetic operators defined in Figure 4.1, except %, can be used
with floating-point types. Within the representational limits of the computer, these operators implement the
mathematical operations of addition, subtraction, multiplication, and division. If both operands are floats,
the result is a float. If both are doubles, the result is a double. If the operands have different types, the
compiler will recognize this and attempt to unify the types. A type coercion is a type conversion applied by
the compiler to make sense of the types in an expression. C will insert the conversion code before it compiles
the operation that requires it. Coercions happen in three basic cases:

1. When the type of the value in a return statement does not match the type declared in the function’s
prototype. If you are performing your calculations carefully, this case should not happen, and many
compilers give warnings when it does occur. It is better style to use an explicit cast in the return
statement than to rely on coercion in this case.

2. When the type of an argument to a function does not match the type of the corresponding parameter
in the function’s prototype. Many of the functions in the math library have double parameters and
frequently int or float arguments are passed to them. This is seen in Figure 7.19, line C, where the
float value of x is coerced to type double. This kind of coercion may be safe or unsafe. It is normal
style to use the safe (lengthening) coercions, and they are used very often. However, coercion should
not be used for unsafe (shortening) conversions; use an explicit cast instead.

3. When an arithmetic or comparison operator is used with operands of mismatched types, such as

(a) When the value of an expression is being saved into a variable using an assignment statement,
as in Figure 7.19, line A. This conversion from the expression type (float) to the target type
(int) is automatic and performed whether safe or not. Examples of coercing a double value to
type float are given in lines B and C. Note that neither of the explicit casts used in Figure 7.18
was necessary. The compiler would have coerced the values into the new formats automatically
because a value of one type was being stored in a variable of a different type.

7.4. MIXING TYPES IN COMPUTATIONS 209

The examples use these declarations:

int k;

double x = 3.14;
3
3.14

 k = x
3.143

3

 k = (int) x
3.14

3

3

3.14

3
The diagram on the left is a cast; on the right is a coercion. In both cases, a black conversion box marks
the point at which a value is converted from one type to another.

Figure 7.20. Diagramming a cast and a coercion.

(b) When an operator has two real operands or two integer operands, but the operands have different
lengths. The shorter value is converted to the type of the longer value, so that no information is
lost. Therefore, short is converted to int, int to long, and float to double. The result of the
operation will have the longer type.

(c) When an operator has operands of mixed representations, as in Figure 7.19, line B. The compiler
must convert one value to the type of the other. The rule here is that the conversion always must
be done safely, if possible. Therefore, the less inclusive type is converted into the more inclusive
type (say, integer to float or double), so that usually no information is lost. Because of this,
most expressions that have a real operand will produce a real result, and many of these are in the
double format.

Is coercion a good thing? Yes, because it allows functions to be easily used with arguments types that
are compatible with the parameter types, but not exactly the same. Coercion frees the programmer to think
about the calculations, not the representation of the data. Using coercion instead of explicit casts shortens
the program and brings the basic calculation into clearer focus. However, it is not wise to depend on coercion
unless you are sure that the resulting conversion will be safe, and type warning errors should be eliminated
by using explicit casts wherever necessary.

7.4.3 Diagramming Conversions

We use parse trees to help us understand the structure of expressions as well as to manually evaluate them.
Since coercions and casts affect the results of evaluation, we need a way to show them in a parse tree. Both
will be noted on a parse tree as small black squares. Figure 7.20 shows an example of each and Figure 7.21
diagrams casts and coercions within larger expressions.

Notes on Figure 7.20. Diagramming a cast and a coercion.

Diagram on left: a cast. A type cast is a unary prefix operator; we diagram it with the usual one-armed
unary bracket. In addition, we write a black box on the bracket to denote a type conversion. In this example,
the real value 3.14 is on the tree above the box; it is converted at the box and becomes the integer 3 below
the box.

Diagram on right: a coercion. When a real number is stored in an integer variable, it must be coerced
first. We represent the coercion by a black box on a branch of the parse tree. Even though no cast is written
here, the real value 3.14 above the box is converted at the box to become the integer 3 below the box. The
result is the same as if it had been cast.

Notes on Figure 7.21. Expressions with casts and coercions.

210 CHAPTER 7. USING NUMERIC TYPES

The examples use these declarations:

int k=3, r1=1, r2=2;

float w=1.57080;

double x, r_eq;

()r1 + r2r2 r_eq = (double) /

cba

()r1*
1 2

1.0 2.0
2.0

1 2

3

3.0

.667

.667

1
1.57080 (as a double)

x (w)sin
1.0

1.0
1.0 (as a double)

1.57080 (as a float)
=x k 1.0

3.0
3

3
+

4.0
4.0

4.0
=

Figure 7.21. Expressions with casts and coercions.

Leftmost diagram: coercion of left operand of +. The first operand of + is an int, the second is a
double literal. The integer will be coerced to type double and real addition will be performed. The result
is a double stored in x with no further conversion.

Middle diagram: coercion of an argument. The trigonometric functions in the standard mathematics
library are double→double functions whose arguments must be given in radians. Here we call sin() with
a float argument, which is coerced to double before calling sin(). The result is a double that is stored in
x with no further conversion.

Right diagram: a larger expression. The formula from the third box in Figure 7.23 is diagrammed
on the right. In this example, the operand r1 is explicitly cast (a) from int to double. This forces the
second operand r2 to be coerced (b) so that real multiplication can happen, producing a double value for
the numerator of the fraction. The result of the addition in the denominator is an int; it is coerced to type
double (c) to match the numerator. Real division is done and the double result is stored in r_eq, a double

variable, with no change.

7.4.4 Using Type Casts to Avoid Integer Division Problems

As discussed earlier, division is an operation whose meaning is quite different for integers and reals; a
programmer needs to be aware of these differences. At times, integer division (keeping only the quotient) is
a desirable outcome; but at many other times, it is not. Often, even when dividing one integer by another, the
fractional part of the answer is needed for the application. Therefore, be careful when writing expressions;

Problem scope: Find the electrical resistance equivalent, req, for two resistors wired in parallel.
Input: Two integer resistance values, r1 and r2.
Limitations: The resistances will be between 1 and 1,000 ohms.
Formula:

r1 r2reqr1 + r2
req = r1 r2*

Output required: The two inputs and their equivalent resistance.
Computational requirements: The equivalent resistance must be accurate to two decimal places.

Figure 7.22. Problem specification: computing resistance.

7.4. MIXING TYPES IN COMPUTATIONS 211

We show how to use a type cast or coercion to solve the problem specified in Figure 7.22.

#include <stdio.h>

int main(void)

{

int r1, r2; // integer input variables for two resistances

double r1d, r2d; // double variables for two resistances

double r_eq; // equivalent resistance of r1 and r2 in parallel

printf("\n Enter integer resistances #1 and #2 (ohms): ");

scanf("%i%i", &r1, &r2);

printf(" r1 = %i r2 = %i \n", r1, r2);

r_eq = (r1 * r2) / (r1 + r2); // Oops! Integer division.

printf(" The truncated resistance value is %g\n", r_eq);

r_eq = ((double)r1 * r2) / (r1 + r2); // Better: we cast first.

printf(" We cast to double first and get %g\n", r_eq);

r1d = r1; // Coerce to type double...

r2d = r2; // by copying into double variables

r_eq = (r1d * r2d) / (r1d + r2d); // and compute using doubles.

printf(" The true value of equivalent resistance is %g\n", r_eq);

}

Figure 7.23. Computing resistance.

divide one integer operand by another only when an integer answer is needed. Otherwise, one of the integers
must be cast to a floating-point type before the division. Figures 7.22 and 7.23 illustrate an application in
which the use of a cast operation on int values achieves the necessary precision in the answer.

A division application: Computing resistance. Figure 7.22 is a simplification of the problem pre-
sented in Figure 4.27; it computes the equivalent resistance of two parallel resistors (rather than three). In
Figure 7.23, we show how precision can be lost due to careless use of integer divison to calculate r_eq. Then
we compare this answer to a second value calculated using floating-point variables.

Notes on Figure 7.23. Computing resistance.

First box: the input.
• We use one prompt and one scanf() statement to read two input values; the format contains two %

codes and we supply two addresses. As long as it is logical and causes no confusion, it is better human
engineering to combine the inputs on one line, because this is faster and more convenient for the user.

• We use integer input here because we want to illustrate a potential problem with integer arithmetic.
However, the inputs could have been read directly into double variables, avoiding the need for the casts
or coercions demonstrated next.

Second box: the integer calculation.
• Since r1 and r2 are integers, integer arithmetic will be used throughout the expression and the result will

be an integer. The result will be coerced to type double after the calculation and before being stored in
r_eq. Two serious problems arise with this computation, as it is written, that can cause the answer to
be less accurate than desired.

• First, the programmer intended to have a real result. You might think that, since the answer is stored in
a double, it would have a fractional part. But that is not how C works. It does not look at the context

212 CHAPTER 7. USING NUMERIC TYPES

surrounding the division to find out what kind of division to perform; it looks only at the two operands,
both of which are integer expressions in this case. For two integer operands, it performs integer division,
so the fractional part of the result stored in r_eq will be 0.

• Second, on a machine with 2-byte ints, the result of the multiplication could be a number too large to
be represented as an int, even when the inputs are relatively small. If this occurs, the overall result will
be wrong due to the overflow, a condition we discuss in Section 7.5.

Third box: using a cast.
• If any one of the original four operands or the resulting numerator or denominator is cast to a floating-

point type, real division will be performed, as demonstrated by the fractional portion of the output.

• Here we cast the first operand of the numerator to double, thereby causing real multiplication to be used.
Integer addition still will be performed, however, because neither of the operands in the denominator was
cast. The result of the addition will be coerced to type double before the division is done.

Fourth box: using double variables and coercion.
• The output from two runs of this program is shown below. The fractional parts of the correct answers are

lost when integer division is used. However, correct answers are obtained when floating-point operations
are performed.

Enter integer resistances #1 and #2 (ohms): 20 24
r1 = 20 r2 = 24

The truncated resistance value is 10
We cast to double first and get 10.9091
The true value of equivalent resistance is 10.9091

Enter integer resistances #1 and #2 (ohms): 1 2
r1 = 1 r2 = 2

The truncated resistance value is 0
We cast to double first and get 0.666667
The true value of equivalent resistance is 0.666667

• When we assign a value to a variable of a different type, the compiler coerces the value to the type of
the variable. The integer values entered into the program are transferred from int variables into double

variables. This tells C to find the double representation of the numbers r1 and r2. Since integers are a
subset of the real numbers, this type conversion is usually safe.

7.5 The Trouble with Numbers

Now that we better understand the limitations of the various data types and how conversions between the
types occur automatically or at our instruction, we need to consider how to use this knowledge to our
advantage. In this section, we discuss how to deal with some computational problems, such as how to
properly compare two numbers and what happens when a computed value is outside of the representable
range of the data type.

The integer types provide a precise representation for numbers within a restricted range. The restriction
is particularly severe for short integers, which are not large enough to store the results of many computations.
While the overall range of numbers that can be represented by floating-point types is vastly greater, it still
is finite and the representation used is an approximation of the real number with limited precision. We
saw some of this precisional error in the last section. The various mathematical operations can produce
inaccurate or completely incorrect results if the operands are either too large or too small or if the two
operands differ greatly in size. These computational problems are demonstrated in more detail by the
following short programs.

7.5.1 Overflow

Overflow is the error condition that occurs when the result of an operation becomes larger than the limits
of the representation, as described in Figures 7.4 and 7.5. How this error condition is detected and handled
differs for the integer and real data types. These overflow situations are a serious problem. They cannot be

7.5. THE TROUBLE WITH NUMBERS 213

0001 = 1
0010 = 2

0011 = 3
0100 = 4

0101 = 5
0110 = 6

0111 = 71000

0000

positivenegative

-7 = 1001
-6 = 1010

-5 = 1011

-3 = 1101
-2 = 1110

-1 = 1111

-4 = 1100

0

-8

Figure 7.24. Overflow and wrap with a four bit signed integer.

detected by the compiler. The compiler cannot predict that a result will overflow because it cannot know
what data will be used later, at run time, to make calculations. Also, a C system will not detect the error
at run time and will not give any warning that it has happened. It usually is possible to look at the results
of calculations on the screen and notice when something has gone wrong, but this is far from a desirable
solution.

Integer overflow and wrap. Integer overflow happens whenever there is a carry into the sign bit (leftmost
bit) of a signed integer. The result is that the number “wraps around” from positive to negative or negative to
positive. Wrap is illustrated for 4-bit integers in Figure 7.24. With four bits, we can represent the numbers
-8. . . +7. The four bits represent −8, 4, 2, and1 so that, for example, 1101 represents − ∗+4 + 1 = −3.

Suppose we start with the value +5 and repeatedly add 1. We get +6 and +7, then there is a carry
into the leftmost bit (the sign bit), and wrap happens, giving us -8. If we continue adding 1, we progress,
through all possible negative values, toward zero, and back into the positive range of values. Formally, we
can say that when x is the largest positive signed integer that we can represent, x + 1 will be the smallest
(farthest from 0) negative integer.

Overflow also happens when an operation produces a result too large to store in the variable that is
supposed to receive it. Unfortunately, there is no systematic way to detect overflow or wrap after it happens.
Avoidance is the best policy, and that requires a combination of programmer awareness and caution when
working with integers. Expressions that cause integer overflow are fairly common on small computers
because the range of type int is so restricted. For a 2-byte signed integer, the largest value is 32,767, which
is represented by the bit sequence x =01111111 11111111. The value of x+1 is 10000000 00000000 in binary
and −32768 in base 10.

Similarly, with unsigned integers, overflow and wrap happen whenever there is a carry out of the leftmost
bit of the integer. In this case, if x is the largest unsigned integer, x+ 1 will be 0. To be specific, for a 2-byte
model, the largest unsigned value is 65,535, which is represented by the bit sequence x =11111111 11111111.
The value, in binary, of x + 1 is 00000000 00000000.

Integer calculations like addition, subtraction, and multiplication with large numbers are likely to exceed
the maximum limit, perhaps by quite a lot.9 On a 16-bit machine, if a computation causes overflow and
the result is stored in a variable, only the rightmost (least significant) 16 bits of the overlarge answer will
be stored; the rest will be truncated. If the result then is printed, it will appear much smaller than the
mathematically correct result (or even negative). Noticing the faulty value is the only way for a user to
detect an overflow.

For example, suppose that the 2-byte integer variable k contains the number 32300 and you enter a loop
that adds 100 to k seven times. The value stored in k would be, in turn, 32400, 32500, 32600, 32700, −32736,
−32636, and finally −32536. The value has wrapped around and become negative, but that does not stop
the computer! The program will continue running with a faulty number that is not even approximately
correct. For these reasons, 2-byte integers (type int on smaller machines and type short int on most

9Unlike the *, +, and - operators, integer division cannot cause overflow. The smallest integer value you can divide by is 1,
which will not increase the magnitude of the value being divided.

214 CHAPTER 7. USING NUMERIC TYPES

machines) are not very useful for serious numeric work. We generally use type long if we want to use
integers in these calculations. But even though type long, with a range up to 2.1 billion, can handle many
more calculations properly, it still is limited to 10 digits.

Floating-point overflow and infinity. The phenomenon of wrap is unique to integers; floating-point
overflow is handled differently. The IEEE floating-point standard defines a special bit pattern, called
Infinity, that will result if overflow occurs during a computation. (The exponent field of this value is set
to all 1 bits, the mantissa to 0 bits.) The constant HUGE_VAL, defined in math.h, is set to be the “infinity”
value on each local system. One way that an overflow can be detected is by comparing a result to HUGE_VAL

or -HUGE_VAL. Systems that implement the full IEEE standard provide the function finite(x) in the math

library, which returns true if x is a legitimate number or false if it is an infinite value or a NaN error. Also,
in such systems, printf() will output overflow values as +Infinity or -Infinity. Note that the finite()

function is used to end the for loop in Figure 7.25.

Factorial: A demonstration of overflow. As an illustration of what all this means in practice, consider
the mathematical factorial operation:

N ! = 1× 2× . . .× (N − 2)× (N − 1)×N

Factorial, by its nature, is a function that grows large very rapidly. Figure 7.25 shows a version of the
factorial program that computes N ! for values of N ranging from 1 to 40. The computation is made with
variables of five different types so that we can compare the range and precision of these types.

Wrap error. The output on the first seven lines is fully correct. (Horizontal spacing has been reduced.)

N N factorial
short unsigned
int short int long int float double

1 1 1 1 1 1
2 2 2 2 2 2
3 6 6 6 6 6
4 24 24 24 24 24
5 120 120 120 120 120
6 720 720 720 720 720
7 5040 5040 5040 5040 5040

However, 7! is the largest factorial value that can be stored in a short signed (16-bit) integer. From line 8
on, the numbers in the first column are meaningless; overflow has happened and the answer wraps around to
become a negative number. This will not always occur, but when it does, it is a good indication of trouble.

short unsigned
int short int long int float double

8 -25216 40320 40320 40320 40320
9 -30336 35200 362880 362880 362880

10 3628800 3628800 3628800
11 39916800 39916800 39916800

One more value, 8!, can be stored in a short unsigned integer. But, beginning with 9!, the answer overflows
into the 17th bit position and the number stored in the variable factu is garbage. When working with
unsigned numbers, as in the second column, there is not even a negative sign to warn us about the wrap.
Nonetheless, the numbers are wrong from line 9 on. This is what makes it so difficult to detect this error in
practice. The program suppresses output in these two columns after line 9.

long int float double

11 39916800 39916800 39916800
12 479001600 479001600 479001600
13 1932053504 6227020800 6227020800
14 1278945280 87178289152 87178291200
15 2004310016 1.30767427994e+12 1307674368000

Using long integers, as in the third column, we get correct answers all the way up to 12!, the largest N for
which the calculation can be made using either signed or unsigned long integers. Starting at line 13, the
answer for long integers is garbage; it should be the same as the value in the other columns. Here, we get
no negative sign to warn us that wrap has occurred, because the value has wrapped past all of the negatives
and into the positives again.

7.5. THE TROUBLE WITH NUMBERS 215

We compute the factorial function using five different types so that we can compare their range and precision.

#include <stdio.h>

int main(void)

{

int N; // Loop counter.

short int facts = 1; // We compute factorial using 5 types.

short unsigned factu = 1; // 0! is defined to be 1.

long int factl = 1;

float factf = 1.0;

double factd = 1.0;

puts("\n N N factorial \n short unsigned \n"

" int short int long int \t float \t\t\t double \n");

// Compute N! using each type, quit after 40 factorial.

for (N = 1; finite(factd); ++N) {

facts *= N; factu *= N; factl *= N;

factf *= N; factd *= N;

if (N <= 9)

printf("%3i %7hi %7u ", N, facts, factu);

else

printf("%3i ", N);

if (N <= 17)

printf("%12li", factl);

else

printf(" ");

printf(" %18.12g %23.22g\n", factf, factd);

}

}

Figure 7.25. Computing N!.

Representational error. Between N = 14 and N = 34, using type float, we encounter the limits of
the IEEE float’s precision, rather than its range. Although we can compute the factorial function for
N > 13, the answers are only approximations of the true answer. (The float value computed for N = 14 is
87,178,289,152; this is close to, but smaller than, the true answer, 87,178,291,200, shown in the last column
for the double calculation.) The float simply lacks enough bits to hold all the significant digits, even
though the maximum float value has not been reached. We say that such an answer is correct but not
precise. It may be a fully acceptable approximation to the true answer, but it differs in the last few digits.
Whether the precision is adequate depends on the application.

float double

15 1.30767427994e+12 1307674368000
16 2.0922788479e+13 20922789888000
17 3.55687414628e+14 355687428096000
18 6.40237353042e+15 6402373705728000
19 1.21645096004e+17 121645100408832000
20 2.43290202316e+18 2432902008176640000
21 5.10909408372e+19 51090942171709440000
22 1.12400072481e+21 1124000727777607680000
23 2.58520174446e+22 2.585201673888497821286e+22

Using type double (as in the last column) instead of float extends the range of accuracy. The same factorial
program goes up to 22! with total precision; this number has 18 nonzero digits. For N = 23, the last few
digits show evidence of the error, they should be 664000 not 821286.

216 CHAPTER 7. USING NUMERIC TYPES

This program continually divides a number by 10 until the result is too small to store as a normalized float.

#include <stdio.h>

int main(void)

{

int N;

float frac = 1.0;

puts("\n Dividing by 10; frac=1/(10 to the Nth power)\n");

for (N = 0; N < 50; ++N) {

printf(" N=%3i frac= %13.8g 1+frac= %13.8g\n",

N, frac, 1+frac);

frac = frac / 10;

}

}

Figure 7.26. Floating-point underflow.

float double

33 8.68331850985e+36 8.683317618811885938716e+36
34 2.95232822997e+38 2.952327990396041195551e+38
35 +Infinity 1.033314796638614422221e+40
36 +Infinity 3.719933267899011774924e+41

At N = 35, floating-point overflow happens, for the float number format where 3.402e+38 is the maximum
representable number. However, this does not stop the program, which continues to try to compute the
numbers up to 170! before overflow happens using the double format. At 171! the test for finite(facto)

ends the loop.

7.5.2 Underflow

The opposite problem of overflow is underflow, which occurs when the magnitude of the number falls below
the smallest number in the representable range. This cannot occur for integers, only for real numbers, since
the minimum magnitude of an int is 0. For real numbers, underflow happens when a value is generated
that has a 0 exponent10 and a nonzero mantissa. Such a number is referred to as denormalized, which
means that all significant bits have been shifted to the right and the number is less than the lowest number
specified by the standard. This effect is shown in the left column of the last few lines of output from the
division program in Figure 7.26:

N= 43 frac= 9.9492191e-44 1+frac= 1
N= 44 frac= 9.8090893e-45 1+frac= 1
N= 45 frac= 1.4012985e-45 1+frac= 1
N= 46 frac= 0 1+frac= 1
N= 47 frac= 0 1+frac= 1

The program continually divides a value by 10. The actual lower limit of the representation range is
1.175e−38, and some systems will generate the 0 value when this limit is reached. Others, like the one
shown here, still use the denormalized values. But even these, at N = 46, have all the bits shifted so far to
the right that the result becomes 0.

Underflow can result from several kinds of computations:

• Dividing a number by a very large number or repeated division, as just illustrated.

• Multiplying a small number by a near-zero number, which has the same effect as dividing by a very
large number.

• Subtracting two values that are near the smallest representable float and ought to be equal but are
not quite equal because of round-off error.

10That is, all zero bits in the exponent, which corresponds to a large negative exponent in scientific notation.

7.5. THE TROUBLE WITH NUMBERS 217

7.5.3 Orders of Magnitude

The limits of float precision can be a problem with addition as well as with multiplication. For example, if
you attempt to add a small float number to a large one, and their exponents differ by more than 107 (or 7
orders of magnitude), the addition likely will have no effect. The answer will be the same large number
that you started with. This is because the floating-point hardware starts the operation by lining up the
decimal points of the two operands. In the process, the mantissa bits of the smaller value get denormalized
(shifted to the right). But the hardware register in which this happens has a finite width, so the least
significant (rightmost) bits of the smaller operand “fall off” the right end of the register and are lost. If the
difference in exponents between the operands is great enough, all of the mantissa bits of the smaller value
will be lost and only a value of 0 will be left when the addition happens. You can add a millimeter to a
kilometer in single precision, but the answer is still 1 kilometer.

This effect is illustrated in the right column of the first few lines of output from the program in Figure 7.26,
shown below. This program starts with the value 1.0, divides it repeatedly by 10, and adds each fractional
result to 1. After only nine divisions, the original fraction is so small that the addition has no effect. We
say that the fraction is insignificant in comparison to 1.0.

Dividing by 10; frac=1/(10 to the Nth power)

N= 0 frac= 1 1+frac= 2
N= 1 frac= 0.1 1+frac= 1.1
N= 2 frac= 0.0099999998 1+frac= 1.01
N= 3 frac= 0.00099999993 1+frac= 1.001
N= 4 frac= 9.999999e-05 1+frac= 1.0001
N= 5 frac= 9.9999988e-06 1+frac= 1.00001
N= 6 frac= 9.9999988e-07 1+frac= 1.000001
N= 7 frac= 9.9999987e-08 1+frac= 1.0000001
N= 8 frac= 9.9999991e-09 1+frac= 1
N= 9 frac= 9.9999986e-10 1+frac= 1

The order of operations. When dealing with a set of numbers that have highly variable magnitudes, the
accuracy of a final result can depend on the order in which operations are performed. For instance, suppose
you want the total of a large number of values. If they are all nearly the same size, order does not matter.
However, if a few are huge and most are very small, adding up the huge ones first will cause the small ones
to be insignificant in proportion to the sum of the large ones. However, if the small ones are added first,
their sum may be of an order of magnitude similar to the large values, and therefore, make an important
contribution to the overall sum.

Some techniques in numerical analysis also require attention to the magnitude of the numbers that
are involved. One example is the Gaussian elimination algorithm for solving a set of simultaneous linear
equations. In this algorithm, coefficients of the equations are repeatedly subtracted from, multiplied by, and
divided by other coefficients. The subtractions can produce results that are close to, but not quite, zero.
But dividing by such a number might cause floating-point overflow. Happily, there is considerable choice
about the order in which the coefficients are used, and the solution to this problem is always to process the
largest remaining coefficient next.

7.5.4 Not a Number

Last, a special value called NaN, which stands for “not a number,” can be generated through operations such
as 0 / 0. This is another special bit pattern that does not correspond to a real value. The IEEE standard
specifies that any further operation attempted using a NaN or Infinity as an operand will return the same
value. This was seen for +Infinity in the factorial example. On our system, the hardware computes
Infinity and NaN values correctly and C’s stdio library prints them (as was shown) instead of printing
meaningless digits.

Sometimes the order in which a set of calculations is performed can cause an error, while the same
operations done in a different order can be correct. For example, suppose we wished to calculate the number
of different hands a player might get in the card game Canasta. In this game, a deck has n = 104 cards and
each player is dealt a hand of k = 11 cards. The formula for the number of different hands H can be given
two ways:

218 CHAPTER 7. USING NUMERIC TYPES

Calculate the number of 11-card Canasta hands that can be dealt from a deck of 104 cards. The two
calculation methods below are mathematically equivalent, but the first one fails due to overflow. The second
one works properly.

Method 1: Use the mathematical formula and call the factorial function.

float factorial(int n); // Prototype of factorial function.

combinations = factorial(104) / (factorial(11) * factorial(104-11));

Method 2: Alternate division and multiplication to keep answer within the range of type float.

float combinations = 1; // The answer, so far.

float quotient; // One term of the formula.

for (int k=11; k>0; --k){

quotient = (double)(104-k+1) / k;

combinations *= quotient;

}

Figure 7.27. Calculation order matters.

H =
n!

k!× (n− k)!
=

n

k
× n− 1

k − 1
. . .

n− k + 1

1

The first formula is the one you are likely to see in a book on probability. However, the number of Canasta
hands is calculated using type float and using the formula as written, overflow happens. This is shown by
Method 1 in Figure 7.27, which gives this result:

Numerator= inf Denom1=3.99168e+07 Denom2=inf Combinations=nan

The second method works correctly and gives this answer, which is correct:

Combinations= 2.23045e+14

7.5.5 Representational Error

When two integers are compared, they are either equal or not; this is because we use an exact representation
for integers, and they are discrete values (each one differs by exactly 1 from the next). In contrast, the real
numbers are not discrete; they are continuous, that is, an infinite number of real values lie between any two
we care to write. We can represent some of those numbers exactly but most can be represented only by
an approximation. The difference between the true value and its representation is called representational
error. Types float and double are approximate representations for the real numbers, but with differing
precision. As an example, consider this code fragment:

float w = 4.4;

double x = 4.4;

printf(" Is x == (double)w? %i \n", (x == (double)w));

printf(" Is (float)x == w? %i \n", ((float)x == w));

The output, shown below, is unexpected if you forget that the two numbers are represented with limited,
and different, precision and that the == operator tests for exact bit-by-bit equality.

Is x == (double)w? 0

Is (float)x == w? 1

When the more-precise value is cast to the less-precise type, the extra bits are truncated and the numbers
are exactly equal. When the shorter value is cast to the longer type, it is lengthened by adding zero bits at
the end of the mantissa, not by recomputing the additional bit values. In general, these zeros are not equal
to the meaningful bits in the double value.

7.5. THE TROUBLE WITH NUMBERS 219

Computation also can introduce representational error, as shown by the next code fragment. We start
with y, divide it by a number, then multiply it by the same number. According to mathematics, the result
should be the same real number we started with. According to our computer it is, but only sometimes, as
with this first set of initial values:

float w;

double x, y = 11.0, z = 9.0;

x = z * (y / z) ;

w = y - x;

printf("\n w=%g x=%.10f \n", w, x);

The results from computing this on our system are

w=0 x=11.0000000000

But if we change the initial values to y = 15.0 and z = 11.0, the results are different and the value of w is
nonzero:

w=1.77635e-15 x=15.0000000000

Why does this happen? The answer to a floating-point division has a fractional part that is represented
with as much precision as the hardware will allow. However, the precision is not infinite and there is a tiny
amount of truncation error after most calculations. Therefore, the answer to y / z may have error in it,
and that error is increased when we multiply by z. This is why the answer to z * (y / z) does not always
equal the number y that we started with.

7.5.6 Making Meaningful Comparisons

The question then arises, when are two floating-point numbers really equal? The answer is that they should
be called equal if both are approximations for the same real number, even if one approximation has more
precision than the other. Therefore, an approximate test for equality is necessary to compare values that
are approximations.

Practical problems often require comparing a calculated value to a specific constant or setpoint or com-
paring two calculated values that should be equal. Such a comparison is not as simple as it seems, because
even simple computations with small floating-point values can have results that differ from the mathemati-
cally correct versions. If you read two identical floating-point values into variables of the same floating type
and compare them, the values will be equal. However, as soon as you begin to compute, truncation and
round-off error can happen. Any computed value could be affected by floating-point representational error.
Further, two computed values could be affected by different amounts and in different directions.

Although truncation itself always results in a value smaller than it should be, using a truncated answer
as a divisor gives a quotient that is too large. It takes considerable expertise to analyze how severely a
number might be affected and in what way. In the example of representational error given previously, doing
y - (z * (y / z)) gave a nonzero answer for y = 15.0 and z = 11.0 because of round-off error due to
the division, but the same computation on other values of y and z gave the answer 0.0. There was no obvious
pattern to these zero and nonzero answers when the test was tried with other inputs.

Even though we know that the various results of z * (y / z) will be very close to the value of y,
the == operator tests for exact, not approximate, equality. Since any floating-point value that results from
a computation may be imprecise, we cannot use == and != on floats and doubles. We can get around
this comparison problem by comparing the difference of the two numbers to a preset epsilon value, as in
Figure 7.28. We call this an approximate comparison for equality with an epsilon test. For any given
application, we can choose a value of epsilon that is slightly smaller than the smallest measurable difference
in the data. We then ask if the absolute value of the difference between the values is less than epsilon—if so,
we say the operands are equal. This can be done in one if statement by using the absolute value function,
fabs(), as shown in Figure 7.29.

220 CHAPTER 7. USING NUMERIC TYPES

With the epsilon shown (2 mph), we say that speed1 = 49.0 equals 50.0 because it is within epsilon of
50.0, but speed2 = 54.0 does not equal 50.0 with this value of epsilon.

 50.0+epsilon = 52

speed1

 0.0

 50.0-epsilon = 48

speed2
 +

 50.0

epsilon = 2mph

Figure 7.28. An approximate comparison.

In addition to testing for equality, occasionally we also need to test for a greater-than or less-than
condition. In a one-sided test, we still need an epsilon value to compensate for representational error, but
the fabs() can be omitted. This kind of test is used in Figure 7.31.

7.5.7 Application: Cruise Control

Sometimes different actions are required for values below, above, and equal to a target, so we need to use
a series of if statements to test for these conditions. The program specified in Figure 7.30 and written in
Figure 7.31 demonstrates this technique. The figures present an initial version of a cruise control program that
would run on a computer embedded in the acceleration system of an automobile to regulate the setting of the
automobile throttle. A real cruise control would need to be more complex to avoid drastically overshooting
and undershooting the target speed.

Notes on Figure 7.31. Cruise control.

First box: the constants.
• We define eps to be small so that the cruise control system can regulate the speed within a narrow range.

• The throttle setting ranges between 0.0◦ (horizontal) and 90.0◦ (vertical); we adjust it by 5◦ each time
we need to raise or lower the car’s speed.

Second box: waiting for the “set” signal.
• When the cruise control first is turned on, it waits for the driver to press the “set speed” switch. This

is performed by the one-line loop that repeats until the “set” signal is received. Note that no actual
statement is being executed each time through the loop. The loop simply repeats the test until the test
is false. This typically is called a busy wait loop and was discussed in Chapter 6.

• As soon as the “set” switch is recognized, we leave the loop and get the input values by calling functions
to read the current speed and throttle settings.

Use an epsilon test with the absolute value function to compare floating-point values for equality. Note,
the fabs() function is part of the math library and is used with real numbers, as opposed to abs(), which
is used with integers.

double epsilon = 1.0e-3;

double number, target;

if (fabs(number - target) < epsilon) // fabs is floating abs.

// then we consider that number == target

else

// we consider the values significantly different.

Figure 7.29. Comparing floats for equality.

7.6. WHAT YOU SHOULD REMEMBER 221

Problem scope: A simple version of a cruise control program that would run on a computer embedded in
the acceleration system of an automobile.

Inputs: These come from the functions read_on_switch(), read_speed(), read_throttle(), and
read_brake(), which are attached to the car’s sensors. Prototypes for these functions are in the file
throttle.h. There is no direct interaction with a user.

Formulas: Increasing or decreasing the angle of the throttle affects the speed. An angle of 0◦ corresponds
to a horizontal throttle and high speed, while the maximum angle of 90◦ corresponds to a vertical throttle
and low speed. At 90◦, we assume that some air still can enter the system because the throttle plate is
designed to be smaller than the diameter of the tube. We need some air at all times for combustion of the
gas-air mixture.

air *

gas

throttle: angle is adjusted to change speed.

Constants required: eps = 2.5 mph, the “fuzz factor” for the speed comparison, and delta = 5◦, the
incremental correctional change in throttle setting.

Output required: No output report is displayed on a screen. Instead the output is in the form of appropriate
calls on the set_throttle() function, which controls the position of the car’s throttle.

Figure 7.30. Problem specification: Cruise control.

Outer box: responding to conditions.
• This loop will monitor the car’s progress. The cruise control will remain active until the driver touches

the brake.

• While active, it continually reads the current speed and compares it to the target speed.

• After computing the new throttle setting in the inner box, we generate the output signal of the program
by calling the set_throttle() function.

Inner box: adjusting the throttle.
• Because the speed is a float, we use an epsilon test; that is, we declare the numbers to be equal if they

differ by less than epsilon (2.5 mph).

• Here it is not just important to know whether the speeds are the same but, when they are different,
which is greater. We use an if...else sequence to handle this.

• If the current speed is slower than the target speed minus epsilon, we subtract delta from the throttle
setting. If the current speed is too fast, we add delta. (An actual cruise control algorithm would use
more information than just the current speed to make this decision.) If both these tests fail, then the
speeds would be “equal” according to our original approximate-equality test.

7.6 What You Should Remember

7.6.1 Major Concepts

Integers and their properties.

222 CHAPTER 7. USING NUMERIC TYPES

• Integers come in many forms in C: signed and unsigned, short and long. An integer type permits
us to represent a limited range of values exactly. The short signed integers can store numbers only
up to 32,767. The largest long signed integer is 2,147,483,647. The largest long unsigned integer
is 4,294,967,295. If numbers larger than this are needed, a floating-point type must be used.

• Literal integers. A literal integer is a sign followed by a sequence of digits. The exact type of a literal
depends on its sign, its magnitude, and the range of type int on the supporting computer hardware.
The digits may be followed by a letter L or U to indicate that the number should be long or unsigned. C
supports literals in bases 8 (octal), 10 (decimal), and 16 (hexadecimal). A literal integer is interpreted
as octal if it starts with a 0 digit or hexadecimal if it starts with 0x. Otherwise it is a decimal number.

The car’s throttle setting is increased or decreased in response to the measured speed being too low or too
high.

#include <stdio.h>

#include "throttle.h" // Prototypes for switch and throttle functions.

int main(void)

{

const float eps = 2.5; // Fuzz factor for comparison.

const float delta = 5.; // Change for throttle setting, in degrees.

float throttle; // Current throttle setting.

float target; // Desired speed setpoint.

float speed; // Current speed.

float dif; // Target speed - current speed.

while (! read_on_switch()); // Leave loop when driver sets speed.

target = read_speed(); // Initial speed and throttle settings.

throttle = read_throttle();

while (! read_brake()){ // Leave loop when driver hits brake.

speed = read_speed();

dif = target - speed; // Compare current speed to target

if (dif < -eps){

puts("Speed is too low; open throttle.");

throttle -= delta;

if (throttle > 90.0) throttle = 90.0;

}

else if (dif > eps){

puts("Speed is too high; close throttle.");

throttle += delta;

if (throttle < 0.) throttle = 0.;

}

else puts("Speed is ok; do nothing.");

set_throttle(throttle);

}

}

Figure 7.31. Cruise control.

7.6. WHAT YOU SHOULD REMEMBER 223

• Integer input formats. Integers can be read using %i or %d. The %i is more general and can input
base ten and hexadecimal numbers. The %d is older and is limited to base ten (decimal) inputs. Long
and short integers require different format specifiers: %li or %ld for long and %hi or %hd for short.
When reading, it is important to use the format specifier that matches the type of the variable that
will receive the input. Many compilers to not check for correct specifiers, and using an incompatible
specifier will cause strange and unpredictable results.

• Integer output formats. Integers can be printed using %i or %d, with an optional field width specification
between the percent sign and the letter. As with input, long and short integers require different format
specifiers: %li or %ld for long and %hi or %hd for short. When printing a value it is important to use
the format specifier that matches its type.

• When making calculations with large integers, the programmer must be wary of integer overflow and
wrap. If a variable contains the maximum integer value, adding 1 will cause the value to wrap. The
answer will be the minimum representable negative value (farthest from zero).

Floating-point numbers.

• C supports floating-point numbers in two or three lengths. These types, named float, double, and
long double, are used to represent real numbers. As with scientific notation, a floating-point number
has an exponent that encodes the order of magnitude of the number and a mantissa that encodes the
numeric value to a limited number of places of precision. The limits of floating-point representation
were examined in Figure 7.4.

• The type double is the most important of the three floating-point types, because the C mathematics
library is written to process double numbers (not float or long double) and does all its computations
with doubles. Type float exists to give the programmer a choice; double provides twice as much
precision and a much larger range of exponents but takes twice as much storage space as float and
may take twice as long to process in a computation. When memory space and processing time do not
matter, many programmers use double because it provides more precision.

• Type float vs. double. Because a programmer can combine types float and double freely in expres-
sions, most of the time, it does not matter which real type is used. Sometimes the degree of precision
required for the data dictates the use of double. Since all the functions in the math library expect
double arguments and return double results, some programmers just find it easier to declare all real
variables as double.

• Floating-point literals. A floating-point literal may be written with a decimal point or in scientific
notation. In the first case, the decimal point may be written before the first digit, after the last digit,
or anywhere in between. A literal in scientific notation starts the same way, but then has an exponent
part: the letter E or e, an optional + or - sign, and an integer exponent in the range 0. . . 38 for type
float or 0. . . 308 for type double.

• Floating-point input formats. For input, we have been using the type specifiers %g for float and %lg

for double. The specifiers %f and %lf are also appropriate and commonly used. It is essential to use
the format specifier that matches type of the variable in which the input will be stored. Otherwise,
the results will be wrong and appear to be garbage.

• Floating-point output formats. For output, there are three formatting strategies, with a different
specifier for each. The basic type specifier is %g for both float and double. It will print the output
in whatever format seems most appropriate for the size of the number. (No letter l is needed or even
permitted by the standard, although many compilers will accept %lg and do the right thing.) Optional
width and precision specifications may be written between the percent and the g.

The specifiers %e and %f are used when the programmer needs more control over the appearance or
position of the output number. When %e is used, the output will be printed using scientific notation
and %f is used with width and precision specifications to print numbers in neat columns.

224 CHAPTER 7. USING NUMERIC TYPES

• Floating-point computations can also cause overflow. This happens when you divide by a near-zero
value or multiply two very large numbers. The number will have an exponent of all 1-bits. On some
systems this will be printed as +Infinity; on others, it will be a number with a very large exponent.

• Underflow. This error condition happens when a real number becomes very close to zero but does not
exactly equal zero. In this situation, some systems store the number in a denormalized form, others
simply set the result to 0.

• Comparing reals. Computations on real numbers commonly introduce small and somewhat unpre-
dictable representational errors. For this reason, all comparisons between computed reals should be
made using a tolerance.

Choosing the proper data type.

• An integer type or a real type? For most problems the details of the specification will make it rather
obvious whether an integer or real data type should be used to represent a particular entity. Integers
typically are used for such things as loop counters, simple quantities, menu choices, and answers to
simple questions. Real variables more typically are used for measurements and mathematical calcula-
tions.

• Two other important issues. Memory limitations and speed of execution must sometimes be considered
in choosing a data type. If you are processing large amounts of data and precision is not important,
then float variables use only half as much space as doubles and an int may use even less (depending
on the compiler and computer system). If speed is of concern, integer arithmetic is performed more
quickly than real computations on many machines. So if integers can be used, do so. Otherwise, in
general, computations involving float values are faster than those using doubles, due to the smaller
amount of information (number of bits) being processed.

Computational issues.

• An integer in the computer is an exact representation of the corresponding mathematical integer.
However, each size of computer integer has a limited range and cannot store a number outside that
range. An attempt to do so causes overflow and wrap.

• A floating-point number is an approximate representation of the corresponding mathematical real
number. Computations with type float and double are subject to possible overflow, underflow, and
loss of precision. After overflow or underflow, further computation is meaningless and is trapped by
some (but not all) contemporary C systems. Such numbers are labeled NaN.

Casts and mixed-type operations.

• C supports mixed-type arithmetic. Integer and floating-point types can be mixed freely in arithmetic
expressions. When two values of differing types are used with an operator, the value with less precision
automatically is coerced to the more precise representation.

• If an integer is combined with a float or a double in an expression, the integer operand always is
converted to the type of the floating-point operand before the operation is performed; the result of the
operation is a floating-point value.

• A type conversion may be “safe,” in that it will cause no loss of information, or it may be “unsafe,”
because it can cause a loss of precision or simply result in total garbage. Knowing when a type
conversion can be used safely is important. However, sometimes an unsafe conversion is exactly what
the programmer needs.

• An explicit type cast must be used to perform real division with integer operands.

7.6.2 Sticky Points and Common Errors

Operators. The table in Figure 7.32 gives a brief summary of the difficulties that might be encountered
when using C casts and conversions.

7.6. WHAT YOU SHOULD REMEMBER 225

Group Operators Complications

Casts (int) Conversion from double or float will discard the fractional part.
(short) Conversion from a long will produce a garbage result if the value

of the long is too great to fit into a short.
(float) Conversion from int is safe; from double, precision may be lost.

Coercions = Loss of precision does occur during assignment of a more-precise
value to a less-precise variable.

parameters Argument values are coerced to match the declared types of the
parameters.

return values The value returned by a function is coerced to match the declared
function return type.

Figure 7.32. Casts and conversions in C.

Algorithms. Know the weak points in your algorithm as well as any assumptions on which the calculations
might be based. If the algorithm can “blow up” at any point, guard against that possibility.

Formats. Using the wrong conversion specifier in a format can cause input or output to appear as garbage.
Default length, short, and long integers have different conversion codes, as do signed and unsigned integers.

Debugging. Insert printouts into your program after every few calculations to spot potential calculation
errors.

Precision. When using reals, there is no way to tell from the printed output whether a value came from a
double or a float variable. If you specify a format such as %.10f, you might see 10 columns of nonzero digits
printed, but that does not mean that all 10 are accurate. If the number came from a float variable, the eighth
through tenth digits usually will be garbage. A similar problem happens when the precision specification of
the output is made greater than the actual precision of the input. If an answer was calculated from input
having two places of precision, all decimal positions in the output after the second will be meaningless.
Remember that it is up to you to limit the columns of output to the precision of the number inside the
machine or the known accuracy of the calculation, whichever is smaller.

Avoiding and handling runtime errors.

• Do not try to add or subtract values of widely differing magnitudes.

• If there is any possibility that a divisor could be zero, test for it!

• Define an epsilon value, related to the precision of the input, which is the smallest meaningful value in
this context. Any number whose absolute value is smaller than epsilon should be considered zero and
any two numbers whose difference is less than epsilon can be considered equal.

• An output with a huge and unreasonable exponent means it is probably the result of an overflow. Each
programmer needs to be able to recognize the overflow and undefined values that will be printed by
the local compiler and system. If these values appear in the output, the programmer should identify
and correct the erroneous computation that caused them.

• Not a number. The C standard does not specifically cover how a compiler must handle the special
values NaN, +Infinity, and -Infinity; it leaves these results officially “undefined”. This means that
a particular compiler may do anything that is convenient about the problem. Many do nothing; a
garbage result is returned and the user is not notified that there is an error. However, most computer
hardware will set an error indicator when the various floating-point problems occur. This permits a
program to test for a particular result and thereby discover these illegal operations. The user can get
control by defining a signal handler11 to trap these types of signals and process them. However, most

11This subject is beyond the scope of this text.

226 CHAPTER 7. USING NUMERIC TYPES

programmers have no idea how to do this, and most user programs don’t attempt to use the interrupt
system. Avoidance is the best policy for the ordinary programmer. The careful programmer takes
these precautions:

7.6.3 Programming Style

• It is appropriate to use integers for loop counters and customary to give them short names such as j,
k, m, and n.

• Although the letters i and l have traditionally been used to name integer counters, they are poor
choices, because they are easily mistaken for each other and for the numeral 1.

• Floating-point numbers traditionally have been given names starting with f. . . h and r. . . z.

• When implementing standard scientific or engineering formulas, it makes sense to use whatever vari-
able names are used traditionally to express that formula, even when those names are single letters.
Otherwise, use variable names long enough to convey the meaning or purpose of the variable.

• Use a %f conversion specifier if your output needs to be in neat columns. Use %g if you have no good
idea whether the value to be printed is large or small. Use %e if the range of values is extreme.

• To print a table in neatly aligned columns, use a %f conversion specifier and include a field width. The
%g conversion is not appropriate for tables.

Portability.

• There is some variation among compilers in the way floating-point types are handled. Sometimes the
underlying computer hardware does not support floating-point arithmetic, in which case floating-point
representation and computation must be emulated by software. Emulation, of course, is much slower.

• Although all ISO C compilers must permit use of the type name long double, many simply make it a
synonym for double.

• Some systems use 2 bytes to represent an int, others use 4 bytes. The two lengths of integers make
portability of code a nightmare. Unless a programmer is aware of the different meanings of int and
assiduously avoids relying on the size of his ints, it is very unlikely that his or her programs will
run on each kind of machine without additional debugging. Furthermore, errors due to integer sizes
are among the hardest to find because of the ever-present automatic size conversions all C translators
perform.

It would be nice to avoid type int altogether and use only short and long. However, this is impractical
because the integer functions in the C library are written to use int arguments and return int results.
So what should the responsible programmer do?

1. Be aware.

2. Use short or long when the length is important in your application.

3. Do not rely on assumptions about the size of things.

4. Check all the possible data coercions and conversions and think about what can be done for those
labeled unsafe.

Algorithms. Know the weak points in your algorithm as well as any assumptions on which the calculations
might be based. If the algorithm can “blow up” at any point, guard against that possibility. Do not try to
add or subtract values of widely differing magnitudes.

Debugging. Insert printouts into your program after every few calculations to spot potential calculation
errors.

7.6. WHAT YOU SHOULD REMEMBER 227

Handling error conditions. The C standard does not specifically cover how a compiler must handle the
special values NaN, +Infinity, and -Infinity; it leaves these results officially “undefined.” This means that
a particular compiler may do anything convenient about the problem. Many do nothing; a garbage result
is returned and the user is not notified of an error. However, most computer hardware will set an error
indicator when the various floating-point problems occur. This permits a program to test for a particular
result and thereby discover the illegal operations. The user can get control by defining a signal handler12 to
trap these types of signals and process them. However, most programmers have no idea how to do this, and
most user programs don’t attempt to use the interrupt system. Avoidance is the best policy for the ordinary
programmer. The careful programmer takes these precautions:

• An output with a huge, unreasonable exponent probably is the result of an overflow. Each programmer
needs to be able to recognize the overflow and undefined values that will be printed by the local
compiler and system. If these values appear in the output, the programmer should identify and correct
the erroneous computation that caused them.

• If a divisor possibly could be 0, test for it.

• Define an epsilon value, related to the precision of the input, that is the smallest meaningful value in
this context. Any number whose absolute value is smaller than epsilon should be considered 0 and any
two numbers whose difference is less than epsilon can be considered equal.

7.6.4 New and Revisited Vocabulary

These are the most important terms and concepts from this chapter that deal with the representation of
numbers:

representation range
integer overflow
wrap
scientific notation
approximate representation

IEEE floating-point standard
exponent
mantissa
floating-point overflow
underflow
representational error

precision
normalized and denormalized
order of magnitude
correct but not precise
order of performing operations

These are the most important terms and concepts from this chapter that deal with the C language:

integer types
2- and 4-byte models
integer type specifier
integer literal
literal modifiers

floating-point types
floating-point type specifier
floating-point literal
representation conversion
type cast

type coercion
I/O conversion specifier
field width specifier
precision specifier
default output precision

These are the most important terms and concepts from this chapter that deal with numeric algorithms:

integer division
division by 0
truncation
rounding

indeterminate results
safe conversions
unsafe conversions
length conversion

approximate comparison
epsilon test
factorial
Euclid’s method for square root

The following conversion specifiers, functions, prototypes, and library files were discussed in this chapter:

12This subject is beyond the scope of this text.

228 CHAPTER 7. USING NUMERIC TYPES

const
int
i and d conversions
long int
li and ld conversions
short int
hi and hd conversions
signed int
unsigned int
u, hu and lu conversions
float

double
long double
e and le conversions
f and lf conversions
g and lg conversions
INT_MIN
INT_MAX
FLT_MIN
FLT_MAX
DBL_MIN
DBL_MAX

+Infinity and -Infinity
finite()
HUGE_VAL
NaN
limits.h
float.h
rint()
sin()
cos()
abs()
fabs()

7.6.5 Where to Find More Information

• Unsigned integer types and the bitwise operators that work on them are covered in Chapter 15.

• The last primitive data type, pointers, is introduced in Chapter 11 (pointer parameters), and discussed
extensively in Chapter 16 (dynamic allocation), Chapter 16 (pointer algorithms), Chapter ?? (linked
lists), and Chapter 20 (pointers to functions).

• The IEEE Standard for floating point computation can be found through this website
en.wikipedia.org/wiki/IEEE_Floating_Point_Standard

• A list of disasters caused by numeric errors can be found on the web by searching for ”space program
disaster overflow”. Among the incidents listed there are:

– Failed Navy rocket launches, 1999: bad decimal point.

– Ariane explosion, 1996: Large float converted to integer, causing overflow.

– Patriot-Scud, 1991: rounding error.

– Loss of Mars orbiters, 1999: mixture of pounds and kilograms.

– USS Yorktown “dead in the water”, 1998: input and division by 0.

7.7 Exercises

7.7.1 Self-Test Exercises

1. The following functions and constants are all defined in the standard ISO C libraries. Name the specific
header file that must be #included to use each one.

(a) HUGE_VAL

(b) sin() and cos()

(c) INT_MAX

(d) finite()

(e) scanf()

(f) fabs()

(g) rint()

(h) FLOAT_MAX

2. What is the type of each of the following integer literals in a C compiler, where type int is the same
length as type short? If the item is not a legal literal, say so.

(a) 33333

(b) 10U

(c) 32270

(d) −20

(e) 3000000000

7.7. EXERCISES 229

(f) 100L

(g) 32,767

(h) 65432

3. Will the result of each of the following expressions be true or false? All variables are type int. Use the
integer data values k = 3, m = 9, and n = 5.

(a) m == k * 3

(b) k * (9 / k) == 9

(c) k * (n / k) == n

(d) k = n

4. What will be stored in k or f by the following sets of assignments? Use these variables: int h, k, m;
float f; double g;.

(a) f=1.6; k = f;

(b) f=1.4; k = (int) f;

(c) g=5.1; f = (float) g;

(d) g=9.6; k = (float) g;

(e) g=9.7; k = g + 1.8;

(f) h=13; m=4; f = (float) h / m;

(g) h=13; m=4; f = (float)(h / m);

(h) g=1.02; f = 10.2 f == g * 10;

5. Draw a parse tree for each of the following computations (include conversion boxes). Then use the given
data values to evaluate each expression and record the final values stored in the variables f, g, and k.
Use these declarations and initial values: int k, j=70; float f=32.08; double g=10.0; .

(a) f = g * (int) f + j;

(b) k = g * (int) f + j;

(c) g = pow(f, 10.0);

(d) g = pow(f, f);

6. Draw a parse tree for each of the following computation (include conversion boxes). Then use the given
data values to evaluate each expression and record the final values stored in the variables J, L, and F.
Indicate if overflow occurs during an evaluation.

short int J, K=100;
long int L, M=2000;
float F;

(a) J = L = K * K * K;

(b) L = M * M * M;

(c) F = M * M * M;

7. We can represent all integer values using the double representation. List two situations in which we
would still want to use the int data type.

8. Given the variable declaration double x = 1234.5678;, what is printed by the following statements?

(a) printf("%e %f %g", x, x, x);

(b) printf("%10.3e %10.3f %10.3g %10.5g", x, x, x, x);

9. Given the following variable declarations and input prompt, what is stored in k, m, x, or d by the following
statements when the user enters the number shown on the left of each item? (If the result is garbage,
say so.)

230 CHAPTER 7. USING NUMERIC TYPES

short int k;
long int m;
float x;
double d;
printf(" Please enter a number: ");

(a) 33 scanf("%hi", &k);

(b) 33000 scanf("%hi", &k);

(c) −44000 scanf("%li", &k);

(d) 33 scanf("%li", &m);

(e) 33 scanf("%g", &d);

(f) 109e−02 scanf("%lg", &d);

(g) 123.456789 scanf("%lg", &x);

(h) −43.21098765 scanf("%f", &x);

10. Answer the following questions about the computer you use. Write a short program to find the answers,
if necessary.

(a) What is the largest int that you can enter on your machine and print correctly?

(b) What is the biggest unsigned int you can read and write?

(c) When is x+ 1 < x?

11. Write one or a few lines of code that will cause integer overflow and wrap to happen.

12. Say whether each of the following computations will give a meaningful answer or is likely to cause overflow,
underflow, or a serious precision error.

float f;
float g = 0.1
float h = cos(0); // This should be 1.0

(a) f = 0.000001 - pow(g, 5);

(b) f = 233344455.5 * .1;

(c) f = 233344455.5 + .1;

(d) f = pow(3.14159, 100);

13. When a floating-point number is printed in %e format, it is printed in normalized form, with exactly one
digit to the left of the decimal point. Rewrite the following numbers in normalized scientific notation:

(a) 75.23

(b) .00012

(c) .9998

(d) 32,767

14. Each item that follows compares two numbers. For each, answer whether the result is true, false, or
indeterminate and explain why. To get the correct answers, you must know about the type conversions
used in mixed-type expressions.

float w = 3.3;
int j = w, k = 3;
double x = 3.0, y = 3.3, z = 4.2;

(a) x == k

(b) y == k

(c) x != y

7.7. EXERCISES 231

(d) w == j

(e) w == y

(f) x == w

(g) (float)x == w

(h) y == z * (y / z)

(i) x + 1.0 == k + 1

(j) x == .3 * 10

7.7.2 Pencil and Paper

1. Draw a parse tree for the following computation (include conversion boxes). Then use the tree to evaluate
the expression. Use these variable declarations and initial values: int k, j=10; double g=402.5; float
f=32.08;.

k = g - (int) f * j;

2. Given the variable declarations, what is printed by the following statements?

int k = 1234;
float x = 1681.700612;
float y = 23.28765;

(a) printf("k =%i\n", k);

(b) printf("k =%10i\n", k);

(c) printf("k =%-10i\n", k);

(d) printf("x = %10.3f \n", x);

(e) printf("x = %10.4f \n", x);

(f) printf("x = %10.4e\n", x);

(g) printf("x = %.3g\n", x);

(h) printf("y = %.3g\n", y);

3. Given the following variable declarations and input prompt, what is stored in m, x, or d by the statements
when the user enters the number shown on the left of each item? (If the result is garbage, say so.)

long int m;
float x;
double d;
printf(" Please enter a number: ");

(a) 33000 scanf("%li", &m);

(b) −44000 scanf("%hi", &m);

(c) 76.5 scanf("%g", &x);

(d) 5.12e20 scanf("%Lg", &d);

(e) −3000000033 scanf("%li", &m);

(f) 5,000,000,033 scanf("%li", &m);

(g) −3000000033 scanf("%li", &d);

(h) 333222111000.9 scanf("%lg", &d);

4. Which operation (integer division or real division) will be used to evaluate each of the following divisions?
Assume that h, k, and m are type int while x is type double.

(a) k = h / 3;

(b) k = 3.14 / m;

(c) x = h / m;

232 CHAPTER 7. USING NUMERIC TYPES

(d) k = h / x;

(e) h = x + k / m;

(f) h = k + x / m;

5. Define the following and give an example of code that might cause it:

(a) Integer overflow error

(b) Floating-point underflow error

(c) NaN error

(d) Precision error

6. Show the output produced by the following program. Be careful about spacing.

#include <stdio.h>
int main(void)
{

int i = 0;
float x = 1.2959;

while (i < 4) {
printf("%6.2e %6.2f %6.2g \n", x, x, x);
x *= 10;
i++;

}
return 0;

}

7. For each computation that follows, say whether overflow will occur if integers are 2 bytes long? If they
are 4 bytes long?

int J, K=100, M=2000;

(a) J = K * K * K;

(b) J = (float)K * K * K;

(c) J = 30 * M / K * M;

(d) J = M * M * M;

8. Say whether each computation that follows will give a meaningful answer or is likely to cause overflow,
underflow, or serious precision error.

float c = 80000;
float d = 1.0e-5;
float f;

(a) f = pow(c, 5) / d;

(b) f = ceil(d) * 2e-90;

(c) f = d + sqrt(100 * c);

(d) f = sqrt(10 * d);

9. Show how the following normalized numbers would look when printed in %.3f format:

(a) 3.245E+02

(b) 1.267E-03

(c) 3.14E+04

(d) 1.02E-03

7.7. EXERCISES 233

10. Several problems are associated with doing calculations with real values. Which of these do you believe
occurs most often? Which of these, even if it does not occur often, causes the most trouble and why?

11. Something is wrong with the following tests for equality. For each item, explain why the answer will be
different from the intended answer.

short int s=1, t=32767;
long int k=65536;
float w=3.3;
double x=3.3, y=33.0;

(a) x == w

(b) x*10.0 == y

(c) s == (short)k

(d) 32769 == (int)t + 2

7.7.3 Using the Computer

1. Summation.

A simple mathematical function can be defined by the equation

f(N) =
N∑
x=1

x sin(x)

as x increases from 1 to N degrees in 1-degree increments. This equation will sum N terms, each of which
multiplies x times a value of the sin() function. Write a function with a parameter N that will print a
table of the N terms and return the value of f(N). Write a main program that will input a value for N ,
then call the function f(N), and print the result. Check to make sure that the value of N is positive.
If not, give the user another chance to enter a valid value, until it is proper. Remember that the sin()
function requires the angle to be in radians rather than degrees.

2. Bridge hands.

A bridge deck has 52 cards and a hand consists of 13 cards. Calculate the following facts about possible
bridge hands. Use the information in Section 7.5.4 and Figure 7.27 as guidance.

(a) How many possible different bridge hands are there? (Call this number H.)

(b) How many hands include all four of the Aces in the deck? The formula is:

A =
48!

9!× 39!

(c) What is the probability of receiving a hand that has all four aces? The formula is: A/H.

(d) Do any of the above computations require special care when done with type float? Explain why
or why not.

3. See your money grow.
Assume you are loaning money to a friend, who will pay it back as a lump sum at the end of the loan
period, with interest compounded monthly. Write a program that will allow you to enter an amount of
money (in dollars), a number of months, and an annual interest rate. From these data, first calculate a
monthly interest rate (1/12 of the annual rate). Then print a table with one line per month, showing
the month number, the amount of interest your money will earn that month, and the total amount of
your investment so far after the interest is added. Print one line per month, from the time the loan is
made until the time it is repaid. Print column headings and print all values in neat columns under them.
Break your output into readable blocks by printing a blank line after every twelfth month. Be sure to
test your program with a loan period greater than 12 months.

234 CHAPTER 7. USING NUMERIC TYPES

4. Loan payments.
Compute a table that shows a monthly payback schedule for a loan. The principle amount of the loan, the
annual interest rate, and the monthly payment amount are to be read as inputs. Calculate the monthly
interest rate as 1/12 of the annual rate. Each month, first calculate the current interest = the monthly
rate × the loan balance. Then add the interest amount to the balance, subtract the payment, and print
this new balance. Continue printing lines for each month until the normal payment would exceed the
loan balance. On that month, the payment amount should be the remaining balance and the new balance
becomes 0. Print a neat loan repayment table following this format:

Payment schedule for $1000 loan
at 0.125 annual interest rate
and monthly payment of $100.00

Month Interest Payment Balance

1 10.42 100.00 910.42
2 9.48 100.00 819.90

...
10 1.66 100.00 60.99
11 0.64 61.63 0.00

5. Bubbles.

The internal pressure inside a soap bubble depends on the surface tension and the radius of the bubble.
The surface tension is the force per unit length of the inner and outer surface. The equation for the
pressure inside the bubble relative to the air pressure outside is

P =
4σ

r
(lb/ft2)

where σ is the surface tension (lb/ft) and r is the bubble radius (ft).

Define a function, bubble(), that will compute the pressure P given a value of r and assuming
the constant σ to be 0.002473 lb/ft. Then write a main program that will input a value for r, call the
bubble() function to compute the pressure, convert the units of pressure from lb/ft2 to psi (pounds per
square inch, lb/in2), and print the answer. Make sure that the input radius is valid; that is, greater than
0. Allow the user to continue entering values until the radius is valid.

6. How functions grow.

Write a program that will ask the user to enter an integer, Nmax, then print a table like the following
one, with Nmax lines. If Nmax is less than 1 or more than 20, print an error comment and ask the user
to reenter Nmax. Store the result of all calculations in variables of type int. Use the pow() function in
the math library to calculate 2N . The C system will coerce the double result of pow() to an integer for
you. Are all the results correct when you use N = 20? If not, why not?

N sum(1..N) N squared 2 to the power N

1 1 1 2
2 3 4 4
3 6 9 8

...

7. Fibonacci numbers.

A Fibonacci sequence is a series of numbers such that each number is the sum of the two preceding
numbers in the sequence. For example, the simplest Fibonacci sequence is: 1, 1, 2, 3, 5, 8, 13, 21, . . .
In this sequence, the first two terms are, by definition, 1. Write a program to print the terms of this
sequence in five columns, as follows:

0. 1 1. 1 2. 2 3. 3 4. 5
5. 8 6. 13 7. 21 ...

7.7. EXERCISES 235

Hint: Consider having three variables in your loop, called current, old, and older. After computing the
new current value, shift the old values from one variable to the next to prepare for the next iteration. Run
your program and determine experimentally how many terms of the Fibonacci series can be computed
on your machine before an overflow if you use variables of type short, long, float, and double to hold
the results.

8. Square root.

Over 2000 years ago, Euclid invented a fast, iterative method for approximating the square root of a
number. Let N be a positive number and est be the current estimate of its square root. (Initially, let
est = N/2.) At each step of the iteration, let quotient = N/est. If quotient equals est, they are the
square root of N and the iteration should end. Otherwise, let the new est be the average of quotient
and the old est and repeat the calculation until quotient equals est within some epsilon value. Print a
table showing the iteration number and the current values of est and quotient. Let the user enter the
values of N and epsilon. Then print the value calculated using the standard sqrt() function. Run your
program several times with epsilon equal to 0.01, 0.001, 0.0001, and so on. Summarize your results in a
neat chart with columns for epsilon, the approximation for

√
x, and the number of iterations needed to

converge with that value of epsilon.

9. A table.

Write a program that will ask the user to enter a real number, N , then print a table showing how certain
functions grow as N doubles. For N = 3.14, the output should start thus:

N 1/N N * log(N)

1 3.14 3.184713e-01 3.592860e+00
2 6.28 1.592357e-01 1.153868e+01
...

Let all your variables be type float. Continue computing and printing lines until an underflow occurs in
the column for 1/N and an overflow occurs in the last column. Use the log() function, which computes
the natural log of a number, and use the constant HUGE_VAL from the math library to test for an overflow.
Remember that a value becomes 0.0 when an underflow occurs.

236 CHAPTER 7. USING NUMERIC TYPES

Chapter 8

Character Data

This chapter is concerned with the character data type. We show how characters are represented in a program
and in the computer; how they can be read, written, and used in a program; and how they are related to
integers.

8.1 Representation of Characters

A character is represented using a single byte (8 bits). We have shown how numeric values (integers and reals)
are represented using the binary number system. Characters also are represented by bits. However, when we
think of a text character, a binary number is not the first thing that comes to mind. There is no obvious way
in which numbers or bit patterns correspond to the letters, digits, and special characters on a keyboard. So
people have invented arbitrary codes to represent these characters. The most common of these is the ASCII
(American Standard Code for Information Interchange) code, which is listed in a table in Appendix A. Each
ASCII character is represented by 7 bits,1 which are stored on the rightmost side of a byte. You can think of
the value of this byte either as a character or an integer.

The ASCII characters are listed in the appendix in numeric order, according to the value of their bit
representations. We can find a character in the table and see its code or use a numeric code as an index into
the table to determine the associated character. For historical reasons, the indexing number often is listed in
two forms, decimal and hexadecimal.2

The ASCII codes from 33 to 126 represent printable characters; most of these are letters of the alphabet in
upper or lower case. Note that each lower-case letter is 32 greater than the corresponding upper-case letter, for
example, ’A’ + 32 == ’a’. A single bit in the representation, called the case bit , makes this difference. This is
illustrated in Figure 8.1

1International ASCII uses 8 bits to represent each character and Unicode uses 16 bits.
2The hexadecimal number system is discussed in Chapter 15 and in Appendix E.

In the ASCII code, upper and lower case letters differ by only one bit, the sixth when counting from the
right. This bit has the binary value of 32.

'A' = 'a' =0 000 01 0 1 0 000 01 1 1

case bit value = 32

Figure 8.1. The case bit in ASCII.

237

238 CHAPTER 8. CHARACTER DATA

Data type Define Constant Limits Range

signed char SCHAR_MIN..SCHAR_MAX −128 . . . 127
unsigned char 0..UCHAR_MAX 0 . . . 255
char CHAR_MIN..CHAR_MAX Same as signed or unsigned char

Figure 8.2. Character types.

8.1.1 Character Types in C

In reality, characters are just very short integers in C; the single byte of a character holds a number. Anything
you can do with an integer, you can do with a character. Anything you can do with a character, you can do
with 1 byte of an integer. There is no difference between a character and an integer except the number of bytes
used and the format specifiers used to read and print the two types.

8.1.2 The Different Interpretations

Figure 8.2 lists the character types defined by the C standard. The type signed char is not used often, and
when used, it is generally thought of as a very short int. The more common type, unsigned char, is useful
primarily when a program must store large quantities of small positive integers in memory and conserve storage
to avoid running out of it. In this case, the unsigned char actually is being used as a very short unsigned
int. A program that does image processing is an example of such an application (see Chapter 18). The type
char is used for most character-handling applications.

A character code such as ASCII uses a fixed number of bits to represent the letters of the alphabet, numerals,
punctuation marks, special symbols, and control codes. ASCII uses 7 bits and therefore can represent 128 codes.
The C standard permits type char to be defined either as signed or unsigned values; the compiler manufacturer
makes that decision. Normally, it is of no concern to the programmer, since the index values for the ASCII table
(0–127) are present in both forms, so there is not such a portability problem as there is with int. However,
an international version of the ASCII code uses all 256 index values. The extra codes are used to represent
additional letters and special symbols used in various European languages. In systems that use International
ASCII, char is implemented as an unsigned type.

8.1.3 Character Literals

Most often character literals are written in C using single quotes, like this: ’A’. However, nothing in C is
simple. The character literal inside the quotes can be written two ways, as shown in Figure 8.3:

• If it is an ordinary printable character, we write it directly in quoted form. Thus, the first letter of the
alphabet is written as ’a’ (lower case) or ’A’ (upper case).

• Some characters are written with an escape code or escape sequence. This consists of the \ (escape)
character followed by a code for the character itself. The predefined symbolic escape codes are listed in
Figure 8.4, a few of which we already used in output formats.

Escape code characters are included in C for two different reasons: to resolve ambiguity and to provide
visible symbols for invisible characters. Three of the escape codes, \’, \\, and \", are used to resolve lexical
and syntactic ambiguity. The backslash (also called escape), single quote, and double quote characters have
special meaning in C, but we also need to be able to write and process them as ordinary characters. The escape
character tells C that the following keystroke is to be treated as an ordinary character, not as an element of C
syntax.

The other escape characters are invisible; their purpose is to cause a side effect. For example, the attention
code, \a, is used to alert the user that something exceptional has happened that needs attention. (Note that
’\a’ and ’a’ are very different; the first means “attention” and should cause most computers to beep; the
second is an ordinary letter.) A very important escape code is the null character , \0, which is used to mark
the end of every character string and will be discussed further in Chapter 12.

One set of escape code characters that we use frequently are called whitespace characters; they affect
the appearance of the text but leave no visible mark themselves. The list includes newline, \n; return, \r;

8.2. INPUT AND OUTPUT WITH CHARACTERS 239

Character constants can be written symbolically or numerically. The symbolic form is preferable because it
is portable; that is, it does not depend on the particular character code of the local computer.

Meaning Symbol Decimal Index
(Portable) (ASCII Only)

The letter A ’A’ 65
Blank space ’ ’ 32
Newline ’\n’ 10
Formfeed ’\f’ 12
Null character ’\0’ 0

Figure 8.3. Writing character constants.

horizontal tab, \t; vertical tab, \v; formfeed, \f; and the ordinary space character. The two tab characters
insert horizontal spaces or vertical blank lines into the output (the precise number of horizontal or vertical
spaces depends on the system). Whitespace characters often are treated as a group in C and handled specially
in a variety of ways.3 Note that whitespace characters are all invisible, but many invisible characters, including
null and attention, are not classified as “whitespace”.

8.2 Input and Output with Characters

Character input and output can be performed using the standard scanf() and printf() functions. In addition,
other special functions exist just for characters. Some of these functions have subtle difficulties associated with
them, which we discuss.

8.2.1 Character Input

The standard library functions for reading characters are

1. getchar(). This function has no parameters. It reads a single character of input and returns it as an
int. The character is stored in the rightmost part of that int, and bytes to the left of the character
are filled with padding bits. When the padded value is stored in a character variable, the padding is
discarded. This process of adding and stripping off padding is automatic, and transparent, and can be
ignored by beginning programmers. Normally, the value returned by getchar() is used in an assignment
statement.

Example: ch = getchar();

2. scanf() with a "%c" conversion specifier. In this format, there is no space between the opening quotation
mark and the %c specifier. This will read the next input character, whether or not it is whitespace, and
store it in the address provided. This version is equivalent to using the getchar() function.

Example: scanf("%c", &ch);

3These ways will be explained as they become relevant to the text.

Code Meaning Code Meaning Code Meaning

\0 Null \a Attention \" Double quote
\n Newline \b Backspace \’ Single quote
\r Return \f Formfeed \\ Backslash (escape)
\t Horizontal tab \v Vertical tab

Figure 8.4. Useful predefined escape sequences.

240 CHAPTER 8. CHARACTER DATA

3. scanf() with a " %c" conversion specifier. In this format, there is a space in the format string before the
%c specifier. The space causes scanf() to skip leading whitespace (if any exists) before reading a single
nonwhitespace character and storing it in the address provided. This is similar to the manner in which
other data types are scanned.

Example: scanf(" %c", &ch);

Keyboard input is buffered. Whether you are entering numeric or character data into a program, your
input is not sent immediately to the program. Until you hit the Enter key, it is displayed on the screen but
remains in a holding tank called the keyboard buffer so that you can inspect and change it, if necessary.
It is not the case that as soon as you type a character the program will read it and begin processing. Some
languages provide this feature, but C is not one of them.4 After you hit Enter, your input moves to another
area called the input buffer and becomes available to the program. The program will read as much or as
little as called for by the scanf() or getchar() statement. Unread data remain in the input buffer and will be
read by future calls on scanf() or getchar().

Whitespace characters complicate input. When reading integers or floating-point numbers, scanf()
skips over leading whitespace characters and starts reading with the first data character. However, with the
"%c" specifier, leading whitespace is not ignored. If the first unread character is whitespace, that is what
the system reads and returns. The function getchar() does the same thing. It reads a single character,
which might be whitespace. Reading data in this manner leads to surprising behavior if the input contains
unexpected whitespace characters such as \n and \t. Since these are not visible, it is easy to forget that they
may be present.

In any text-processing program, it is frequently necessary to skip over indefinite amounts of whitespace.
As mentioned previously, the behavior of scanf() can be changed by adding a single blank to the format: "
%c". The space inside the quotes and before the %c tells scanf() to skip over leading whitespace, if any exists.
However, there is no way to force getchar() to skip over these invisible characters. For this reason, we usually
use scanf() rather than getchar() to input single characters interactively.

8.2.2 Character Output

Character output is relatively straightforward. The stdio library provides two ways to display or print a single
character:

1. putchar(). When only one character of output is needed, putchar() is the easiest way to do the job;
we simply pass it the character we want to display. For example, to move the screen cursor to the
beginning of the next line, we might say putchar(’\n’);. Note that the putchar() function does not
automatically move the cursor to the next line as puts() does.

2. printf() with a %c conversion specifier. When printing a character mixed in with other kinds of data,
we use printf() with the %c format specifier. Example:

printf("Child is %c, %i years old.", gender, age);

Of course, a specific (nonvariable) character can be included in the format string itself. As with the other
data types, it is possible to specify a field width between the % and the c, and the printed character will
be right or left justified in the field area, depending on the sign of the width specifier.

Since characters are integers, it is legal to read or print them as integers. When you read an integer that
is the ASCII code of a letter and print that number using a "%c" format or putchar(), you see the letter.
Conversely, when you read a letter and print it using a "%i" format, you see a number.5 This technique is
demonstrated in Figure 8.5.

Notes on Figure 8.5. Printing the ASCII codes.

4Some old PC-based single-user C systems support the unbuffered character input functions getch() and getche(), in a
library named conio. When using getch(), any character that the user typed would go directly to the program, rather than
being held in the keyboard buffer until a newline was typed. This seems like a convenient function and it was popular with
students. It is not supported by the standard because modern systems are multi-processing systems and cannot make a direct
connection between any input device and any one process among the set that is running concurrently. We recommend against
using any nonstandard feature because it is not portable.

5It also is possible to print the hexadecimal form of the character’s index by using a %x conversion specifier. See Chapter 15.

8.2. INPUT AND OUTPUT WITH CHARACTERS 241

#include <stdio.h>

int main(void)

{

char ch;

puts("\n Demo: Printing the ASCII codes.");

printf("\n Please type a character then hit ENTER: ");

ch = getchar();

printf(" The ASCII code of %c is %i \n\n", ch, ch);

}

Figure 8.5. Printing the ASCII codes.

First box: declaration. We declare a char variable. In the remaining code, we use it to perform both
character and integer output.

Second box: character input. We read a character (one keystroke); its ASCII code is stored as a binary
integer in the char variable. The character is not read until the Enter key is pressed.

Third box: output. We print the input character twice: first as a character, using %c; then as an integer,
using %i. Sample program output looks like this:

Demo: Printing the ASCII codes.

Please type a character then hit ENTER: A
The ASCII code of A is 65

8.2.3 Using the I/O Functions

The program in Figure 8.6 illustrates the use of the four character input and output functions and demonstrates
how a simple program can produce very confusing output if the problem of whitespace in the input is not
addressed.

Notes on Figure 8.6. Character input and output.

First box: character output.
• The function putchar() prints a single character. Its argument can be a character variable, a literal

character, or an integer. If the argument is an int, the rightmost byte of its value is interpreted as an index
for the ASCII code table, and the character in that position is printed. The command putchar(42) prints
an asterisk because 42 is the ASCII code for *.

• We also can print a single character using printf() with %c; in this case, we print a dollar sign. If we try
to print an integer with a %c conversion specifier, we see the character that corresponds to that integer’s
index in the code table. For example, the output from printf("%c", 42) would be an *.

Second box: reading the first response.
• The line scanf("%c", ...) reads a single character of input.

• When a program begins executing, the input buffer is empty. Normally, the user will not enter any input
until prompted, so the user’s response to the first prompt will be the only thing in the input buffer. The
first character of that response will be read, while the newline character generated by the Enter key will
remain in the buffer. We presume that the user will type y, causing control to enter the loop.

Third box: the loop.
• In this loop, we “give” $5.00 to the user and prompt for another response:

Here is $5.00

Do you need more (y/n)?

242 CHAPTER 8. CHARACTER DATA

We demonstrate various ways to read and write single characters and how a whitespace character in the
input can cause unexpected results.

#include <stdio.h>

int main(void)

{

char input;

char money = ’$’;

char star = ’*’;

putchar(’\n’); putchar(star); putchar(42); putchar(’\n’);

printf(" Do you need %c (y/n)? ", money);

scanf("%c", &input);

while (input == ’y’) {

printf(" Here is %c5.00\n", money);

printf("\n Do you need more (y/n)? ");

input = getchar(); /* This code is wrong! Use scanf(" %c", &input) */

}

printf(" OK --- Bye now. %c \n", ’\a’);

}

Figure 8.6. Character input and output.

• This time we use getchar() to read the next input character. If it is y, we will stay in the loop; for any
other input (including whitespace), we leave the loop.

• This logic seems simple enough, but it does not work. As shown in the following output, the user sees the
second prompt but the program quits and says goodbye without giving that user a chance to enter anything.
The reason for this problem is explained in the following section.

• The complete output for this run is

**
Do you need $ (y/n)? y
Here is $5.00

Do you need more (y/n)? OK --- Bye now.

Fourth box: the closing message. The %c “prints” the escape character \a. On some systems, if the
computer has a sound generator and the volume is turned up, you should hear a ding when you print the
attention character, but you see nothing. On other systems, the output may be visible (for instance, a small
box) but not audible.

Problems with getchar(). A common programming error was illustrated in Figure 8.6. After scanf(),
the program initially performs as expected; if the input is y, it enters the loop and “gives” the user $5.00. Then
the loop prompts the user to enter another (y/n) response. However, when the second prompt is displayed,
the system does not even wait for the user to respond; it simply quits. Why?

When entering the answer to the first question (above the loop), the user types y and hits the Enter key.
This puts the character y and a newline character into the input buffer. The newline character is necessary
because, in most operating systems, the system does not send the keyboard input to the program until the user
types a newline. The scanf() above the loop reads the y but leaves the \n in the buffer. At the end of the
first time around the loop, that \n still is sitting in the input buffer, unread. The loop prompts the user for a

8.2. INPUT AND OUTPUT WITH CHARACTERS 243

choice, but the program does not wait for a key to be hit because input already is waiting. The getchar() then
reads the \n, emptying the buffer. Since \n is not equal to y, the loop ends and the program says goodbye.

Now, if the user had typed yyy followed by a newline instead of a single y at the first prompt, the characters
waiting in the input buffer would have been yy\n. The input to the second prompt then would have been y,
and the program would have given the user another $5.00 bill. Altogether, the user would get three bills before
the program could read the newline and leave the loop, all with no further typing by the user. The resulting
output would be

**
Do you need $ (y/n)? yyy
Here is $5.00

Do you need more (y/n)? Here is $5.00

Do you need more (y/n)? Here is $5.00

Do you need more (y/n)? OK --- Bye now.

Using scanf("%c", &input) in place of input = getchar() does not solve the problem, because scanf()
with "%c" works the same way as getchar(). However, we can solve this whitespace problem by using a single
space in the format for scanf(). Replace the call on getchar() in Figure 8.6 by this call on scanf():

scanf(" %c", &input);
Note space in format

With this change, everything will work as intended: The program will query the user, wait for a response every
time, and do the appropriate thing. A typical output would look like this:

**
Do you need $ (y/n)? y
Here is $5.00

Do you need more (y/n)? y
Here is $5.00

Do you need more (y/n)? n
OK --- Bye now.

If the user initially were to type yyy, the output would begin as shown earlier, but after three times through
the loop, the user would have a chance to enter responses again.

8.2.4 Other ways to skip whitespace.

Skipping whitespace by inserting a space into a format specifier is a little-known technique, even though it is
easy to do and easy to understand. A common mistake among programmers is to use the C function fflush()
to do this task. The C standard sates that the function fflush() is defined only for output streams, not for
input. Sometimes it seems to work for input, but it does so for indirect and subtle reasons, and only in some
implementations. A correct alternative technique for skipping whitespace is to use a simple loop, as shown in
Figure 8.7.

Notes on Figure 8.7. A function for skipping whitespace during keyboard input.

Line 1: The variable declaration. We declare an int variable to store the character being read. Although
this seems wrong, remember that the function getchar() returns an int, not a char.

244 CHAPTER 8. CHARACTER DATA

void skip_ws(void) {

int ch; // Most recently read character.

while (isspace(ch=getchar()); // Tight loop; exit when non-space is read.

ungetc(ch, stdin); // Put non-space character back into stream.

}

Figure 8.7. A function for skipping whitespace.

Line 2: Reading and testing the data.

• The function isspace() is explained in Section 8.3.5. Briefly, it returns true if its argument is a white-
space character, false otherwise.

• This line is a “tight loop”; it has no body at all and does nothing except read and test, read and test,
until the input is non-whitespace.

• This loop will work correctly for any combination and any number (zero or more) of whitespace characters.
It will just keep reading until the user types something else. (Remember that many invisible characters
are not classified as “whitespace”.)

• We store the input character in a variable because we will use the final character read after the end of
the loop.

Line 3: Get and give back. We leave the getchar() loop when a non-whitespace character is found.
However, that is too late! That character is real input and cannot be processed in this function. The easiest
remedy is to put that character back into the input stream so that it can later be read by the proper part
of the program. Happily, C supplies a function for this task: ungetc(). The arguments in this call are the
character that must be put back into the input stream, and the name of the input stream. This function will
be explained more fully in the chapter about streams and files, Chapter 14.

A useful tool. This is a function that will often be useful in programs that analyze character input. Copy
the definition into your personal file of C-tools.

8.3 Operations on Characters

8.3.1 Characters Are Very Short Integers

The basic operations defined for characters are the same operations that are defined for integers because,
technically, characters are integers in the range 0 . . . 255 or −128 . . . 127. Some kinds of data (such as digital
images) are composed of a very large number of very small integers. In such cases, it is useful to minimize
the amount of storage occupied by the data, so the data are stored as type char or unsigned char rather
than short int or int. In such applications, it is important that all the integer operations can be applied to
variables of type char.

The common use of type char, however, is to represent characters. Even then, many integer operators are
useful; These are summarized in Figure 8.8. A little caution is warranted here; some integer operations are
legal but not useful with characters. For example, it makes no sense to multiply or divide one character by
another. Unfortunately, useless or not, the compiler will not identify such expressions as errors. In addition to
the basic integer operators, there is also a set of functions in the ctype library that can manipulate character
values. We now examine some of the library functions and take a closer look at the operators in Figure 8.8.

8.3.2 Assignment

We have seen that the values of both character and integer variables can be assigned to a char variable. As
long as the integer value is not too big, everything will be fine (large values lead to overflow). Automatic
coercion will shorten the integer and a single byte will be assigned. Literal characters also can be assigned to
char variables. The columns of Figure 8.3 show two different values that will assign the same character code
to a variable.

8.3. OPERATIONS ON CHARACTERS 245

Operation Meaning and Use

char c1, c2; Declare two character variables
c1 = c2; Copy the value of c2 into c1.
c1 == c2 Do c1 and c2 contain the same letter?
c1 != c2 Do c1 and c2 contain different letters?
c1 < c2 Does c1 come before c2 in alphabetical order?

The <=, >, and >= operators also are defined for characters.
c1 + 1 The letter that follows the value of c1 in the alphabet.
c1 - 1 The letter that precedes the value of c1 in the alphabet.
++c2; Change c2 from its current value to the next letter in the

alphabet. All four increment and decrement operators are
defined for characters.

c2 - c1 Assuming that c2 > c1, this is the number of letters in
the alphabet between c1 and c2. If c2 is the ASCII code
for a base-10 digit, then c2 - ’0’ is the numeric value of
that digit.

Commonly used character operations are listed here. The phrase alphabetical order used here means “the
order defined by the ASCII code or whatever code is in use on the local hardware.” This normally is an
extension of ordinary alphabetical order to include all of the characters in the local character set.

Figure 8.8. Character operations.

8.3.3 Comparing Characters

The operators == and != are used to test whether two characters are equal. These operators are straightforward
and portable; that is, they work identically on all systems. The other four comparison operators, <, >, <=, and
>=, also are useful for characters, but their results can vary because they depend on the local computer system.

ASCII and International ASCII are the two codes used most commonly in personal computers today, but some
systems use different underlying character codes. The particular code in use on the local system determines
the “alphabetical order” on that system. (The technical terms for alphabetical order are collating sequence
and lexical order.) Numerals and letters of the English alphabet are arranged in the usual order in most
codes, but the special symbols may be arranged in arbitrary and incompatible ways. Therefore, two dissimilar
machines might produce different results for some character comparisons.

8.3.4 Character Arithmetic

The operators +, -, ++, and -- are used in character arithmetic to compute the next (or prior) letters of the
alphabet. The operator - can be used to determine how far apart two letters are in the alphabet. All these
operations are useful for text processing programs and all depend on the collating sequence of the machine.

8.3.5 Other Character Functions

One of the standard C libraries is the character processing library, whose header file is ctype.h. This library
contains a group of functions essential to a system programmer, including ones to test whether a character is
in a particular set, such as the alphabet, as well as certain transformation routines. Several of these functions
are frequently useful, even in simple programs:

1. isalpha(). This function takes one argument, a character. If the character is an alphabetic character
(A . . . Z or a . . . z), the value true (1) is returned; otherwise, false (0) is returned.

2. islower(). This function takes one argument, a character. If the character is a lower-case alphabetic
character (a . . . z), the value true (1) is returned; otherwise, false (0) is returned.

3. isupper(). This function takes one argument, a character. If the character is an upper-case alphabetic
character (A . . . Z), the value true (1) is returned; otherwise, false (0) is returned.

246 CHAPTER 8. CHARACTER DATA

4. isdigit(). This function takes one argument, a character. If it is a digit (0 . . . 9), true (1) is returned;
otherwise, false (0) is returned.

5. isspace(). This function takes one argument, a character. If the character is a whitespace character
(space, newline, return, formfeed, horizontal tab, or vertical tab), true is returned; otherwise, false is
returned. We use isspace() to help analyze input data so that the results will be the same whether the
user types spaces, newlines, or tab characters.

6. tolower(). This function takes one argument, a character. If the character is an upper-case alphabetic
character (between A and Z), the return value is the corresponding lower-case character (between a and
z). If the argument is anything else, it is returned unchanged. This function sets the case bit to 1.

7. toupper(). This function is the opposite of tolower(). If the argument is a lower-case character, the
return value is the corresponding upper-case character. If the argument is anything else, it is returned
unchanged. This function sets the case bit to 0.

When an input buffer might contain an unpredictable sequence of input items, a program can use the functions
isalpha(), islower(), isupper(), isdigit(), and isspace() to analyze each input character and handle it
appropriately. This makes it easier to build a well-designed user interface.

The functions toupper() and tolower() often are used in conjunction with testing character input, so that
it does not matter whether the user types an upper-case or lower-case character. The programmer chooses one
case to use for processing (often, it does not matter which) and converts all input characters to that case. By
doing so, the logic of the program can be simplified. For example, suppose that a program needs to read a
character into a variable named ch and use it to select one action from a set of actions. We could write the
code like this:

scanf(" %c", &ch);

if (ch == ’x’ || ch == ’X’) { /* X actions here */ }
else if (ch == ’y’ || ch == ’Y’) { /* Y actions here */ }
else if (ch == ’z’ || ch == ’Z’) { /* Z actions here */ }
else { /* default actions */ }

By using a case-shift function, we can eliminate one comparison in each test:

scanf(" %c", &ch);
ch = tolower(ch);

if (ch == ’x’) { /* X actions go here */ }
else if (ch == ’y’) { /* Y actions go here */ }
else if (ch == ’z’) { /* Z actions go here */ }
else { /* default actions go here */ }

8.4 Character Application: An Improved Processing Loop

This example combines the use of scanf(" %c", ...) with toupper(), tolower(), and a switch with
character case-labels.

In Chapter 6, Figure 6.12, we demonstrate how a process can be repeated using a query loop until the
user chooses to quit. Using the codes 1 to continue and 0 to quit is adequate, but it is not good human
engineering and not customary. Now that we have shown how to read a single input character and how to force
that character into a particular case, it is possible to improve the human interface by giving the more usual
prompt: Do you want to continue (y/n)? and accepting either an upper-case or lower-case answer. The
next program implements this improved interface.

The work() function, in Figure 8.10, is a simple application that computes the area of a regular polygon
or circle. It prompts the user to select the kind of polygon from a menu and uses tolower() with a switch
and character case labels to process that choice.

Notes on Figure 8.9. Improving the workmaster.

First box: the #include statements. In addition to <stdio.h>, we must include <ctype.h> because we
are using the character-function library.

8.4. CHARACTER APPLICATION: AN IMPROVED PROCESSING LOOP 247

We improve the user interface of the main program from Figure 6.12 by permitting a y/n or Y/N response
to the question, “Do you want to continue?” This program calls the work() function in Figure 8.10.

#include <stdio.h>

#include <ctype.h> /* For toupper() and tolower(). */

void work(void);

double circle_area(double diam) { return 3.1416 * diam * diam / 4; }

double square_area(double side){ return side * side; }

double triangle_area(double side) { return side * side / 4.0 * sqrt(3); }

int main(void)

{

char more; /* repeat-or-stop switch */

puts("\n Calculate the area of a regular figure.");

do { work();

puts("\n Do you want to continue (Y/N)? ");

scanf(" %c", &more);

more = toupper(more) ;

} while (more != ’N’);

return 0;

}

Figure 8.9. Improving the workmaster.

Second box: three functions. These functions perform the area computations for three different shaped
figures. They are called from the work() function in Figure 8.10.

Third box: the char variable. We use a character variable rather than an integer to store the user’s
quit-or-continue response.

Fourth box: the repetition loop. We change the do...while() termination condition to test for the letter
’N’ instead of the number 0. This is more natural for the user. However, to make this test work reliably, we
need to change two things in the inner box. Either response, ‘N‘ or or ’n’ will cause the loop to end; any
other response will permit it to continue.

Inner box: reading input. To read the input, we use a scanf() format that will skip whitespace in the input
buffer. This is important in a loop that controls a work() function, because the input operations performed by
that function usually leave whitespace (at least one newline character) in the input buffer.

Innermost box: case conversion. Even when instructions call for a Y or N response, many users will
often type y or n instead. Good human engineering dictates that the program should accept upper-case and
lower-case letters interchangeably. We achieve this by using toupper() to force the response into upper case.
This permits us to make a simple check for an upper-case response instead of the more complex test for either
a lower-case or upper-case letter. To achieve the same result without toupper(), we would have to write the
loop test as

while (more != ’n’ && more != ’N’).

248 CHAPTER 8. CHARACTER DATA

Notes on Figure 8.10. Using characters in a switch.

First box: the menu. We display a simple menu and prompt the user for a choice. When we read the input
character, we use a space in the format to skip over the carriage return character left in the input stream by
main().

Second box: using tolower() in a switch. We use tolower() here so that the user can enter either
upper-case or lower-case choices. This line could be written thus: switch (ch) . However, if it were written
without the call on tolower(), the following case labels would need to be more complex.

This function is called from main() in Figure 8.9. Code from both Figures should be in the same file.

void work(void)

{

char ch; /* Length of one side or of the diameter */

double x; /* Length of one side or of the diameter */

double area; /* Area of the figure */

printf (" Enter the code for the shape you wish to calculate: \n");

printf (" C Circle\n S Square\n T Equilateral triangle\n > ");

scanf(" %c", &ch);

switch (tolower(ch))

{

case ’c’:

printf(" Enter the diameter of the circle: ");

scanf("%lg", &x);

area = circle_area(x);

printf(" The area of this circle = %.2f\n", area);

break;

case ’s’:

printf(" Enter the length of one side of the square: ");

scanf("%lg", &x);

area = square_area(x);

printf(" The area of this square = %.2f\n", area);

break;

case ’t’:

printf(" Enter the length of one side of the triangle: ");

scanf("%lg", &x);

area = triangle_area(x);

printf(" The area of this triangle = %.2f\n", area);

break;

default: printf("%c is not a meaningful choice. Try again.", ch);

}

return 0;

}

Figure 8.10. Using characters in a switch.

8.5. WHAT YOU SHOULD REMEMBER 249

Third box: the case label. If the call on tolower() were omitted in the second box, we would need to write
two case labels for each case, like this: case ’c’: case ’C’:

Fourth box: the case actions. We perform all of the actions needed for a circle: input, calculation using
the appropriate function, and output. Of course, a break statement must end the sequence. It is good style
to use functions to do much or most of the work for each case, so that the entire switch statement fits on one
computer screen.

Fourth box: the default. This case traps illegal menu choices. You can see the result in the last block of
output, below.

‘

Output. A sample of the output follows. Note that whitespace and case differences are ignored, and that the
invalid response to the second query causes the process to continue, not quit.

Calculate the area of a regular figure.
Enter the code for the shape you wish to calculate:
C Circle
S Square
T Equilateral triangle
> c

Enter the diameter of the circle: 10
The area of this circle = 78.54

Do you want to continue (Y/N)? : y
Enter the code for the shape you wish to calculate:
C Circle
S Square
T Equilateral triangle
> t

Enter the length of one side of the triangle: 3.5
The area of this triangle = 5.30

Do you want to continue (Y/N)? : t
Enter the code for the shape you wish to calculate:
C Circle
S Square
T Equilateral triangle
> s

Enter the length of one side of the square: 10
The area of this square = 100.00

Do you want to continue (Y/N)? : y
Enter the code for the shape you wish to calculate:
C Circle
S Square
T Equilateral triangle
> w

w is not a meaningful choice. Try again.

Do you want to continue (Y/N)? : n

8.5 What You Should Remember

8.5.1 Major Concepts

• ASCII is a character code. It uses 7 bits to represent the set of 128 characters that are part of the code.
International ASCII is an 8-bit code that represents 256 characters. These codes are used with the char
data type.

• Character literals are written between single quotemarks.

• Escape codes are used to write literals for invisible characters.

• There are several whitespace characters, including space, horizontal and vertical tabs, and newline.

250 CHAPTER 8. CHARACTER DATA

8.5.2 Programming Style

Escape codes. Most ASCII characters are printable characters; that is, they leave a visible mark when displayed
on a video screen or a printer. These characters correspond to keys on a typical computer keyboard. Some
keys, such as the space bar, the Tab key, and the Enter key, do not represent printable characters but are used
for their effect on the printed text. These, called whitespace characters, are represented in a C program by
symbolic escape codes. There also are nonprintable ASCII characters that have no symbolic escape codes; they
are used infrequently but may be referenced, if necessary, by using the underlying value. To be sure that your
program is portable, use only the literal form of a character or a symbolic code.

Avoiding errors. Use character processing for a better human interface, like that in the revised work()
function. Use functions like toupper() and tolower() to handle both upper-case and lower-case responses.

8.5.3 Sticky Points and Common Errors

char vs. int. Technically, characters are very short integers in C. Conceptually, though, they are a separate
type with separate operations and different methods for input and output. Be sure not to do meaningless
operations like multiplying two characters and avoid potentially nonportable operations like <. Every C imple-
mentation uses the character code built into the underlying hardware. For most modern machines, that code
is either International ASCII or ASCII, which is given in Appendix A.

Character input. Whitespace can be a confusing factor when doing character input. The scanf() input
conversion process for numeric types automatically skips leading whitespace and starts storing data only when
a nonwhitespace character is read. However, getchar() returns the first character, no matter what it is; and
scanf() with a "%c" does the same thing. To skip leading whitespace, you must use scanf() with a " %c"
specifier (a space inside the format and before the percent sign). If this space is omitted, the program is likely
to read whitespace and try to interpret it as data, which usually leads to trouble. Therefore, a programmer
must have a clear idea of what he or she wishes to do (read whitespace or skip it) and choose the appropriate
input mechanism for the task.

8.5.4 New and Revisited Vocabulary

These are the most important terms and concepts presented in this chapter:
character literal
escape code
portability
ASCII code

lexical order
collating sequence
input buffer
whitespace

padding
character arithmetic
improved work() function
switch with char cases

The following C keywords, functions, and symbols are discussed in this chapter:
\n (newline)
\r (return)
\b (backspace)
\t (horizontal tab)
\v (vertical tab)
\f (formfeed)
\a (attention)
\0 (null character)

getchar()
putchar()
printf()
scanf()
ungetc()
"%c" conversion
" %c" conversion
ctype.h

isalpha()
isupper()
islower()
isspace()
isdigit()
tolower()
toupper()

8.6 Exercises

8.6.1 Self-Test Exercises

1. Explain the difference between ’6’ and 6.

2. What is a whitespace character? List three of them. What is an escape code character? List three of
them.

8.6. EXERCISES 251

3. Show the output produced by the following program. Be careful about spacing.

#include <stdio.h>
int main(void)
{

for (int k = 1; k <= 5; k += 2) {
printf(" %i:", k);
putchar(’0’+k);

}
putchar(’\n’);

}

4. What will be stored in k, c, or b by the following sets of assignments? Use these variables:

int k; char c, d; int b;

(a) d = ’b’; c = d+1;

(b) d = ’b’; c = d--;

(c) d = ’E’; c = toupper(d);

(d) d = ’7’; k = d - ’0’;

(e) b = isalpha(’@’);

(f) b = ’A’ == ’a’;

5. What will be stored in each of the variables by the input statements on the right, given the line of input
on the left. If the combination is an error, say so. Use these variables:

int k; char d;

(a) a scanf("%c", &d);

(b) 66 scanf("%c", &d);

(c) 70 C scanf("%i%c", &k, &d);

(d) F scanf("%i", &k);

(e) go! d = getchar();

(f) \n scanf("%c", &d);

6. What is the output from the following program if the user enters Z after the input prompt?

#include <stdio.h>
int main(void)
{

char ch;
printf("\n Type a character and hit ENTER: ");
ch = getchar();
printf("%3i %c \n ", ch, ch);
putchar(ch); putchar(’\n’);

}

8.6.2 Using Pencil and Paper

1. What will be stored in k, c, or b by the following sets of assignments? Use these variables:

int b, k; char c, d;

252 CHAPTER 8. CHARACTER DATA

(a) d =’A’; k = d;

(b) d =’c’; c = toupper(d);

(c) d =’@’; c = tolower(d);

(d) k = 66; c = k-1;

(e) b = isupper(’A’);

(f) b = ’A’ < ’a’;

2. What will be stored in each of the variables by the input statements on the right, given the line of input
on the left. If the combination is an error, say so. Use these variables:

int k, m; char c, d;

(a) a scanf("%c", &k);

(b) 126 scanf("%c", &d);

(c) 70 D scanf("%i %c", &k, &d);

(d) 70 71 scanf("%i%i", &k, &m);

(e) U2 scanf("%c%i", &d, &k);

(f) I O c = getchar(); d = getchar();

3. Without running the following program, show what the output will be. Use your ASCII table.

#include <stdio.h>

int main(void)
{

int upper = 65;
int lower = upper + 32;
int limit = 26;
int step = 0;

puts(" Do you read me?");
while (step < limit) {

printf("%2i. %c %c\n", step, upper, lower);
++upper;
++lower;
++step;

}
printf("=========\n");

}

4. What is the output from the following program if the user enters 80 after the input prompt?

#include <stdio.h>
int main(void)
{

int k;
printf("\n Enter a number 65 ... 126: ");
scanf ("%i", &k);
printf(" %3i %c \n", k, k);
putchar(k); putchar(’\n’);

}

5. Write a code fragment to compare two character variables and print true if both are alphabetic and they
are the same letter, except for possible case differences. Print false otherwise.

8.6. EXERCISES 253

8.6.3 Using the Computer

1. Character manipulation practice.

Write a program to prompt the user once for a series of characters. Read the characters one at a time
using scanf(" %c", ...) in a loop. Generate the following output, based on the input, one response
per line:

(a) Echo the input character.

(b) Call isalpha() to find out whether it is alphabetic.

(c) If so, call toupper() to convert it to an upper-case letter and print the result. If not, print an error
comment.

(d) If the character is a period, print a statement to that effect and quit.

2. Volumes.

Write a program to calculate volumes. Start by writing three double→double functions for these three
geometric shapes:

(a) cylinder(). The single argument, d, is the height of a cylinder and also the diameter of its circular
base. Calculate and return its volume. The formula is: volume = π × d3/4

(b) cube(). The argument is the length, s, of one side of a cubical box. Calculate and return its volume.
The formula is: volume = s3

(c) sphere(). The argument is the diameter, d, of a sphere. Calculate and return its volume. The
formula is: volume = (4/3)× π × d3/8

Write a program that will permit the user to compute the area of several shapes. Use a menu and a
switch to process the menu selections. Include a menu item “Q Quit”, and use this instead of a uery loop
to end the program.

Read the letter in such a way that whitespace does not matter. Test the input in such a way that upper-
case and lower-case differences do not matter. If the letter is q, terminate the program. Otherwise, read
and validate a real number that represents the size of the figure. If this length is 0 or negative, print an
error comment. If it is positive, call the appropriate area function and print the answer it returns. If the
letter entered is not c, s, t, or q, print an appropriate error message.

3. Palindromes.

This program will test whether a sentence is a palindrome; that is, whether it has the same letters when
read forward and backward. First, prompt the user to enter a sentence. Read the characters one at a
time using getchar() until a period appears. As they are read,

(a) Echo the input character.

(b) Call tolower() to convert each character to lower case.

(c) Count the number of characters read (excluding the period).

(d) Store the converted character in the next available slot in an array.

When a period appears, start from both ends of the array and compare the letters. Compare the first
to the last, the second to the second-last, and so forth. If any pair fails to match, leave the loop and
announce that the sentence is not a palindrome. If you get to the middle, stop, and announce that the
input is a palindrome. Assume that the input will be no more than 80 characters long.

4. Ascending or descending.

Your program should read three numbers and a letter. If the letter is , ’A’ or ’a’, output the numbers in
ascending order. If it is ’D or ’d’, output the numbers in descending order. For any other letter, give an
error message and output them in the opposite order that they were read in..

254 CHAPTER 8. CHARACTER DATA

5. Vowels.

Prompt the user to enter a sentence, then hit newline. Read the sentence one character at a time,
until you come to the newline character. Count the total number of keystrokes entered, the number of
alphabetic characters, and the number of vowels (’a’, ’e’, ’i’, ’o’, and ’u’). Output these three
counts.

6. Tooth fairy time.

This program will “pronounce” an ordinary sentence with a lisp. Prompt the user to enter a sentence.
Read the characters, one at a time, until a period appears. As they are read, convert everything to lower
case and test for occurrences of the character ’s’ and the pair "ss". Replace each ’s’ or "ss" by the
letters ’t’ and ’h’. Print the converted message using putchar(). For example, given the sentence I
see his house, the output would be I thee hith houthe.

7. Building numbers.

Write a program that will use a work function to input and process several data sets. Each data set will
consist of three input characters if they are all valid base-10 digits, you will convert them to an integer
and print it. Otherwise, print an error comment.

• Use isdigit() to test for valid inputs.

• Convert the ASCII code for a digit to its corresponding numeric value by subtracting the character
‘0‘. For example, if ch contains the character ’7’, then ch-’0’ is the integer value 7.

• If the numeric values of your inputs are stored in the variables a, b, and c, then the answer is
a ∗ 100 + b ∗ 10 + c

8. A tall story.

Develop a program for a baker who makes wedding cakes. These cakes have multiple layers, and the
layers have different shapes. The top layer always is circular, with a diameter of 6 inches. The next layer
down is square, each side 7.5 inches long. The third layer would be circular again, with a diameter of 8
inches; and the fourth layer is a 9.5-inch square. The shapes continue to alternate in this pattern and
get bigger until the bottom layer is reached. In addition, each layer is 2 inches thick, so the area of its
side is 2” × the perimeter of the layer. The baker wants to know how much frosting to make for the cake
to frost the entire top and side of every layer. Write a program that will read in the number of layers
desired for a cake, and then print the total square inches of cake to be covered with frosting. Break up
your program as follows:

(a) Write a function called surface_area(). This function has two parameters. One is a character with
the value C for circle or S for square. The other is an integer that represents either the diameter for
a circle or the length of a side of a square. This function will compute the sum of the top area and
the side area of either a circular or a square layer, depending on the character value.

(b) Write a main program that first will read in the number of layers of the cake. Then it will call the
surface_area() function for each layer of the cake and total the areas. Finally, print the total.

9. Temperatures.

Write a program and three functions that will convert temperatures from Fahrenheit to Celsius or vice
versa. The main program should implement a work loop and use the improved interface of Figure 8.9.
The work() function should prompt the user to enter a temperature, which consists of a number fol-
lowed by optional whitespace and a letter (F or f for Fahrenheit, C or c for Celsius). Appropriate inputs
might be 125.2F and -72 c. Read the number and the letter, test the letter, and call the appropriate
conversion function, described here. Test the converted answer that is returned and print an error com-
ment if the return value is −500. Otherwise, echo the input temperature and print the answer with the
correct unit, F or C. (Note that there is no difficulty reading an input in the form 125F; scanf() stops
reading the digits of the number when it gets to the letter and the letter then can be read by a %c specifier.)

Write two functions: Fahr_2_Cels() converts a Fahrenheit argument to Celsius and returns the converted
temperature; Cels_2_Fahr() converts a Celsius argument to Fahrenheit and returns it. Both functions
must test the input to detect temperatures below absolute 0 (−273.15◦C and −459.67◦F). If an input is
out of range, each function should return the special value −500.

8.6. EXERCISES 255

10. Try it, I dare you!

Write a program that will display the ASCII code in a table that looks like the one in Appendix A. Be
sure not to try to print the unprintable characters directly. Omit the column that lists the hexadecimal
codes.

256 CHAPTER 8. CHARACTER DATA

Chapter 9

Program Design

In Chapter 5, we introduced the concepts of functions and function calls and defined some basic terminology.
In this chapter, we review that terminology, extend the rules for defining and using functions, and formalize
many aspects of functions presented in preceding chapters: prototypes, function definitions, function calls, how
these elements must correspond, and how the necessary communication actually happens. The concepts of
local, global, and external names are presented.

We discusses modular organization and the ways that parts of a modular program must relate to each
other. The process of designing a modular program is described and illustrated with a programming example.

9.1 Modular Programs

When a program has only 20 to 50 lines, a programmer can keep the entire program structure in mind at
once. Many programs, though, have thousands of lines of code. To deal with this complexity, it is necessary
to divide the code into relatively independent modules and consider each module in isolation from the others,
usually with a main program in one module and groups of closely related functions in others. Each module is
composed of functions and declarations that relate to one identifiable phase of the overall project. This is the
way professionals have been able to develop the large, sophisticated systems that we use today.

A module is a pair of files (a .c file and its matching .h file) containing programmer-defined types, data
object declarations, and function definitions. The order of these parts within the module is quite flexible; the
only constraint is that everything must be declared before it is used. The modules themselves and the functions
within them serve several purposes: they make it easy to use code written by someone else or reuse your own
code in a new context. Far more important, though, is that they permit us to break a large program into
manageable pieces in such a way that the interface among pieces is fixed and controllable. Functions, their
prototypes, and header files make this possible in C; class definitions make it easier in C++.

Each function is a block of code that can be invoked, or called, from another function and will perform a
specific, defined task. All its actions should be related and work at the same level of detail. For example, some
functions “specialize” in input or output. Others calculate mathematical formulas or do error handling. No
function should be very long or very complex. Complexity is avoided by calling other functions to do subtasks.

One guideline for good style is to keep each function short enough that its parameters, local variable
declarations, and code will fit on the video screen at the same time. This limits functions to about 20 lines
of code on many computers. Following this guideline, any moderate-sized program will have many functions
that are organized into several code modules or classes, with each module or class in a separate source file.
The question then arises of where various objects should be declared: in which module and where within the
module. This level of design is touched on in Chapter 20.3; we consider only the organization of a single module
here.

9.2 Communication Between Functions

Before beginning this section, you should review the overview of functions and module organization that is
given in Chapter 5.

257

258 CHAPTER 9. PROGRAM DESIGN

The arrows show the ways that information flows to and from functions in Figure 9.3.

int main(void)

printf(pow2(m)); return
 pow(2.0, x);

int pow2 (double)

double x

coerce to
int, return

coerce m to double

int m

return

double pow(double, double)

???double

Figure 9.1. Information flow in pow2().

One function in every program must be named main(); it is often called the main program. The main
program can call other functions and those functions can call each other, but none can call main(). We use
the term caller to refer to the function that makes the call and subprogram to refer to the called function.
For example, in Figures 5.24 and 5.25, main() is the caller and cyl_vol() is a subprogram that is called from
the second box in main().

9.2.1 The Function Interface

Each function has a defined interface, which is declared by writing a prototype for the function. The prototype
lists the return type and the type and name of one or more parameters. Either the parameter list or the return
type may be replaced by void.

Each parameter listed in the prototype becomes a separate communication path by which the caller can
send information into the function. The function’s result or return value (if not void) is a communication path
from the subprogram back to the caller, as is each address parameter. Information also can be passed between a
caller and a subprogram through global variables, which will be discussed in Section 9.4. However, this practice
is discouraged and should be avoided wherever possible. Extensive use of global variables can make a program
difficult to debug because it vastly increases the number of possible interactions among program modules and
introduces the possibility for unintended and undocumented interactions. Thus, modern programming style
dictates that all information passed between caller and subprogram should go through the declared interface.

In Figure 9.1, the body of each function is shaded, indicating that it may appear as a “black box” to the
programmer. The inner workings of a library function frequently are hidden from the programmer, like those
of exp() in this case. You need not know the details of what is inside a function to be able to use it.

In contrast, interfaces are white. This symbolizes that the programmer can (and must) know the details of
the interface. This information is supplied in a header file and by the documentation that normally accompanies
a software library. Header files are used to keep the declarations consistent from module to module and to
permit functions in one module to call functions in another.

The passage of information into the subprogram is represented by right-facing arrows. Function execution
begins at the entry point and, when complete, control returns to the caller along a left-facing arrow, which
ends at the return address in the caller. The caller continues processing from that point. The function also
may return a result along the left-facing arrow.

A function call consists of the name of the function followed by a list of arguments in parentheses. Some
functions have no parameters, in which case the parentheses in the function call still must be written but with
nothing between them. During the calling process, two kinds of information are sent from the caller into the
subprogram:

• One argument value for each declared parameter.

• The return address, which is the address of the first instruction in the caller after the function call.
This address is passed by the caller to the subprogram on every call so that the function knows where to
go when its execution is finished.

During a function call, the C run-time system allocates a stack frame, stores the argument values there, and
stores the return address in the adjacent locations. Control is then transferred to the function, which allocates
(an possibly initializes) storage for local variables. Control then jumps to the entry point of the function,
which is the first line of code in its body. Execution of the subprogram begins and continues until the last

9.2. COMMUNICATION BETWEEN FUNCTIONS 259

line of code is completed, the program aborts by calling exit(), or control reaches a return statement, which
returns control to the caller at the return address, taking along any return value produced.

The return type declared in the prototype is the type of value that will be returned. If the return
statement returns an answer of some other type, C will convert it to the declared type and return the converted
value. If such a conversion is not possible, the compiler will issue an error comment. This is discussed more
fully in Section 9.3.

Missing prototypes. The general rule in C is that everything must be declared before it is used. There
are two ways to “declare” a function: either supply a prototype or give the complete function definition. To
guarantee correctness, one or the other must occur in your program before any call on that function. The
C compiler1 must know the prototype of a function to check whether a call is legal. Sometimes, however, a
programmer forgets to either #include a necessary header file or write a prototype for a locally defined function.
Sometimes the prototype is in the file but in the wrong place, coming after the first call on the function.

In any of these cases, the compiler does not just give an error comment about a missing prototype and quit.
The first time it encounters a call on a nonprototyped function it simply makes up a prototype and continues
compiling. The compiler will use the types of the actual arguments in the call to construct a prototype that
matches, but all such created prototypes have the return type int. Sometimes this prototype is exactly what
the programmer intended; other times it is wrong because the call depends on an automatic type conversion or
contains an error. In any case, the constructed prototype becomes the official prototype for the function and
is used throughout the rest of the program. If it has an incorrect parameter or return type, the compiler will
compile too many or too few type coercions for each function call.

If a misplaced prototype is found later in the file and it is the same as the prototype constructed by the
compiler, there is no problem. However, if it is different, the compiler will give an error comment such as
type conflict in function declaration or illegal redefinition of function type. This can be an astonishing error
comment if the programmer does not realize that the problem is where the prototype was written, not what was
in it. If the prototype really is missing, not just misplaced, a similar error comment may be produced when
the compiler reaches the actual function definition. If you see such an error comment, check that all functions
have correct prototypes and that they are at the top of the program.

9.2.2 Parameter Passing

When each function is called, a new and separate memory area, called a stack frame, is allocated for it. The
function’s parameters are allocated in its stack frame and argument values are copied into the parameter during
the function call. A function’s local variables are also in the frame, as is the information necessary to return
from the function. Figure 9.2 is a diagram of the run time memory allocated for the program in Figure 5.24.
As each function is called, a new frame for it is placed on the stack. First main() was called, then it called
cyl_vol(), which called pow(). Parts of the pow() frame are gray because we have no idea how this library
function is implemented or what its parameters are named.

When a function returns, its stack frame is deleted. Later a frame for another function might be stored in
the same addresses. In the cylinder program, storage for the cyl_surf() function will end up in the memory
locations that cyl_vol() had previously occupied, and the stack frame for pow() will be at a slightly different
address because the frame for cyl_surf() is bigger than the frame for cyl_vol().

Call by value. Most arguments in C are passed from the caller to the subprogram by value. This means
that a copy of the value of the argument is sent into the subprogram and becomes the value of the corresponding
parameter. The function does not know the address of the argument, which could be a variable or the result
of an expression. If the argument is a variable, the subprogram cannot change the value stored there. For
example, in Figure 5.25, the subprogram cyl_vol() receives the value of main()’s variable diam but not the
address of diam. The code in the body of cyl_vol() can change the value of its own parameter, d, but doing
so will not change the value stored in main()’s diam. Information cannot be passed back to the caller through
an ordinary parameter.

1ISO C and older C implementations differ extensively on the rules for function prototypes, definitions, and type checking.
In this text, we speak only of standard ISO C.

260 CHAPTER 9. PROGRAM DESIGN

We see the memory allocated for the program in Figure 5.24 at two moments during run time. The
diagram on the left shows memory just after the pow() function is called by cyl_vol(). The diagram on
the right is a later moment, during execution of cyl_surf().

 2.5
 10.0

double
double

d
h

cyl_vol

double
double
double

diam
height
volume

main

 1.25

 2.5
 10.0
 ?

rdouble
 1.25
 2.0

double
double

pow

 2.5
 10.0

double
double

d
h

cyl_surf

double
double
double

diam
height
volume

main

 ?
 ?
 1.25

 2.5
 10.0
 ?

area_end
area_side
r

double
double
double

 1.25
 2.0

double
double

pow

Figure 9.2. The run-time stack.

Address parameters. In contrast, some arguments are passed by passing the address of a variable (rather
than its value) into the subprogram. The subprogram can both use and change the information at the argument
address. An example of a function that sometimes must return more than one piece of information is scanf().
It uses the return value to return an error code, which we have ignored so far,2 and it returns one or more
data items through address arguments. When we call scanf(), we send it the address of each variable to
be read. It reads the data, stores the input(s) in the given address(es), and returns a success or failure code.
A programmer also can define such functions with address parameters; we explain how in Chapter 11.

9.3 Parameter Type Checking

The compiler uses a prototype for two purposes: checking whether the call is legal and compiling any type
conversions necessary to make the argument types match the parameter types.

Number of arguments. If the number of arguments in a function call is appropriate, the compiler considers
each parameter-argument pair, one by one, comparing the parameter type declared in the prototype to the
type of the argument expression. If they match exactly, code is compiled to copy the argument values into
the subprogram’s parameters and transfer control to its entry point. If the number of arguments supplied by
a function call does not match the number declared in the prototype, the compiler prints an error comment3.

Type coercion of mismatched arguments and parameters. If the number of arguments is the same
as the number of parameters but their types do not match exactly, the compiler will attempt to convert
each argument to the declared parameter type according to the standard type-conversion rules. We already
discussed a large number of variations of the basic integer, floating-point, and character types: short, unsigned
short, int, unsigned int, long, unsigned long, char, signed char, unsigned char, float, double, and long
double. Taken as a set, these are called the arithmetic types. An argument of any arithmetic type can be
coerced to any other arithmetic type, if needed, to make the argument’s type match the type declared in the
function’s prototype. An instance of such type coercion, is shown in the Figure 9.3; the argument in the call
on pow2() is an int, while the parameter is a double. The C compiler will include code to convert the int
argument value to type double as part of the function call, and the function will receive the double value that
it expects.

Meaningful conversions. Type conversion or coercion is possible if there is a meaningful relationship
between the two types, such as both being numbers. If conversion is not possible, the compiler will issue a

2This will be explained in Chapter 14.
3Some functions, such as printf() and scanf() permit the number of arguments to vary. Similar functions can be written

using special argument-handling mechanisms supported by the stdard library.

9.3. PARAMETER TYPE CHECKING 261

#include <stdio.h>

#include <math.h>

int pow2 (double x) { return pow(2.0, x); } // 2 to the power x

int main(void)

{

for (int m=0; m<10; ++m) printf("%10i\n", pow2(m));

return 0;

}

This program prints a table of the powers of 2 using a double→int function named pow2(). When
pow2() is called from main() with an integer argument, the argument will be coerced to type double to
match pow2()’s prototype. Within the function, the result of calling pow() will be coerced to type int, to
match pow2()’s prototype, before being returned to main().

Figure 9.3. The declared prototype controls all.

fatal error comment.4 The rule in C is that any numeric type can be converted to any other numeric type.
Therefore, a short int can be converted to a long int or an unsigned int or a float and vice versa. Some
kinds of argument coercions are very common and compilers simply include code for the conversion and do not
notify the programmer that it was necessary. For example, normally no warning would be given when a float
value is coerced to type double. At other times, compilers warn the programmer that a conversion is occuring.
This happens when an unusual kind of argument conversion would be required or the conversion might result
in a loss of information due to a shortening of the representation, as when a double value is converted to
type float. The warning you get depends on the nature of the type mismatch, the severity of the possible
consequences, and your particular compiler.

Type coercion of returned values. The declared return type also is compared to the actual type of the
value in the return statement. If they are different, the value will be coerced to the declared type before it
is returned. The compiler generates the conversion code automatically. For example, in Figure 9.3, the value
calculated by the expression in the return statement is of type double (the math-library functions always
return doubles). However, the prototype for pow2() says that it returns an int. What happens? The C
compiler will notice the type mismatch and compile code to coerce the double value to an int during the
return process. The compiler may also give a warning message.

Parameter order. The order of the arguments in a function call is important. If a function’s parameters
are defined in one order and arguments are given in a different order in a call, the results generally will be
nonsense. There is no “right” order for the parameters in a function definition; this is a design issue. However,
once the definition has been written, the order of the arguments in the call must be the same. If the program
has several functions that work with the same parameters, the designer should choose some order that makes
sense and consistently stick to that order when defining the functions to avoid absentmindedly writing function
calls with the arguments in the wrong order.

Sometimes a compiler, by performing its normal parameter type checking, can detect an error when a
programmer scrambles the arguments in a function call. More often, this is not possible. For example, the
function cyl_vol() in Figure 5.24 has two parameters, the diameter and height of a cylinder. Since the
parameters are the same type, the compiler cannot tell when the programmer writes them in the wrong order.
The result will be a program that compiles, runs, and produces the wrong answer. To further demonstrate the
kind of nonsense that can result from mixed-up arguments, we will use a silly two-parameter function named
n_marks() that inputs a number N and a character C and prints N copies of C. (Figure 9.4)

The output is

Enter a number and a character: 45.7 !
You entered 45.70 and !.
!!!

Compare this output to the output from the erroneous call in the next paragraph.

4If the function has an ANSI prototype, the coercions allowed for arguments and return values are the same as those allowed
for assignment statements.

262 CHAPTER 9. PROGRAM DESIGN

This program is used to show the effects of calling a function with parameters in the wrong order.

#include <stdio.h>

#include <math.h>

void n_marks(double n, char ch); // function prototype

int main(void)

{

char ch; // The character to print

double x; // How many characters to print

printf("\nEnter a number and a character: ");

scanf("%lg %c", &x, &ch);

printf("\nYou entered %.2f and %c.", x, ch);

n_marks(x, ch); // Call function to print x many ch’s

return 0;

}

// ---

void n_marks(double n, char ch) // Print n copies of character ch.

{

putchar(’\n’);

for (int k = 0; k<n; ++k) putchar(ch) ; // print n characters

printf("\n\n"); // flush output to screen

}

Figure 9.4. The importance of parameter order.

Parameter coercion errors. When the compiler translates a function call, it either accepts the arguments
as given, coerces them to the declared type of the parameter, or issues a fatal error comment. This auto-
matic conversion can result in some weird and invalid output. For example, suppose a programmer called the
n_marks() function but wrote the arguments in the wrong order: n_marks(ch, x); The output would be:

Enter a number and a character: 45.7 !
You entered 45.70 and !.

This call certainly is not what a programmer would intend to write. However, according to the ISO C standard,
this is a legal call. The standard dictates that the character ch will be converted first to an int and then to
a double, while the double x will be converted first to an int and then to a char to match the parameter
types in the prototype void n_marks(double, char). Using this input, the programmer would expect to
see a line of 46 ! signs, but instead a line of 33 - signs is printed because of the conversions: The ASCII code
for ! is 33, which will be converted to 33.00, and the 45.7 will be converted to 45, which is the code for -.
Some compilers at least may give a warning comment about these two “suspicious” type conversions, but all
standard ISO C compilers will compile the conversion code and produce an executable program. When you try
to run such a program, the results will be nonsense, as shown.

9.4 Data Modularity

A large program may contain hundreds or thousands of objects (functions, variables, constants, types, etc.). If
a programmer had to remember the name, purpose, and status of this many objects, large programs would be
very hard to write and harder to debug. Happily, C supports modular programming. Each module has its own
independent set of objects and interaction between modules can be strictly controlled. The same name can be

9.4. DATA MODULARITY 263

used twice, in different modules, to refer to different objects, so a programmer need not keep a mental catalog
of the hundreds of names that might have been used. C’s accessibility and visibility rules determine where a
variable or constant may be used and which object a name denotes in each context. We use the program in
Figures 9.5 and 9.7 to illustrate these concepts and the related concept of scope.

9.4.1 Scope and Visibility

The scope of a name is the portion of the program in which it exists and can be used. The three levels of
scope are local, global, and external; respectively meaning that access to an object can be restricted to a single
program block or function, shared by all functions in the same file or program module, or shared by parts of
the program in different files or program modules. More specifically,

• Parameters and variables defined within a function are completely local; no other functions have access

This program calculates the pressure of a tank of CO gas using two gas models. The functions in Figure 9.7
are part of this program and should be in the same source file. A call graph is given in Figure 9.6

#include <stdio.h>

#define R 8314 // universal gas constant

float ideal(float v); // prototypes

float vander(float v);

float temp; // GLOBAL variable: not inside any function

// temperature of CO gas

int main(void)

{

// Local Variables --------------------------------------

float m; // mass of CO gas, in kilograms

float vol; // tank volume, in cubic meters

float vmol; // molar specific volume

float pres; // pressure (to be calculated)

printf("\n Input the temperature of CO gas (degrees K): ");

scanf("%g", &temp);

printf("\n The mass of the gas (kg) is: ");

scanf("%g", &m);

printf("\n The tank volume (cubic m) is: ");

scanf("%g", &vol);

vmol = 28.011 * vol / m; // molar volume of CO gas

pres = ideal(vmol); // pressure; ideal gas model

printf("\n The ideal gas at %.3g K has pressure "

"%.3f kPa \n", temp, pres);

pres = vander(vmol); // pressure; Van der Waal’s model

printf("\n Van der Waal’s gas has pressure "

"%.3f kPa \n\n", pres);

return 0;

}

Figure 9.5. Gas models before global elimination.

264 CHAPTER 9. PROGRAM DESIGN

This is a function call graph for the gas pressure program in Figures 9.5 and 9.7.

ideal scanf

 main

in stdio library

 printf vander

Figure 9.6. A call graph for the CO gas program.

to them.

• We are permitted to declare variables outside of the function definitions, either at the top of a file or
between functions. These are called global variables. They can be used by other modules and all the
functions in the code module that occur after their definition in the file. It is possible (but not the default)
to restrict the use of these symbols to the module in which they are defined.

• All global names and all the functions defined in a module default to extern; that is, they are external
symbols unless declared otherwise. This means that their names are given to the system’s linker and all
the modules linked together in a complete program can use these variables.5

5External linkage will be discussed in Chapters 19 and 23.

These functions are part of the gas models program in Figure 9.5 and are found at the bottom of the same
source code file.

// ---

// Pressure of CO gas in a tank, using the ideal gas equation Pv = RT.

float ideal(float v)

{

float p; // LOCAL variable DECLARATION

p = R * temp / v; // pressure in Pascals

return p / 1000.0; // pressure in kilo Pascals (kPa)

}

// ---

// Pressure of CO gas in a tank, using Van der Waal’s equation,

// P = RT/(v-b) - a/(v*v).

float vander(float v)

{

float p; // LOCAL declaration, not same p as above

const float a = 1.474E+05; // constants for CO gas

const float b = .0395;

p = R * temp / (v - b) - a / (v * v); // pressure in Pascals

return p / 1000.0; // kPa pressure

}

Figure 9.7. Functions for gas models before global elimination.

9.4. DATA MODULARITY 265

The diagram shows the scope of the functions, variables, and constants defined in the gas models program
from Figures 9.5 and 9.7. Each box represents one scope; the gray box represents the global scope. Local
scopes are white boxes; within each, parameters are listed above the dotted line and local variables and
constants below it. Symbols defined in the gray area are visible everywhere in the program where they are
not masked. Symbols in the white boxes are visible only within the scope that defines them.

global:
 R
 temp

m
vol
vmol
pres

main:
v
p

ideal:
v
p
a
b

vander:

Figure 9.8. Name scoping in gas models program, before global elimination.

We say that a locally declared variable or parameter is visible, or accessible, from the point of its
declaration until the block’s closing }. This means that the statements within the block can use the declared
name, but no other statements can (i.e., the scope and visibility of a local variable are the same). A global or
external variable is visible everywhere in the program after its definition, except where another, locally declared
variable bears the same name. If a function has a parameter or local variable named x and a statement x
= x+1, the local x will be used no matter how many other objects named x are in the program’s “universe.”
Therefore, the visibility of a global variable is that portion of its scope in which it is not masked or hidden
by a local variable. This is a very important feature; it is what frees us from concern about conflicts with the
names of all the hundreds of other objects in the program.

9.4.2 Global and Local Names

Insofar as possible, all variables should be declared locally in the function that uses them. Information used
by two or more functions should be passed via parameters. The use of global variables usually is a bad idea;
any variable that can be seen and used by all the functions in a program might be changed erroneously by any
part of the program. When global variables are in use, no one part of the program can be fully understood or
debugged without considering the entire thing.

While global variables are not encouraged, constants and types usually are declared at the top of a file
because they are necessary to coordinate the actions of different parts of a program. Since the values of const
variables and #defined symbols cannot be changed, their global visibility does not foster the same kind of
problems as a global variable. Further, declaring constants and types at the top of a file makes them easier to
locate and revise, if necessary.

A function prototype can be declared globally or locally in every function that calls it. Each style of
organization has its advantages. In this text, we declare most prototypes globally because it is simpler. We
illustrate some of these issues using the program in Figure 9.5, which has two subprograms (Figure 9.7) and a
variety of local and global declarations (Figure 9.8).

Notes on Figures 9.5, 9.7, and 9.8. Gas models before global elimination. We use a main
program, two functions, a global constant, and a global variable to examine the scope and visibility of names
in C. Figure 9.8 illustrates the scope of the symbols defined in this program.

First box, Figure 9.5: global declarations and included files .
• The #include <stdio.h> means that everything in the file stdio.h will be copied into this program at this

point. All the objects declared in stdio.h, therefore, will have a global scope in this program.

• The constant R and the variable temp are declared globally. In Figure 9.8, these names are written in the
gray box, which represents the global scope. Here, they are visible and can be used by any function in this

266 CHAPTER 9. PROGRAM DESIGN

file; that is, by main(), ideal(), and vander(). The functions ideal() and vander() also can be called
from any part of this file.

• It is considered very bad style to use a global variable such as temp. We do so only to demonstrate the
meaning of global declarations and show how to eliminate them.

• A global constant such as R creates fewer problems than a global variable. It is common for a program to
use global constants and is not considered bad style.

Second box, Figure 9.5: declarations for main().
• The four variables m, vol, vmol, and pres are local to main() and therefore visible only within main().

In Figure 9.8, the leftmost white rectangle represents the scope created by main(). Inside it is a list of
main()’s local variables.

• The functions ideal() and vander() cannot access the values in m, vol, vmol, and pres because the values
are local within main().

Third box, Figure 9.5: code for main().
• This code can use the definitions and the global variable and constant defined in the first box as well as the

variables defined in the second box.

• This code cannot use the parameters, variables, or constants defined by the two functions in Figure 9.7. If
we tried to use v, p, a, or b here, it would cause an undefined-symbol error at compile time.

• The two inner boxes contain the calls on the functions ideal() and vander(). These functions will need
to be modified to eliminate the use of the global variable.

Sample output from this program is:

Input the temperature of CO gas (degrees K): 28.5

The mass of the gas (kg) is: 1.2

The tank volume (cubic m) is: 3

The ideal gas at 28.5 K has pressure 3.385 kPa
Van der Waal’s gas has pressure 3.357 kPa

First box, Figure 9.7: code for the function ideal().
• Because this function is compiled at the same time as the code in Figure 9.5, it can use any object, such as
R or temp, that is defined (or included) in the first box in Figure 9.5.

• In Figure 9.8, the center rectangle represents the scope created by ideal(). Inside it are ideal()’s parameter
v and the local variable p, which are visible only within ideal() and cannot be used outside this function.

Second box, Figure 9.7: code for the function vander().
• This function also can use objects such as R and temp that are defined (or included) in the first box in

Figure 9.5.

• In Figure 9.8, the rightmost rectangle represents the scope created by vander(). Inside it are vander()’s
parameter v and the local variables a, b, and p (a and b actually are constants). These are visible only
within vander() and cannot be used outside this function.

• Each parameter or local variable declaration creates a new object. Therefore, the p defined here is a different
variable than the p defined in ideal(), with its own memory location, even though they have the same
name.

• If the local variable p had been named temp, this function would compile but not work properly because
the local variable would mask the global variable. Every reference to temp in vander() would access the
local variable, and the information in the global temp would not be accessible within the function. The next
section shows how to improve the lines of communication so that these difficulties do not occur.

9.4. DATA MODULARITY 267

9.4.3 Eliminating Global Variables

We introduced a programming style in which interaction with the user is done by one function (ofen main())
and calculations by another. This separation of work makes a program maximally flexible and easier to modify
at a later date. However, since one function reads the input data and another uses it for calculations, the data
value must be communicated from the first to the second.

A beginning programmer often will be tempted to use a global variable because it provides one way to solve
this communication problem. A global variable is visible to both the data input function and the calculation
function, so nothing special has to be done to communicate the value from the first to the second.

In a small program, using global variables might seem easy and communicating through parameters might
seem to be a nuisance. However, global variables almost always are a mistake,6 because they allow unintended
interactions between distant parts of the program. They make it hard to follow the flow of data through the
process, and they make it harder to modify and extend the program. In a large program, global variables

6The program in Figure ?? shows an instance where the use of global variables is acceptable.

This program is a revised and improved version of the gas models program in Figures 9.5 and 9.7; it solves
the communication problem by using a parameter instead of a global variable. The functions in Figure 9.10
are part of the revised program and should be in the same source file.

#include <stdio.h>

#define R 8314 // universal gas constant

float ideal(float v, float temp);

float vander(float v, float temp);

int main(void)

{

// Local Variables --------------------------------------

float temp; // Temperature of CO gas

float m; // mass of CO gas, in kilograms

float vol; // tank volume, in cubic meters

float vmol; // molar specific volume

float pres; // pressure (to be calculated)

printf("\n Input the temperature of CO gas (degrees K): ");

scanf("%g", &temp);

printf("\n The mass of the gas (kg) is: ");

scanf("%g", &m);

printf("\n The tank volume (cubic m) is: ");

scanf("%g", &vol);

vmol = 28.011 * vol / m; // molar volume of CO gas

pres = ideal(vmol, temp); // pressure; ideal gas model

printf("\n The ideal gas at %.3g K has pressure "

"%.3f kPa \n", temp, pres);

pres = vander(vmol, temp); // pressure; Van der Waal’s model

printf(" Van der Waal’s gas has pressure "

"%.3f kPa \n\n", pres);

return 0;

}

Figure 9.9. Eliminating the global variable.

268 CHAPTER 9. PROGRAM DESIGN

These functions illustrate how to eliminate a global variable from Figure 9.7. The boxes highlight the changes
necessary to replace the global variable by adding a parameter to each function.

// ---

// Pressure of CO gas in a tank, using the ideal gas equation Pv = RT.

*/

float ideal(float v, float temp)

{

float p; // LOCAL variable DECLARATION

p = R * temp / v; // pressure in Pascals

return p / 1000.0; // pressure in kilo Pascals (kPa)

}

// ---

// Pressure of CO gas in a tank, using Van der Waal’s equation,

// P = RT/(v-b) - a/(v*v).

*/

float vander(float v, float temp)

{

float p; // LOCAL declaration, not same p as above

const float a = 1.474E+05;

const float b = .0395; // constants for CO gas

p = R * temp / (v - b) - a / (v * v); // pressure in Pascals

return p / 1000.0; // kPa pressure

}

Figure 9.10. Functions for gas models after global elimination.

become a debugging nightmare. It is hard to know what parts of the program change them and under what
conditions. Therefore, it is important, from the beginning, to avoid global variables and learn to use parameters
effectively.

We will use the program in Figures 9.5 and 9.7 to demonstrate the technique for eliminating global variables.
The result is shown in Figures 9.9 and 9.10. Parameters are the right way to solve the communication problem.
They make the sharing of data explicit and they prevent unintended sharing with unrelated functions. In
general, global variables should be replaced by parameters. The transformation works for globals used to send
information into a function; a variant of this technique7 is needed if the function also uses the global variables
to send information back out.

Notes on Figures 9.9 and 9.10. Eliminating the global variable. We start with the main program in
Figure 9.5 and the two functions in Figure 9.7, which communicate through a global variable. To eliminate this
variable and replace it by a parameter, we need to change five lines in Figure 9.5 and two lines in Figure 9.7.

First box of Figure 9.9. The prototypes for the functions ideal() and vander() found in the first box of
Figure 9.5 need to be changed to include an additional parameter of the same type as the global variable. In
both cases, we add the new parameter second. It is important to be consistent about parameter order when
adding parameters, to avoid the problems mentioned earlier.

Second box of Figure 9.9. The declaration of temp must be moved out of the global area where it was
defined in Figure 9.5 and into main()’s local area.

Third and fourth boxes of Figure 9.9. The function calls in these boxes must be modified to include an
additional argument, the value of the former global variable, which is now a local variable in main().

7This variation uses pointer parameters, which will be covered in Chapter 11.

9.5. PROGRAM DESIGN AND CONSTRUCTION 269

Problem scope: A long, slender cooling fin of rectangular cross section extends out from a wall, as shown.
Print a table of temperatures every 0.005 m along the fin.

500oC

Air Tm =
20oC

Total length = Len
20oC air

WallTm=

x

Formulas: The temperature of the fin at a distance x from the wall is:

Temperature(x) = AirTm + (WallTm−AirTm)× cosh[FinC × (Len− x)]

cosh(FinC × Length)

Constants:
Temperature of the air, AirTm = 20◦C
Temperature of the wall at the base of the fin, WallTm = 500◦C
Fin constant, FinC = 26.5

Input: Length of the fin, Len, in meters, which must be greater than zero.

Output required: Print column headings Distance from base (m) and Temperature (C). Beneath the
headings print a table of temperatures starting with the temperature at the wall (x = 0). Print one line for
each increment of 0.005 m up to the length of the fin.

Computational requirements: Print the distance from the wall to three decimal places and the temper-
ature to one.

Test plan: Using the numbers from the diagram, for a wall that is .6 meters long, the temperature at the
wall should be 500◦C and .01mfrom the wall, the temperature should be 398.535◦C.

Figure 9.11. Problem specification and test plan: fin temperature.

First box of Figure 9.10. A new parameter was added to the parameter list in the prototype for ideal().
We also must add the parameter to the function header.

Second box of Figure 9.10. We must add the new parameter to the list for vander() as well.

9.5 Program Design and Construction

In the gas pressure example, we started with a program and its two functions and analyzed it section by section.
This is a good way to understand how a given program works, but it gives little perspective on how a program
with functions is developed. In this section, we reverse the process and show how to develop a program and
its subprograms from the specification. Section 9.5.1 lists the steps and describes them briefly. Section 9.5.2
explains these steps more fully and applies them to a real problem.

9.5.1 The Process

The DNA: a complete specification. The first step in designing a program is to decide what you want
the program to do and specify it as precisely as possible. If there is any doubt about the specifications or any
missing information, this must be cleared up before proceeding.

Start with the “skin” of main(). Write the routine portions of main(). If you wish to test or run the
program on several data sets, write a work loop in the body of main.

270 CHAPTER 9. PROGRAM DESIGN

Define the skeleton of the work to be done. Start by listing the major phases in processing a single data
set. Generally these phases are input, calculation, and output; but one of these phases might not be needed
and the calculation phase may have multiple steps. Write the code to perform each phase if it is only one or
two lines long. Otherwise, invent a name for a function that will do each task. These statements will be in a
work() function if you have one, otherwise in main().

The circulatory system: declarations and prototypes. Go back to the top of main() and write whatever
declarations and prototypes you will need to support your skeleton code. These do not have to be perfect.
Write a comment for each one.

Health check: compile. It is much easier to find compiler errors when you compile and check the code a
little bit at a time. However, a program will not compile if it calls functions that have not yet been written.

One solution to this is to write a stub for each function that has been named but not yet defined. A stub is
a function that does nothing except print its own greeting message and return some value of the correct type
(or void). The return value does not need to be meaningful; any definition is OK, as long as its parameter types
and return value type match the prototype. Compile the program initially as soon as the stubs are written.
Then later, after every function is fleshed-out, compile the program again.

An alternative to writing function stubs is to temporarily amputate calls on functions that have not yet
been written by enclosing them in comment marks. Sometimes entire lines are amputated. At other times, a
function call is commented out and replaced by a literal constant. The comments can easily be removed when
the function is written, later.

The brains: developing the functions. Tackle the functions one at a time, in any convenient order. For
each, write a comment block that describes the purpose of the function and any preconditions. Then go through
the same steps as for main(): routine parts, skeleton, declarations, and possibly more prototypes and stubs. As
you learn more about your functions, you may need to add parameters to the prototypes you have previously
written.

Integration and tesing. Combine and test all of the program parts according to your plan.

9.5.2 Applying the Process: Stepwise Development of a Program

We now apply the design steps from Section 9.5.1 to develop a program for a real problem: calculating the
temperature of a cooling fin. This problem arose from a real application: designing the cooling apparatus for
a piece of machinery. Figure 9.11 is a diagram of the cooling fin and specifications for a program to analyze
its temperature gradient. The problem specification comes directly from the set of engineering principles and
formulas in use by the designer.8

A fin is slender if its length is an order of magnitude greater than the height or width of its rectangular
cross section. The cooling properties of a fin depend on temperatures of the wall and the air and a fin constant,
FinC, which is a function of the film coefficient of the air and the thermal conductivity and cross-sectional area
of the fin.

Steps in writing main().

• The skin. We start by writing the #include commands (stdio, as usual, and math because this is
a numeric application.) and the first and last few lines of main(), the greeting message and return
statement

#include <stdio.h>
#include <math.h>
int main(void)
{

puts(" Temperature Along a Cooling Fin");
// Program code will go here.
return 0;

}

8F. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed. (New York: Wiley, 1996).

9.5. PROGRAM DESIGN AND CONSTRUCTION 271

• Multiple data sets. We will write this program for only one data set, so we do not need a processing loop
or a work() function. Therefore, the skeleton of the program becomes the body of main().

• The skeleton. Next, prepare the function skeleton; We start by listing the two major phases in creating
a table for a single fin situation. We need two basic steps:

a. Input and validate a fin length.

b. Print a temperature table for that length.

We write the code for step (a) directly because it requires only a few lines of code.

do {
printf(" Please enter length of the fin (> 0.0 m): ");
scanf("%g", &Length);

} while (Length <= 0);

• The circulatory system. We finish step (a) by writing the declaration for Length.

float Length; // Length of the cooling fin.

• Step (b) is more complex, however, so we invent a function to perform the task and name it print_table().
We write a first draft of the prototype for print_table(), giving it the parameters and return type we
think it will need. This information comes from the formula given in the specification: all values are
constant except the fin length, so the length is the only parameter needed. We set the return type to
void because most printing functions are void.

void print_table(float Length);

Only the prototype is written at this stage; the code itself will be written later. This is just a first guess
at the proper prototype: if there are too many parameters or too few, or the types are wrong, that will
be corrected later. Now we return our attention to main() and write a call on the new function.

print_table(Length);

If (unlike this example) the new function returns a value, we must store the result in a variable and we
may need to write a declaration for that variable.

• Health check. The first draft of the main program is now complete; it is shown in Figure 9.12 with the
corresponding call graph. We would like to use the C compiler to check the work so far but we cannot
compile the program as it stands because the definition of print_table() is missing. So we create a
stub for print_table(). This consists of an identifying comment, a function header that matches the
prototype, and a single output statement to let the programmer track the program’s progress. Since this
function has a parameter, we use the stub to print its value, giving us confidence that the data is being
correctly communicated to the function. We put this stub at the end of the program.

The stub served its purpose when we compiled this file. There were a few typographical errors, but the
program is so short that they were easy to find and fix. The corrected code is shown in Figure 9.12. It
ran successfully, producing this output:

Temperature Along a Cooling Fin
Please enter length of the fin (m): .06
>>> Entering print_table with parameter 0.06

From this, we can see that the program is starting and ending properly and receiving its input correctly.

• The brains. We now can start work on the function. If a program has two or more functions, we code
them one at a time, in any convenient order. For each, we work on the skin, the skeleton, the circulation,
and the brains.

Sometimes this leads to inventing another function; sometimes it means writing statements that compute
the formulas given in the specification.

272 CHAPTER 9. PROGRAM DESIGN

Steps in writing print_table().

• The DNA and skin. We have written a prototype and a function stub for print_table(). Now we need
to think carefully about the function itself. One part of that process is to write a set of preconditions
for the function, that is, things that must be true when the function is called. This function has one
parameter, the length of the fin, which must (obviously) be a positive number, so we add a line to the
comment block to document this precondition. This precondition announces that it is the job of the
caller main() to validate the input – it will not be validated here. We now have this skeleton:

// Stub: ---
// Print a table of temperatures for a fin of given length, in meters.
// The length must be greater than 0.

void print_table(float Length)
{

printf(" >>> Entering print_table with parameter %g", Length);
}

This code was written piece by piece on the preceding few pages. The corresponding call graph follows.

#include <stdio.h>

#include <math.h>

void print_table(float Length);

int main(void)

{

float Length; // Input: the length of the cooling fin.

puts(" Temperature Along a Cooling Fin");

do {

printf(" Please enter length of the fin (> 0.0 m): ");

scanf("%g", &Length);

} while (Length <= 0);

print_table(Length);

return 0;

}

// Stub: ---

// Print a table of temperatures for a fin of given length, in meters.

void print_table(float Length)

{

printf(" >>> Entering print_table with parameter %g", Length);

}

 main

in stdio library

 puts scanf print_table printf

Figure 9.12. First draft of main() for the fin program, with a function stub.

9.5. PROGRAM DESIGN AND CONSTRUCTION 273

• The skeleton.
To print a table, we must

1. print table headings,

2. print several lines of detail, and

3. print table footings.

Steps (1) and (3) are simple enough to write directly. We do that and leave space to insert step (2) later.

printf("\n Distance from base (m) Temperature (C) \n");
printf(" ---------------------- --------------- \n");

// STEP 2 WILL GO HERE
printf(" ---------------------- --------------- \n");

• The circulatory system.
We need a constant in the print_table() function: the step size for the loop. The specification says
that the temperature should be calculated every 0.005 meters, but it always is unwise to bury constants
like that in the code. We define the step size as a local constant so that it will be easy to modify in the
future. It is obvious that we also need at least one variable, distance, to hold the current distance from
the wall and another, temp, to hold the result of the temperature calculation:

float dist; // Distance from wall.
float temp; // Temperature at that distance.
const float step = .005; // Step size for loop.

For step 2, we need a loop that will produce one line of output on each iteration. For each line, we
must compute and print the temperature at the current distance, x, from the wall. We invent a function
named compute_temp() to compute the temperature. It needs a parameter, x, which we declare as type
float, like all the other variables in this program. The function result is a temperature, so that will also
be type float. The prototype becomes:

float compute_temp(float x);

The revised function call graph is shown in Figure 9.13.

• The brains.
Printing the detailed lines of the table requires a loop that starts at distance 0.0 from the wall and
increases to the length of the fin in increments of the defined step size. Since the loop variable, dist,
is not an integer, we need an epsilon value for the floating comparison that ends the loop. This epsilon
must be smaller than the step size; we arbitrarily set it to half the step size:

float epsilon = step/2.0; // Tolerance

We are ready to code the loop. We start with the loop skeleton and defer the computation and printout:

for (dist = 0.0; dist < Length+epsilon; dist += step) {//Defer}

Now we approach the loop body. The loop prints the lines of the table one at a time. For each one,
we must compute the current distance, x, from the wall and the temperature at distance x. The dis-
tance computation is handled by the loop control; the remaining tasks are done by compute_temp() and
printf():

temp = compute_temp(dist);
printf("%12.3f %24.1f \n", dist, temp);

In the format, we use %f conversion specifiers because we want a neat table with the same number
of decimal places printed for every line (3 for dist and 1 for temp, written with %12.3f and %24.1f,
respectively). We supply a field width so that the output will appear in neat columns. To find the correct
field width, we either count the letters in the headings or guess; a guess that is too big or too small can be
adjusted after we see the output. We now have completed the first draft of the code for print_table();
it is shown in Figure 9.13.

274 CHAPTER 9. PROGRAM DESIGN

// ---

// Print a table of temperatures for a fin "Length" meters long.

// Length must be greater than 0.

void print_table(float Length)

{

float dist; // Distance from wall.

float temp; // Temperature at that distance.

const float step = .005; // Step size for loop.

float epsilon = step/2.0; // Tolerance

printf("\n Distance from base (m) Temperature (C) \n"

printf(" ---------------------- --------------- \n");

for (dist = 0.0; dist < Length + epsilon; dist += step) {

temp = 1.1; // compute_temp(dist);

printf("%12.3f %24.1f \n", dist, temp);

}

printf(" ---------------------- --------------- \n");

}

compute_temp

 main

in stdio library

 puts scanf print_table printf

Figure 9.13. Fin program: First draft of print_table() function.

• Health check.
While coding the brains of a function, a programmer sometimes discovers that the function needs more
information than its parameters supply. If that information is not supplied by global constants, the
function header, prototype, and call(s) must be edited to supply the added data.

In the process of writing print_table(), we did not need to change the parameter list, so the call on
print_table() inside main() still is correct and we do not need to modify main() at this time. (However,
we might need to do this later.)

We have now completed a main program and one function with a tentative call on a second function that
has not been written. It is time to compile again. We cannot compile the program as it stands because
of the call on compute_temp(). Although we could write another function stub, in this case we choose
to temporarily “amputate” the call on compute_temp() by enclosing it in a comment and setting the
variable temp to an arbitrary (but recognizable) constant value:

temp = 1.1; // compute_temp(dist);

Now we compile the program, fix any compilation errors, and run it. Our program ran successfully,
producing the output that follows (only the first and last few lines are shown).

Looking at this table, we see that the number of rows printed is correct and the numbers are adequately
centered under the headings. The numbers in the first column are correct and the numbers in the second
column are the constant value we used when we amputated the call on compute_temp().

Temperature Along a Cooling Fin
Please enter length of the fin (m): .06

9.5. PROGRAM DESIGN AND CONSTRUCTION 275

Distance from base (m) Temperature (C)
---------------------- ---------------

0.000 1.1
0.005 1.1
0.010 1.1
... ...

0.050 1.1
0.055 1.1
0.060 1.1

Steps in writing compute_temp().

• The DNA and the skin.
The compute_temp() function must calculate the temperature of the fin at a given distance from the wall.
Tentatively, we have given it one parameter, a float named x, which will range between 0 meters and
the length of the fin. The function must return a float value to print_table(). We write a comment
block and the shell of the function:

// ---
// Compute and return the temperature at distance x from the wall.
// x must be between 0.0 meters and the length of the fin.

float compute_temp(float x){// Code goes here.}

• The skeleton and the brains.
We compute the temperature using the formula in the specifications (see Figure 9.11) and return the
answer. This is a simple task that need not be broken down further. Here is the resulting statement:

return AirTm + (WallTm-AirTm) * cosh(FinCnow*(Length-x)) / cosh(FinC*Length);

Looking at this formula, we see that it involves several variables (wall temperature, air temperature, fin
constant, and length of the fin), not just the distance x from the wall. However, the first three values are
given as constant numbers in the problem specification. We could write constants for these quantities in
our formula, but the program would be much more useful if these values could be varied. Therefore, we
choose to define all three constants in main() and add them to the parameter lists of both print_table()
and compute_temp(). By placing all these constants in main(), we make them easy to find and modify.
It also would be easy to change them into input variables if that were desired. Last, the fin length is a
missing parameter; it is read in main() and we must pass it from main() through print_table() to this
function. Similarly, we must pass the constants from main() to compute_temp(). To do so, we need to
change the prototypes and headers of both functions and correct two function calls.

• Circulation.
We now have three constants and one input variable that must be passed from main() to compute_temp()
as parameters. Although the order of the new parameters is not crucial, we want an order that makes
sense and can be remembered, so we put all the properties of the fin together. Our new prototypes are

void print_table(float Length, float FinC, float WallTm, float AirTm);
float compute_temp(float x, float Length, float FinC, float WallTm, float AirTm)

Next, we add three constant definitions to main() and change the call on print_table() to use them:

const float FinC = 26.5; // Fin constant.
const float WallTm = 500.0; // Wall temperature, C
const float AirTm = 20.0; // Air temperature, C
print_table(Length, FinC, WallTm, AirTm);

Last, the function call in print_table() must also be changed:

temp = compute_temp(dist, Length, FinC, WallTm, AirTm);

• Health check. The completed program is shown in Figure 9.14. The first and last few lines of the output
are shown below. The final development step is to compare these results to the ones in the test plan, to
verify that we are fully finished.

276 CHAPTER 9. PROGRAM DESIGN

Temperature Along a Cooling Fin
Please enter length of the fin (m): .06

Distance from base (m) Temperature (C)
---------------------- ---------------

0.000 500.0
0.005 445.5
0.010 398.5
....

0.055 209.6
0.060 208.0

---------------------- ---------------

9.6 What You Should Remember

9.6.1 Major Concepts

Modular design. Large programs are organized into modules, which contain related sets of functions and
constants. It is the compiler’s job to properly compile and link together the files containing the modules. The
organization of a module follows a stylistic pattern. Modular design is a skill worth learning if you intend to
write programs of any substantial size.

Parameter passing. Most parameters are passed by value; that is, the value of the argument is copied into
the parameter variable. This isolates the subprogram from the caller, making it impossible for the subprogram
to change the values of the caller’s variables. In Chapter 11, another parameter-passing mechanism (call by
value/address) will be introduced that can support two-way communication between caller and subprogram.

Parameter and return value type conversion. The type of a function argument in a call should match
the type of the corresponding formal parameter in the prototype. If they are not identical, the argument will
be coerced (automatically converted) to the parameter’s type, if that is possible. Any numeric type (including
char) can be converted to any other numeric type. Similarly, the value returned by a function will be converted
to the declared return type. Normally, this type coercion causes no trouble. However, converting from a longer
representation to a shorter one can cause overflow or loss of precision and converting from char to anything
except int usually is wrong.

Parameter names. The name of a parameter is arbitrary. It identifies the parameter value within the
function and therefore should be meaningful, but it has no connection to anything outside the function, even
if other objects have the same name. The order in which arguments are given in the call, not their names,
determines which parameter receives each argument value.

Parameter order. The order of parameters for a function is arbitrary. However, related parameters should
be grouped together, and when several functions are defined with similar parameters, the order should be
consistent. The number and order of arguments are not arbitrary. Parameters and arguments are paired
according to the order in which they are written (not by name or type).

Call graphs. A function call graph is a diagram that shows the caller-subprogram relationships of all the
functions in a program. More sophisticated forms may include descriptions of the information being sent into
and out of the subprogram.

Scope and visibility. The scope of an object is the portion of a program in which it exists. The visibility of
an object is the portion of its scope in which it can be accessed. An object can have external, global, or local
scope, meaning that it is available to the entire program, restricted to a single module, or restricted to a single
function, respectively.

Stub testing. When a program is long and has many functions, stub testing often is the best way to construct
and debug it. In this technique, the main program is written first, along with a stub for each function it calls.
The stub is a function header, some comments, and only enough code to print the parameter values. If not a
void function, it also must return some fixed and arbitrary answer. After the main function compiles and runs
correctly by calling the stubs, the stubs are filled in, one at a time, with real code. This code, in turn, may

9.6. WHAT YOU SHOULD REMEMBER 277

The problem specifications are given in Figure 9.11.

#include <stdio.h>

#include <math.h>

void print_table (float Length, float FinC, float WallTm, float AirTm);

float compute_temp(float x, float Length, float FinC, float WallTm, float AirTm);

int main(void)

{

float Length; // Length of the cooling fin, in meters.

const float FinC = 26.5; // Fin constant.

const float WallTm = 500.0; // Wall temperature, C.

const float AirTm = 20.0; // Air temperature, C.

puts(" Temperature Along a Cooling Fin");

do {

printf(" Please enter length of the fin (> 0.0 m): ");

scanf("%g", &Length);

} while (Length <= 0);

print_table(Length, FinC, WallTm, AirTm);

return 0;

}

// --

// Print a table of temperatures for a fin that is "Length" meters long.

// Length must be greater than 0.

void

print_table(float Length, float FinC, float WallTm, float AirTm)

{

float dist; // Distance from wall.

float temp; // Temperature at x.

const float step = .005; // Step size for loop.

const float epsilon = step/2.0; // Tolerance.

printf("\n Distance from base (m) Temperature (C) \n");

printf(" ---------------------- --------------- \n");

for (dist = 0.0; dist < Length + epsilon; dist += step) {

temp = compute_temp(dist, Length, FinC, WallTm, AirTm);

printf("%12.3f %24.1f \n", dist, temp);

}

printf(" ---------------------- --------------- \n");

}

// --

// Compute the temperature at distance x from wall; 0<=x<=Length

float

compute_temp(float x, float Length, float FinC, float WallTm, float AirTm)

{

return AirTm + (WallTm - AirTm) * cosh(FinC*(Length-x)) / cosh(FinC*N);

}

Figure 9.14. Temperature along a cooling fin.

278 CHAPTER 9. PROGRAM DESIGN

require the construction of new stubs. After one or a few stubs have been fleshed out, the code is compiled
and tested again. This is repeated until all stubs have been replaced by complete functions. This technique
is important because it forces the programmer to work in a structured way; it ensures that all parts of the
program are kept consistent with each other as they are developed. Also, compiler errors are easier to find and
fix because there is never a large amount of new code being compiled for the first time.

9.6.2 Programming Style

Monolithic vs. modular. If you cannot look at a function on your computer screen and understand what it
is doing, it is too long, too complex, or both. Keep function definitions short enough to see the beginning and
the end at the same time. Generally, it is good to keep code for user interaction and code for mathematical
computation in separate functions. Modular development also aids the compiling and debugging process.

Placement of prototypes in the file. The easiest way to be sure that the compiler uses the correct prototype
to translate every function call is to write all the #include commands and all your prototypes at the top of
each code module. Although other arrangements may be legal, according to C’s rules, putting the prototypes
at the top is the easiest way to avoid errors caused by misplaced prototypes, missing arguments, and incorrect
argument order in function calls.

Global vs. local. Define variables locally, not globally, wherever possible. This tactic makes logical errors
easier to locate and fix because it limits unintentional interaction between parts of a program. In general,
parameters should be used for interfunction communication. Global definitions should be used only for new
type definitions and constants shared by several parts of a program.

Function documentation. Every function should start with a highly visible comment line, such as a row of
dashes. This line is very useful during debugging because it helps you find the functions quickly. You should be
able to give a succinct description of the purpose of each function. This description should start on the second
line of the comment at the top of the function definition. This comment also must make clear the purpose of
each parameter and include a discussion of any preconditions.

Parameter and argument consistency. If more than one function uses the same set of parameters, reduce
confusion by being consistent in their order and naming.

Function layout. The parts of a function definition can be arranged in many ways. The layout recommended
here is the easiest to read and extends best to advanced programming in C++.
• Every function definition should start with a comment block, as described previously. The first line of code

should be the return type and a comment, if needed, that describes the meaning of the return value (nothing
else).

• The second line of code should start with the name of the function, followed by a left parenthesis. If all
parameters will fit on one line, they should come next, ending with a right parenthesis. Otherwise, put each
parameter on a separate line, with a comment. Put the closing right parenthesis on a line by itself, aligned
directly under the matching left parenthesis.

• On the next line, write the left curly bracket in the first column.

• Next come the declarations with their comments; indent them two to four columns. Then leave a blank
line and write the function body, indented similarly. Increase the indentation for each conditional or loop
statement.

• Write the right curly bracket that ends the function in the leftmost column on a separate line.

9.6.3 Sticky Points and Common Errors

Parameter order. The arguments in a function call must be written in the same order as the matching
parameters in the definition. If the order is scrambled, the code often will compile and run but produce
incorrect results. Using an incorrect number of arguments can lead to confusing errors at compile time.

9.7. EXERCISES 279

The declaration must precede the call. Either a function prototype or the complete function definition
must precede all calls on the function. If this is not done, the compiler will construct a prototype automatically,
which often will be wrong. This normally results in an error comment about an illegal function redefinition
when the function definition is translated.

Call vs. prototype vs. definition. Beginning programmers often confuse the syntax of a function call with
the syntax of the corresponding prototype and header. These have parallel but different forms. The function
call supplies a list of argument values; although each value has a type, the type names are not written in the
call. In contrast, the function prototype and header do not know what values eventually will be supplied by
future calls, so they list the types of the parameters. In addition, the function header must give parameter
names, so that the code can refer to the parameters and use them. Last, a semicolon is found at the end of a
prototype but not at the end of a function header.

A global vs. local mix-up. Having global variables leads to trouble for a variety of reasons. One scenario
is the following: A local variable declaration is omitted, and it happens to have the same name as a global
variable. The compiler cannot detect the omission and will use the global variable. Any assignments to this
variable will change the global value, causing unexpected side effects in other parts of the program. Such errors
are hard to track down because they are not in the part of the program that seems to be wrong and produces
incorrect results.

9.6.4 New and Revisited Vocabulary

A large number of terms relating to functions and function calls have been introduced in this chapter. This
list is provided as a review of the new concepts covered.

main program
subprogram
function
module
library
header file
prototype
function definition
interface
formal parameter
parameter list
parameter order
type matching
type conflict

function call
calling sequence
caller
call graph
argument
call by value
type coercion
arithmetic types
call by address
address argument
entry point
return address
return statement
missing prototype

return type
return value
scope
visibility
accessibility
local
global
stack frame
external
preconditions
function skeleton
function stub
stub testing
testing by amputation

9.7 Exercises

9.7.1 Self-Test Exercises

1. Call graph. The main program, which follows, calls two of the functions declared at the top. Which
standard libraries would need to be included to compile this program? Draw a function call graph for
this program.

#include <stdio.h>
#define MAX 7

void pattern(int p);
void stars(int n) { for (int k = 0; k < n; ++k) printf("*"); }
void space(int m, int n) { for (int k = 0; k <= n; k += 2) printf(" %i", m); }
int odd(int n) { return n % 2; }

int main(void) //---
{

for (int k = 0; k < MAX; ++k) {
if (k < 2 || k >= MAX-2) stars(MAX);

280 CHAPTER 9. PROGRAM DESIGN

else pattern(k);
printf("\n");

}
}

void pattern(int p) //--
{

stars(1);
space(p, MAX-4);
if (odd(MAX)==1) printf(" ");
stars(1);

}

2. Tracing calls. Trace the execution of the code in problem 2. Make a list of the function calls, one per
line, listing the name, arguments, and return value for each. Show the program’s output as well.

3. Local and Global. Look on the web site at the program for Newton’s method. Fill in the following chart
listing the symbols defined (not used) in each program scope. List the global symbols on the first line
and add one line below that for each function in the program; remember that every function definition
creates a new scope. The line for main() has been started for you.

Scope Parameters Variables Constants

global —

main() —

4. Local names. List all the local symbols defined in the main program in Figure 9.4. List the parameters
and local variables in the function named n_marks().

5. Visibility. List all the variable names used in the function named cyl_vol() in Figure 5.24. For each,
say whether it is a parameter or a local variable.

6. Control flow. Draw a flow diagram for the fin temperature program in Figure 9.14.

7. Prototypes and calls. Given the prototypes and declarations that follow, say whether each of the lettered
function calls is legal and meaningful. If the call would cause a type conversion of either an argument or
the return value, say so. If the call has an error, fix it.

void squawk(int);
int triple(int);
double power(double, int);

int j, k;
float f;
double x, y;

(a) squawk(3);

(b) squawk(f);

(c) triple(3);

(d) f = triple(k);

(e) j = squawk(k);

(f) y = power(3, x);

(g) y = power(x, 3);

(h) x = power(double y, int k);

(i) y = power(triple(k), x);

(j) printf("%i %i", k, triple(k));

9.7. EXERCISES 281

9.7.2 Using Pencil and Paper

1. Control flow. Draw a flow diagram for the Newton’s method program on the text web site.

2. Call graph. Draw a call graph for the n_marks program in Figure 9.4.

3. Tracing calls. Trace the execution of the program in exercise 4, above. Make a list of the function calls,
one per line, listing the name, arguments, and return value for each. Show the program’s output as well.

4. Prototypes and calls. Given the prototypes and declarations that follow, say whether each of the lettered
function calls is legal and meaningful. If the call would cause a type conversion of either an argument or
a return value, say so. If the call has an error, fix it.

double rand_dub(void);
int half(double);
int series(int, int, double);

int j, k;
float f;
double x, y;

(a) half(5);

(b) rand_dub(y);

(c) x = rand_dub();

(d) j = half();

(e) f = half(x);

(f) j = series(x, 5);

(g) j = series(5, (int)x, y);

(h) y = series(j, k, rand_dub());

(i) printf("%g %g", x, half(x));

(j) printf("%i %g", k, rand_dub(k));

5. Call graph. The main program that follows calls the three functions defined at the top. Which standard
libraries would need to be included to compile this program? Draw a function call graph for this program.

#include <stdio.h>
#include <math.h>

double f(double x) { return x / 2.0; }
double g(double x) { return 1.0 + x; }
double h(double x) { return x * 3.0; }

int main(void)
{

double x = 1;
double sum = 0.0;

while (sum < 100) {
x = h(x);
printf(" %6.2f \t", x);
sum += x;
if (fmod(x, 2.0) == 0) x = f(x);
else x = g(x);
printf(" %6.2f \n", x);

}
printf(" ------\n %6.2f \n", sum);

}

6. Local and Global. Look at the program for fin temperatures in Figure 9.14. Fill in the following table,
listing the symbols that are defined (not used) in each program scope. List the global symbols on the first
line and add one line below that for each function in the program (the line for main() has been started
for you).

282 CHAPTER 9. PROGRAM DESIGN

Scope Parameters Variables Constants

global —

main() —

7. Visibility. The diagram that follows depicts a main program with three functions: one(), two(), and
other(). Within the box for each function, parameters are shown above the dashed line, local variables
below it. All functions return an int result. All variables and parameters are type int. The global
constant, RATE, and global variable, color, also are type int.

global:
 RATE
 color

main(void)
f
g
h

int
one(int)

p
q
r

k
m
n

s
t
v

int
two(int, int)

int
other(int)

For each function call shown that follows, say whether it is legal or illegal. Fix any illegal statements.

(a) In main(): f = one(RATE);.

(b) In main(), after calling one(): f = two(g, k);.

(c) In one(): n = two(m);.

(d) In one(): n = two(color, m);.

(e) In one(): n = other(k);.

(f) In two(), after being called from one(): r = other(k);.

9.7.3 Using the Computer

1. A function.

Write a function to compute the formula

f(x) = (3x+ 1)
1
2

Write a main program that will sum f(x) for the values x = 0 to x = 1000 in steps of 50. Print out the
value of f(x) and the current sum at every step in a nice neat table.

2. Tables.

Write a program that contains two function definitions:

f1(n, x) = e
√
nx × sin(nx)

f2(n, x) = e
√
nx × cos(nx)

where n is an integer and x is a double. In the main program, input a value for x and restrict it to the
range 0.1 ≤ x ≤ 2.5. Print a neat table showing the values of f1(n, x) and f2(n, x) as n goes from 0 to
30. Print column headings above the first line. Show all numbers to three decimal places.

9.7. EXERCISES 283

3. Bubbles.

Modify your program from computer exercise 3 in Chapter 7; change the bubble() function so that it
takes both σ and r as parameters. Then change the main() function to ask the user to enter a value for σ
as well. Define an error function that prints a message “Input out of range.” Use it to screen out values
of σ less than 0.001 or greater than 0.003 lb/ft and values of r less than 0.0002 or greater than 0.015 ft.
Call this function from main().

4. An arithmetic series.

Each term of an arithmetic series is a constant amount greater than the term before it. Suppose the
first term in a series is a and the difference between two adjacent terms is d. Then the kth term is
tk = a+ (k − 1)d. Write a function term() with three parameters, a, d, and k, that will return the kth
term of the series defined by a and d. Use type long int for all variables. Write a program that prompts
the user for a and d, then prints the first 100 terms of the series, with 5 terms on each line of output,
arranged neatly in columns. Quit early if integer overflow occurs.

5. A geometric series.

A geometric progression is a series of numbers in which each term is a constant times the preceding term.
The constant, R, is called the common ratio. If the first term in the series is a, then succeeding terms will
be aR, aR2, aR3, . . . The kth term of the series will be tk = aRk−1. Write a function term() with three
parameters (a, R, and k) that will return the kth term of the series defined by a and R. Use type double
for all variables, since the terms grow large rapidly when R is greater than 1. Write a main program that
prompts the user for a and R, then prints the terms of the series they define until either 50 terms have
been printed, 5 terms per line, or floating-point overflow or underflow occurs.

6. Torque.

Given a solid body, the net torque T (Nm) about its axis of rotation is related to the moment of inertia
I and the angular acceleration acc (rad/s2) according to the formula for the conservation of angular
momentum:

T = I · acc

The moment of inertia depends on the shape of the body; for a disk with radius r, it is

I = 0.5mr2

(a) Write a function named moment() to calculate and return the moment of inertia of a solid disk. It
should take two parameters: the radius and mass of the disk.

(b) Write a work() function that will prompt the user to enter the radius, mass, and angular acceleration
of a disk. Limit the inputs to be within these ranges:

0.093 ≤ r ≤ 0.207

0.088 < m ≤ 11

Compute and print the torque of the disk, calling moment() to compute I first.

(c) Write a main program that will allow the user to compute several torques.

7. An AC circuit.

An AC circuit that you have designed is operating at a voltage V (rms volts) alternating at a frequency
f (cyc/s). It is constructed of a capacitor C (farads), inductor L (henrys), and a resistor R (ohms) in
series. Some important properties of this circuit are

Impedance: Z =

[
R2 +

(
2πfL− 1

2πfC

)2]0.5
(ohms)

Current: I = V
Z (rms amps)

Power used: Power = V×I×R
Z (watts)

284 CHAPTER 9. PROGRAM DESIGN

Write a function to compute an answer for each formula. Assume that f is a constant 120 cyc/s and
C = 0.00000001 farads. Then write a main program that will input values for V , L, and R and output the
impedance, current, and power used. Validate the inputs and ensure that they are within the following
ranges:

60 ≤ V ≤ 200

0.1 ≤ L ≤ 10

100 ≤ R ≤ 1000

8. Ice cream cones.
Suppose you are a professional party planner. Given the number of guests expected, you must plan a
menu and deliver enough food to serve the crowd. In this problem, you will write a program to calculate
how many packages of ice cream must be bought to fill one ice cream cone for each guest. The guest will
select the size of the cone (diameter, height). Your suppliers sell ice cream in containers of various sizes
and shapes.

Write a function named cone() that will prompt for and read the diameter, d, and the height, h, of the
cone to be used, then calculate and return the volume of ice cream needed to fill the cone. Assume that
the cone part will be filled entirely and there will be a hemisphere of ice cream on top. The formulas are:

Volume of cone =
π × d2 × h

12

Volume of hemisphere =
π × d3

12

Ice cream comes in cartons that are either the shape of a barrel or a box. Write a function named
carton() that will prompt for an alphabetic code, R for “barrel” or X for “box”. Use a switch statement
to execute the appropriate input and computation instructions, then return the volume of the selected
carton. For a barrel, input the diameter and height; for a box, input the length, width, and height. Use
one of these formulas:

Volume of barrel =
π × diameter2 × height

4

Volume of box = length× width× height

In your main program, prompt for and input the number of guests, then call your cone() function and
your carton() function. Finally, compute and display the number of cartons of ice cream you must buy
to fill all those cones. Use the ceil() function to round up to a whole number of cartons.

9. Wedding cake.
Another common party food is wedding cake. Given the number of guests expected at the wedding, write
a program to calculate how many layers your cake must have to serve everyone, and how much that cake
will cost.

The cake will be square and have two or more tiers. The top tier will be 6” wide and will not be eaten
at the wedding reception. Each other tier will be 2” thick and 4” wider than the tier above it. Guests
will be served from layers 2, 3, 4. . . ; each serving will be 2” square.

Write the following one-line functions:

• width(): calculate the width of a tier given the layer number (layer 1=6”, layer 2 = (6+4)”, layer
3 = (6+4+4)”, etc.).

• servings(): calculate the number of servings a tier will provide, given the layer number. Call
width().

• price(): the top tier and decorations cost $40.00; the other tiers cost $1.00 per serving. (This will
be more than $1.00 per guest because part of the bottom tier will be left over.)

9.7. EXERCISES 285

Write a function named layers() that will calculate how many tiers are needed. Hint: start with 1 tier,
which serves 0 people. Use a loop to call servings() and add tiers until you have accumulated enough
portions to serve the party. In general, you will end up with more than enough servings, since part of
the last tier will be left over.

In your main program, prompt for and read the number of guests, then call the layers() and price()
functions to calculate the size and cost of the cake. Print out these answers.

10. Scheduled time of arrival.
Airline travelers often want to know what time a flight will arrive at its destination in the local time of
the destination. This can be calculated given the following data:

• The scheduled takeoff time, in hours and minutes on a 24-hour clock. (Valid hours are 0. . . 23, valid
minutes are 0. . . 59)

• The scheduled duration of the flight, in hours and minutes.

• The number of time zone boundaries the flight will cross. This number should be negative if traveling
from East to West, positive if going West to East.

• Whether the international date line will be crossed. This number should be +1 if it is crossed traveling
from East to West, −1 if crossed while going West to East, and 0 if it is not crossed. Legal values are
in the range -23. . . 23.

Using top-down design, write a program with functions that will make this calculation for a series of
flights. For each flight, your program must input these data values from the user and print the scheduled
time at which the flight should arrive at its destination. This time is calculated as follows:

• Starting with the takeoff time, add or subtract an hour for each time-zone change.

• Then add the duration of the flight to this time.

• Finally, adjust the time by adding or subtracting a day if the flight crossed the international date line.

• Use integer division and the modulus operator to convert minutes to hours + minutes, and hours to
days + hours.

Print the local time of arrival using a 24-hour clock. Also print -1 day if the flight will land the day
before it took off or +1 day if it will land the day after it took off (both are possible).

Suggestion: Write a function that will input, validate, and return one integer. It should have two integer
parameters: the minimum and maximum acceptable values for the input.

286 CHAPTER 9. PROGRAM DESIGN

Chapter 10

An Introduction to Arrays

The data types we have studied so far have been simple, predefined types and variables of these types are used
to represent single data items. The real power of a computer language, however, comes from its ability to
define complex, multipart, structured data types that model the complex properties of real-world objects. For
example, to model the periodic table of the elements, we would need a collection of 110 objects that represent
elements; each object would have several parts (name, symbol, atomic number, atomic weight, etc.). We call
such types compound types or aggregate types. An array is an aggregate whose parts are all the same type.
In this chapter, we study how to define, access, and manipulate the elements of an array. The last half of the
chapter presents simple, important array algorithms.

10.1 Arrays

In many applications, each data item is processed once, just after it is read, and never needs to be used again.
In such programs, an array can be used to store the data, but it is not necessary. In contrast, some programs
must read all the data, perform a calculation, then go back and process the data again. In these programs, we
must store all the data between reading it and reprocessing it.

Consider the problem of assigning grades to a class based on the average score of an exam. If we were
computing only the exam average, this could be done without storing the data in an array; all that is needed is
a summation loop. However, to assign a grade, we must have both the exam score and the average. The scores
must be processed once to compute the average, then we must go back and reprocess the scores to assign the
grades. In between we need to store the values.

We could do this using individual variables. For instance, in the example of computing the average of
three numbers in Figure 2.7, we used three separate variables to hold the numbers. While this works well for
only three numbers, it does not work on larger data sets. Imagine how tedious it would be to write a scanf()
statement and a formula with many variable names. We can solve this problem by using an array. For example,
a program to compute the average temperature over a 24-hour period might store 24 temperature readings in
an array named temperature. An array used to determine the average high temperature for one year would
have 365 (or 366) entries, each containing a daily high temperature.

An array is a consecutive series of variables that share one variable name. We will call these variables
the array slots; the data values stored there are called the array elements. The number of slots in a one-
dimensional array is called the array length. Arrays with two or more dimensions also can be defined; these
will be studied in Chapter 18. The variables, or slots, that form an array have a uniform type called the base
type.

An array object, as a whole, is given a name. We can refer to the entire array by this name or to an
individual slot by appending a number in square brackets to the name. This number is called the subscript .
A subscript is an integer expression enclosed in square brackets that, when written after an array name,
designates a particular slot in the array.

In C, all arrays start with slot 0 (rather than 1) because it is easier and more efficient for the system to
implement. This means that the first element in an array named ary would be called ary[0]; the next one
would be ary[1]. If this array had six elements, the last one would be ary[5].

287

288 CHAPTER 10. AN INTRODUCTION TO ARRAYS

?
pressure

? ? ? ?
pressure[0]
1000

pressure[1]
1004

pressure[2]
1008

pressure[3]
1012

pressure[4]
1016

memory addresses

float pressure [5] ;

 lengthnamebase type

Figure 10.1. Declaring an array of five floats.

10.1.1 Array Declarations and Initializers

Declarations. An array variable is declared and initialized very much like a simple variable. The array
declaration starts with the base type, which can be any type—simple or compound. Thus, we can have an
array of ints, an array of chars (also known as a string), or even an array of arrays. Following the base type
in the declaration is the array name and a pair of square brackets enclosing the length, which must be an
integer constant or an integer constant expression (an expression with only constant operands). The length
determines the number of slots in the array. Figure 10.1 shows the declaration for an array named pressure
containing five floats. This creates a series of five float variables that we can refer to as pressure[0],
pressure[1], pressure[2], pressure[3], and pressure[4]. These five floats will be stored in a contiguous
set of memory locations with pressure[0] at the location with the lowest memory address, 1000, in this case.
In later chapters, the address of each slot may also be of interest; if so, we write the address above or below
the slot, as shown in Figure 10.1.

To diagram an array, we draw a row of connected boxes that are the right size for the base type. We write
the name of the array above and the subscripts below this row. If there is an initializer, as in Figure 10.2, we
copy the initial values into the boxes. Otherwise, as in Figure 10.1, we leave them blank or write a question
mark.

Initial values. An array can be declared with no initial values, like the array named pressure in Figure 10.1.
The contents of an uninitialized array are as unpredictable as ordinary variables.1

Alternatively, it may have an array initializer, which is a list of values enclosed in curly brackets. The
values will be stored in the array slots when the array is created, as illustrated in Figure 10.2. The values in
the initializer list must be constants or constant expressions. The types of values in the initializer must be
appropriate for the base type of the array.2

If an initializer is given, the array length may be omitted from the square brackets. The C translator
will count the number of initial values given and use that number as the length; exactly enough space will be
allocated to store the given values. Note the absence of the length value in the declaration for temperature in
Figure 10.3.

1Global arrays and static local arrays are initialized to 0 values.
2The initializer type must match or be coercible to the array base type.

3 18 76 -2 0
temps

 temps[0] temps[1] temps[2] temps[3] temps[4] temps[5]
17

short int temps [6] = { 3, 18, 76, -2, 0, 17 } ;

 lengthnamebase type initializer (optional)

Figure 10.2. An initialized array of short ints.

10.1. ARRAYS 289

inventor
y 1 0 0 0 0 0short int inventory [6] = {1};

[0] [1] [2] [3] [4] [5]

age

short int age [6] ;

base
type

 lengthname initializer (optional)

[0] [1] [2] [3] [4] [5]
temperature

3 18 76 -2 0 17
[0] [1] [2] [3] [4] [5]

0 0 0 0 0 0int instock [6] = {};

[0] [1] [2] [3] [4] [5]

instock

short int temperature [] = {3, 18, 76, -2, 0, 17};

Figure 10.3. Length and initializer options.

What if both a length and an initializer are given and the sizes do not match? This is an error if the
initializer contains too many values; the compiler will detect this error and comment on it. However, if an
initializer list is too short, it is not an error. In this case, the values provided are used for the first few array
slots and the value 0 is used to initialize all remaining slots. The declaration for inventory on the third line
in Figure 10.3 illustrates an initializer that is shorter than the array. It also is possible to initialize an entire
array to zeros by supplying an empty set of brackets, as in the initializer for instock in Figure 10.3.

Arrays of characters. There are two ways to initialize an array of characters: with a comma-separated
series of char literals, or with a string literal, as shown in Figure 10.4. It is certainly much easier to use a one
string literal than to write a lot of pairs of single quote marks. Note, however, that the string initializer puts
one extra character into the array that is not visible in the code: a null character that marks the end of the
string. This will be explained in more detail in Chapter 12.

10.1.2 The Size of an Array

Two different aspects of an array’s size are important: its length and the total number of bytes of memory
required to store it. When we use sizeof with an array variable, we get the number of bytes, which is the
product of the array’s length and the size of one element of its base type.

While knowing the number of slots is necessary to write an array declaration, a programmer will not always
know the size of the array, because that depends on the size of the base type, which may vary from one
machine to another. The program in Figure 10.5 shows the sizes of the arrays declared in Figures 10.1 and
10.2, and two arrays of chars. An output from this program is

pressure: sizeof(float) is 4 * length 5 = sizeof array 20
temps: sizeof(short) is 2 * length 6 = sizeof array 12

char vowels[] = {'a','e','i','o','u'};
operators

'+' '-' '*' '/' '%' '\0'
[0] [1] [2] [3] [4] [5]

char operators[] = { "+-*/%" };

vowels

'a' 'e' 'i' 'o' 'u'

Figure 10.4. Initializing character arrays.

290 CHAPTER 10. AN INTRODUCTION TO ARRAYS

#include <stdio.h>

#define DIMP 5 // Lengths of the arrays.

#define DIMT 6

#define DIMV 3

int main(void)

{

float pressure[DIMP] = { .174, 23.72, 1.111, 721.2, 36.3 };

short int temps[DIMT] = { 3, 18, 76, -2 };

double vec2[DIMV] = { 2.0, 0.0, 1.0 };

char vowels[] = ’a’,’e’,’i’,’o’,’u’;

char operators[] = "+-*/%";

printf(" pressure: sizeof(float) is %i * length %i ="

" sizeof array %i \n", sizeof(float), DIMP, sizeof(pressure));

printf(" temps: sizeof(short) is %i * length %i ="

" sizeof array %i \n", sizeof(short), DIMT, sizeof(temps));

printf(" vec2: sizeof(double) is %i * length %i ="

" sizeof array %i \n", sizeof(double), DIMV, sizeof(vec2));

printf(" vowels: sizeof(char) is %li sizeof vowels is %li\n",

sizeof(char), sizeof(vowels));

printf(" operators: sizeof(char) is %li sizeof operators is %li \n",

sizeof(char), sizeof(operators));

return 0;

}

Figure 10.5. The size of an array.

vec2: sizeof(double) is 8 * length 3 = sizeof array 24
vowels: sizeof(char) is 1 sizeof vowels is 5
operators: sizeof(char) is 1 sizeof operators is 6

Often, the first portion of an array will hold data, while the last portion is not in use. This happens when
the array is intended to hold a variable amount of information and its length is set to the maximum length that
might ever be needed. Even in this case, the size returned by sizeof is the total amount of memory allocated
including both the portion in use and the unused portion. This is illustrated by the array temps in Figure 10.5.

When an array is passed as an argument to a function, (see Section 10.4) the size information does not
travel along with it. No operation in C will give us the actual length of an array argument inside a function.
If you apply sizeof to an array parameter, the result always will be the number of bytes needed to store the
starting address of the array. Unfortunately, an array-processing function frequently needs the information to
work properly. For this reason, the programmer, who knows the array’s length when it is declared, must make
the information available for use by every part of the program that operates on the array. One way to do this
is to declare the array length using a #define at the top of the program, as in our first several examples.

10.1.3 Accessing Arrays

The elements of an array can be accessed in two ways: by using pointers or by using subscripts. Both ways
are important in C and need to be mastered. Pointers often are used when the slots of an array will be used in
sequential numeric order, because this technique can lead to greater efficiency. While subscripts can be used
for this purpose, too, they are better at accessing the elements in a random order. Since pointer processing
techniques are harder to master than those based on subscripts, using pointers will be deferred until Chapter 16,
while subscripting is explained in this chapter.

10.1. ARRAYS 291

0 1 2

 vec2
0 1 2

2.0 0.0 1.0

vec2[0
] &vec2[1] vec2[k]

vec ? ? ?
short int k = 2 ;
double vec[3] ;
double vec2[3] = { 2.0, 0.0, 1.0 } ;

 each
element
 is a
 double

 vec and
vec2 each
have three
 elements

 initial values
 of the three
 elements
 of vec2

Figure 10.6. Simple subscripts.

Subscripts. Figure 10.6 shows how constant subscripts are interpreted. It shows two arrays named vec and
vec2, which represent vectors in a three-dimensional space. The first slot of vec2 is vec2[0] and represents
the x-component of the vector, containing the value 2.0. The y-component has the value 0.0 and is stored
in vec2[1], the shaded area in the diagram. In an object diagram, we use an arrow to represent an address.
The arrow in Figure 10.6 represents &vec2[1], the address of the shaded area. When both an ampersand
and a subscript are used, the subscripting operation is done first and the “address of” operation is applied to
the single variable selected by the subscript.3 These addresses are important when using arrays as function
arguments, as demonstrated in Section 10.4.

We also can use an expression involving a variable to compute a subscript (Figure 10.7). A subscript
expression can be as simple as a constant or as complex as a function call, as long as the final value is a
nonnegative integer less than the length of the array. The most frequently used subscript expression is a simple
variable name, which also is illustrated in Figure 10.6. The phrase vec2[k] means that the current value
of k should be used as a subscript for the array. Since k contains a 2 here, vec2[k] means vec2[2], which
contains the value 1.0. The flexibility and versatility of these subscript rules enables a variety of powerful
array-processing techniques.

Notes on Figure 10.7. Computed subscripts. Figure 10.6 demonstrates how we can use computed
subscripts. It depicts an array containing the ages of N members of a family: father, mother, and children, in
order of age. The array length is #defined. Often this is done so that it can be used for calculations throughout
the code yet modified easily if the program’s needs change.

The variable pos_mother is used here to store the position in the array of the mother. In the last line on
the left, the expression pos_mother+1 is used to find the age of the oldest child. Also, we often need to use the
subscript of the last element in an array. To compute this, we subtract 1 from the array length. Therefore,
age[N-1] is the age of the last (youngest) child in the family.

3Appendix B contains a precedence table that includes both subscript ([]) and address of (&) operators. Note that the
precedence of subscript is higher, and therefore, the subscript will be applied to the array name before the address operator.

64 60 34 32 29 20
age

0 1 2 3 4 5

age[N-1] =
age[5]

age[0]

age[pos_mother+1] =
age[2] 64

age_father

 34
age_oldest

age_youngest
 20

age[pos_mother] = age[1]

#define N 6
int age[N] = {64, 60, 34, 32, 29, 20};
int pos_mother = 1 ;
int age_father, age_oldest, age_youngest;

age_father = age[0];
age_youngest = age[N-1];
age_oldest = age[pos_mother+1]

/* slot 1 */

Figure 10.7. Computed subscripts.

292 CHAPTER 10. AN INTRODUCTION TO ARRAYS

This brief demonstration program shows how to do input, output, and computation with the elements
of an array.

#include <stdio.h>

#include <math.h>

int main(void)

{

double vec[3]; // A vector in 3-space.

double magnitude;

puts("\n Subscript Demo: The Magnitude of a Vector");

printf(" Please enter the 3 components of a vector: ");

scanf("%lg%lg%lg", &vec[0], &vec[1], &vec[2]);

magnitude = sqrt(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);

printf(" The magnitude of vector (%g, %g, %g) is %g \n",

vec[0], vec[1], vec[2], magnitude);

return 0;

}

Figure 10.8. Subscript demo, the magnitude of a vector in 3-space.

The example in Figure 10.8 declares an array variable named vec and shows simple input, computation,
and output statements that operate on the array elements.

Notes on Figure 10.8. Subscript demo, the magnitude of a vector.

First box: input into an array. When we call scanf() to read the value of a variable, we write & before
the variable’s name to refer to its address. Similarly, we can use & to refer to the address of a single slot of an
array. To read just one value into the first component, we would write scanf("%lg", &vec[0]);.

Second box: computation on array elements.
• We can use a subscripted array name like a simple variable name in any expression.

• Here, to compute the magnitude of a vector, we add the squares of the three components, take the square
root of the sum, and store the result in magnitude. The easiest and most efficient way to square a number
is to multiply it by itself.

Third box: output from an array.
• To print an array element, give the array name and the subscript of the element.

• You cannot print the entire contents of an array with just one format field specifier. Here, we use three
separate %g specifiers to print the three array elements. A loop would be used to print all the elements of
a large array,

• The output from two runs of this program is

Subscript Demo: The Magnitude of a Vector
Please enter the 3 components of a vector: 1 0 1

The magnitude of vector (1, 0, 1) is 1.41421

Subscript Demo: The Magnitude of a Vector
Please enter the 3 components of a vector: 1 2 0

The magnitude of vector (1, 2, 0) is 2.23607

10.2. USING ARRAYS 293

#include <stdio.h>

#define N 3

int main(void)

{

float dimension[N]; // Dimensions of a box.

float volume; // The volume of the box.

printf("\n Array Input Demo: the Volume of a Box \n"

" Please enter dimensions of box in cm when prompted.\n");

for (int k = 0; k < N; ++k) { // End loop when k reaches length of array.

printf(" > ");

scanf("%g", &dimension[k]);

}

volume = dimension[0] * dimension[1] * dimension[2] / 1e6;

printf(" Volume of the box (%g * %g * %g) is %g cubic m.\n\n",

dimension[0], dimension[1], dimension[2], volume);

return 0;

}

Figure 10.9. Filling an array with data.

10.1.4 Subscript Out-of-Range Errors

One important reminder and caution: It is up to the programmer to ensure that all subscripts used are legal.
C does not help you confine your processing to the array slots that you defined. C uses the subscript value to
compute a memory address called the effective address according to this formula:

effective_address = address of beginning of the array +
subscript× sizeof (base type of array)

If you use a subscript that is negative or too large, C will compute the theoretical “address” of the nonexistent
slot and use that address even though it will not be between the beginning and the end of the array. C does
absolutely no subscript range checking. The compiler will give no error comment and there will be no error
comment at run-time either. Your program will run and either access a memory location that belongs to some
other variable or attempt to access a location that does not exist.

10.2 Using Arrays

A common array processing pattern involves a counting loop, where the loop variable starts at 0 and stops
before N, the length of the array. The loop variable is used as a subscript to access each array element, in turn.
This kind of loop is seen again and again in programs that use arrays to process large amounts of data. Often,
one loop is used to read data into the array, another to process the data items, and a third loop to print them
all.

10.2.1 Array Input

The best way to read data into an array is with a for loop, where the loop counter starts at 0, increments
through the subscripts of the array, and ends at N, the declared length of the array. The loop does not try to
process slot N, which is past the end of an N-element array. This simple idiom is illustrated in Figure 10.9.

Notes on Figure 10.9. Filling an array with data.

294 CHAPTER 10. AN INTRODUCTION TO ARRAYS

This program is a modification of the vector magnitude program in Figure 10.8. It demonstrates how
an incorrect loop can destroy the value of a variable and result in unpredictable behavior.

#include <stdio.h>

int main(void)

{

int k; // Loop counter.

float v[3]; // A vector in 3-space.

float sum; // The sum of the squares of the components.

float magnitude;

puts("\n Subscript Demo: Walking on Memory");

printf(" Please enter one float vector component at each prompt.\n");

for (sum = 0.0, k = 0; k <= 3; ++k) { // Loop goes too far.

printf("\tv[%i]: ", k);

scanf("%g", &v[k]);

sum += v[k] * v[k];

}

magnitude = sqrt(sum);

printf(" The magnitude of vector (%g, %g, %g) is %g \n",

v[0], v[1], v[2], magnitude);

return 0;

}

Figure 10.10. Walking on memory.

Outer box: the for loop. Since the loop counter takes on the values from 0 to N and the loop ends when k
== N, all N array slots (with subscripts 0...N-1) will be filled with data.

Inner box: reading data into one slot. Within the loop, a scanf() statement reads one data value on
each iteration and stores it in the next array slot. Note that both an ampersand and a subscript are used in
the scanf() statement to get the address of the current slot.

Sample output.

Array Input Demo: the Volume of a Box
Please enter dimensions of box in cm when prompted.
> 100
> 100
> 100
Volume of the box (100 * 100 * 100) is 1 cubic m.

10.2.2 Walking on Memory

A loop that runs amok can cause diverse kinds of trouble. One common outcome is that variables that occupy
nearby memory locations are overwritten with information that was supposed to go into one of the array’s
slots. Afterward, any computation or output that uses these variables will be erroneous.

If you write a loop to print the values in an array and it loops too many times, you will start printing the
values stored adjacent to the array in memory. When storing data, you will start erasing other information
when the loop exceeds the array bounds. This is demonstrated by the program in Figure 10.10 (a modification
of the program in Figure 10.8), which reads input into an array named v. Figure 10.11 is a diagram of memory
for this program. It shows the variables and the memory addresses that a typical compiler might assign. The
array is colored gray.

The upper diagram in Figure 10.11 shows the values of the variables just after the third trip around the
loop. All the array slots have been filled, and k has been incremented to 3 and is ready for the loop exit test.

10.2. USING ARRAYS 295

These diagrams illustrate the contents of memory while processing the input sequence described in the
text.

After filling the array on the third trip around the loop:

kmagnitude sum age[0] age[2]age[1]

 1020 1016 1012 1008 1024 1028

0.0 1.0 2.05.0 3

After exceeding array bounds on the fourth trip around the loop:

k
magnitude sum age[0] age[2]age[1]

 1020 1016 1012 1008 1024 1028

0.0 1.0 2.05.0 0.03

Running amok, incrementing kbefore the fifth trip around the loop:

kmagnitude sum age[0] age[2]age[1]

 1020 1016 1012 1008 1024 1028

0.0 1.0 2.05.0 10.0

Figure 10.11. Before and after walking on memory.

However, since the test was written incorrectly (with a <= operator instead of a < operator), the loop does not
end.

The array has three slots, but the loop was written to execute four times, with subscripts 0 through 3. The
last time, the effective address calculated for v[k] actually is the address of k, and the input value, wrongly, is
stored on top of the loop counter. The output from this run had more lines than expected:

Subscript Demo: Walking on Memory
Please enter one float vector component at each prompt.

v[0]: 0.0
v[1]: 1.0
v[2]: 2.0
v[3]: 0.0
v[1]: 5.0
v[2]: -1.0
v[3]: 4.5

Segmentation fault

The middle diagram shows what happens during the next loop iteration, as the subscript goes beyond the
end of the array. The input value of 0.0 is stored in the variable that follows the array, which is the memory
location used for the loop counter. This destroys the value of the loop counter and leaves the input value in
its place. In this example, the input is 0, which then gets incremented to 1 by the for loop (bottom diagram).
The loop still does not terminate, because now k is 1. It continues taking input until some input value is stored
in k that satisfies the loop exit test or until an abnormal termination happens, as occurs here.

In this example, storing input on top of the loop counter causes unpredictable behavior that depends on
the data entered by the user. Usually, as in the output shown, the program crashes; other times it continues
and terminates normally but produces erroneous results. Be sure to check the limits of array processing loops
to minimize these problems.

Random locations and memory faults. Sometimes, a faulty subscript causes the program to try to use
a memory location that is not legal for that program to access; the result is an immediate hardware error (a
memory fault, bus error, or segmentation fault) that terminates the program. Usually, the system displays a
message to this effect, as was seen in the last program.

296 CHAPTER 10. AN INTRODUCTION TO ARRAYS

Problem scope: Given the ID number and two exam scores (midterm and final) for each student in
a class, compute the weighted average of the two scores. Also, compute the overall class average and the
difference between that and each student’s average.

Input: ID numbers will be long integers and exam scores will be integers.
Limitations: The class cannot have more than 16 students.
Formula: Weighted average = 0.45 × midterm score + 0.55 × final score
Output and computational requirements: All inputs should be echoed. In addition, for each

student, print the exam average and the difference between that average and the overall average for the
class, both to one decimal place. The overall exam average of the class should be printed using two decimal
places.

Figure 10.12. Problem specifications: Exam averages.

If a program continues to run after a subscript error, it generally produces erroneous output. The cause of
the errors may be difficult to detect because the value of some variable can be changed by a part of the program
that does not refer to that variable at all, and output based on the mistake may not occur until long after the
destructive deed. Prevention is the best strategy for developing working code. It is up to the programmer to
use subscripts carefully and ensure that every subscript is legal for its array. With this in mind, remember that

• Arrays start with subscript 0, so the largest legal subscript is one less than the number of elements in
the array.

• An input value must be checked before it can be used as a subscript. Negative values and values equal
to or larger than the array length must be eliminated.

• A counting loop that processes an array should terminate when the loop counter reaches the number of
items in the array.

10.3 Parallel Arrays

The next program (specified in Figure 10.12 and given in Figure 10.13) uses a set of parallel arrays, all of the
same length, to implement a table of data. Each array in the set represents one column of the table and each
array subscript represents one row of data. In this example, the first column is a list of student ID numbers.
Parallel to it are three other arrays containing data about the students. The data at subscript k in each of
these arrays corresponds to the student with subscript k in the ID array. This is illustrated by the declarations
and diagram in Figure 10.14.

When a table is implemented as a set of parallel arrays, the same variable is used to subscript all of them.
We can apply this principle here. A loop is used to select the array slots. For each slot, first, input is read into
three of the arrays at the selected position, then an average is calculated and stored in the fourth array. After
the input loop, we scan this last array to compute several more values.

Notes on Figure 10.13. Using parallel arrays.

First box: limiting the subscripts.
• Serious errors result from using a subscript beyond the end of the array. To avoid this, we check that the

class size is within the limits we are prepared to handle. If it is too large, we abort. We also abort if the
size is negative or 0, because these values are meaningless.

• If a class really had more than 16 students, this program would need to be edited to make MAX larger and
then recompiled, so we print an error comment and end execution gracefully.

Second box: the input phase.
• Our input loop counts from 0 up to the class size the user has entered. Since this count has been validated,

we can be sure that all array subscripts are legal.

• On each iteration we enter all the data for one student. Three numbers are read and stored in the corre-
sponding slots of the first three arrays.

10.3. PARALLEL ARRAYS 297

#include <stdio.h>

#define MAX 16

int main(void)

{

int n; // Number of students in class.

long id[MAX]; // Students’ ID numbers.

short midterm[MAX], final[MAX]; // Exam scores.

float average[MAX]; // Average of exam scores.

float avg_average; // Average of averages.

float diff; // Student’s average minus class average.

printf(" Exam average = .45*midterm + .55*final.\n"

" How many students are in the class? ");

scanf("%i", &n);

if (n > MAX || n < 1) {

printf("Size must be between 1 and %i.", MAX);

exit(1);

}

printf(" At each prompt, enter an ID# and two exam scores.\n");

for (int k = 0; k < n; ++k) {

printf("\t > ");

scanf("%li%hi%hi", &id[k], &midterm[k], &final[k]);

average[k] = .45 * midterm[k] + .55 * final[k];

}

for (avg_average = 0, k = 0; k < n; ++k) avg_average += average[k];

avg_average /= n;

printf("\nAverage of the averages = %.2f\n", avg_average);

puts("\nID num mid fin average +/- ");

puts("---------------------------------- ");

for (int k = 0; k < n; ++k) {

diff = average[k] - avg_average;

printf("%li %5hi %5hi %8.1f %6.1f \n",

id[k], midterm[k], final[k], average[k], diff);

}

puts("----------------------------------");

return 0;

}

Figure 10.13. Using parallel arrays.

298 CHAPTER 10. AN INTRODUCTION TO ARRAYS

This is a diagram of the memory for the program in Figure 10.13. A set of parallel arrays is used to represent
the exam scores and exam average for a class. A common subscript, k, is used to subscript all four arrays.
The maximum number of students this table can hold is 16, but this class has only 13 students, so the last
three array slots are empty.

#define MAX 16

int k;

int n;

long id[MAX];

short midterm[MAX];

short final[MAX];

float average[MAX];
13

n

k

 finalmidterm average

 80
 72
 97
 57
 88
 42
 75
 82
 91
 68
 82
 95
 51

 85
 68
 90
 66
 92
 61
 62
 81
 94
 80
 71
 97
 57

 82.8
 69.8
 93.2
 62.0
 90.2
 52.5
 67.8
 81.4
 92.7
 74.6
 75.9
 96.1
 54.3

 16MAX:

 7

 5

 3

 1

13

15

 0

 2

 6

 8

10

12

14

 9

11

 4

id

 825176
 825301
 824769
 826162
 824388
 825564
 825923
 823976

 826056
 826178
 825743

 824662
 824478

3

Figure 10.14. Parallel arrays can represent a table.

• Sometimes the input loop does only input and other loops are used to process the data. In this example,
the loop both reads the input and calculates the weighted average, which is part of a student’s record and
based directly on the input. This average is stored in the fourth array (the fourth column of the table).
Merging these actions leads to a slightly more efficient program. However, if the additional calculations are
lengthy, efficiency can be sacrificed for the added clarity of splitting the tasks into separate loops.

• The prompts and input process look like this:

Exam average = .45*midterm + .55*final.
How many students are in the class? 13
At each prompt, enter an ID# and two exam scores.

> 825176 80 85
> 825301 72 68
> 824769 97 90
> 826162 57 66
> 824388 88 92
> 825564 42 61
> 825923 75 62
> 823976 82 81
> 824662 91 94
> 824478 68 80
> 826056 82 71
> 826178 95 97
> 825743 51 57

• We will echo the input data later, along with calculated values.

Third box: the average calculation.
• We sum the weighted averages as the first step of computing the overall class average. This task also

could have been done as part of the input loop but was written as a separate loop because it has no direct

10.4. ARRAY ARGUMENTS AND PARAMETERS 299

connection to the input process or a single student’s record.

• We use a one-line for loop, because summing the values in an array is a simple job that corresponds to a
single conceptual action.

• Note how convenient the += operator is for summing the elements of an array. The /= operator provides a
concise way to say “now divide the sum by the number of students.”

• The output from this box is

Average of the averages = 76.40

Fourth and fifth boxes: the output phase.
• In the outer box, we print table headings before the output loop and print a line to terminate the table

after the loop.

• In the inner box, we print each student’s record by including one value from each of the parallel arrays and
a final value computed from the average array. Note that we use %f in the printf() format to make nicely
aligned columns.

• The input data is printed side by side with the final output to make it easier to check whether the compu-
tations are correct.

• The final output of the program is:

ID num mid fin average +/-

825176 80 85 82.8 6.3
825301 72 68 69.8 -6.6
824769 97 90 93.2 16.8
826162 57 66 62.0 -14.5
824388 88 92 90.2 13.8
825564 42 61 52.5 -24.0
825923 75 62 67.8 -8.6
823976 82 81 81.4 5.0
824662 91 94 92.7 16.2
824478 68 80 74.6 -1.8
826056 82 71 75.9 -0.5
826178 95 97 96.1 19.7
825743 51 57 54.3 -22.1

10.4 Array Arguments and Parameters

No data type is very useful in a programming language unless it can be used in a function call to pass information
into and out of a function. Therefore, we need to know how to write a function with an array parameter and
how to call such a function with an array argument. C does not permit a function to return an array value.4

Array arguments in C are handled differently from other types of arguments. When an int , a double,
or a single element from an array is passed to a function, its value is copied into the parameter variable that
has been created for the function. Technically, we say that arguments of simple types are passed by value.
However, when an array is passed to a function, it is passed by reference, that is, only the address of the first
slot of the array, not its entire list of values, is copied into the function’s memory area. This is similar to the
way that scanf() works. The address of a variable is passed to scanf(), which fills it with information from
the keyboard, and this information remains in the variable even after scanf() finishes.

Passing array arguments by reference permits a large amount of data to be made available to a function
efficiently (since the actual data are not copied) and also allows the function to store information into the array.
Therefore, a program can pass an empty array into a function, which then will fill it with information. When
the function returns, that information still is in the original array’s memory and can be used by the caller.

To call a function with an array argument, the caller simply writes the name of the array and does not
write a subscript or the square subscript brackets. Also, no & operator is used in front of the array name,

4However, it is possible to return a pointer to an array. This topic is deferred until a later chapter.

300 CHAPTER 10. AN INTRODUCTION TO ARRAYS

because the array name automatically is translated into its starting address. To declare the corresponding
array parameter, however, we use empty square brackets (with no length value). The length may be written
between the brackets but it will be ignored by the compiler. This is done in C so the function can be used with
arrays of many different lengths.

For example, if the actual argument were an array of doubles, a formal parameter named ara would be
declared as double ara[]. Within the function, the parameter name is used with subscripts to address the
corresponding argument values.

The next program illustrates the basic array operations described so far: input, output, access, calculation,
and the use of an array parameter. In it, the term FName means function name and AName means array name.
We introduce and demonstrate the use of three new forms of function prototypes that manipulate arrays:

• void FName(double AName[], int n);

A prototype of this form is used when the purpose of the function is to read data into the array or print
the array data. The get_data() function in the next example has this form; its prototype is

void get_data(double x[], int n);

This function takes two parameters, an array of doubles called x and an integer that gives the length of
the array. Since the declaration of the parameter x contains no length, we need a limiting value. This
can be the globally defined constant that was used to declare the array object. Often, though, we do not
use the entire array, and a parameter is used to communicate the amount of the array currently in use.
The get_data() function fills the array with input values that remain in it after the function returns.
This is one way of returning a large number of values from a function to the calling program. Since there
is no other return value, the return type is declared as void.

• double FName(double AName[], int n);

A prototype of this form is used when an array contains data and we wish to access those data to calculate
some result, which then is returned. The function named average() in the next example has this form;
its prototype is

double average(double x[], int n);

It again takes two parameters, the array of doubles and the current length of the array. The function
calculates the average (mean) of those values and returns it to the caller via the return statement.
Therefore, the function return type is declared as double.

• double FName(double AName[], int n, double Arg);

We use a prototype of this form when we need both an array of data and another data value to perform
a calculation. The function named divisible() in the next example has this form; its prototype is

int divisible(int primes[], int n, int candidate);

It takes three parameters, an array of prime numbers, its length n, and the candidate number we wish
to test for primality. The numbers in the array are used to test the candidate; the answer will be true
(1) or false (0).

10.5 An Array Application: Prime Numbers

The next application is a prime number generator that illustrates the use of arrays and array parameters. The
task specifications are given in Figure 10.15, the main program in Figure 10.16, and a function in Figure 10.17.

Notes on Figure 10.16. Calculating prime numbers.

First box: prototype.
• This prototype follows the third pattern discussed above: the parameters are an array, its length, and

another value that must be used with the array.

• The divisible() function compares the candidate number to the numbers in the array. If the candidate
is divisible by anything in the array, true (1) is returned. Otherwise it is non divisible (prime), so false (0)
is returned.

10.5. AN ARRAY APPLICATION: PRIME NUMBERS 301

Problem scope: Print a list of all prime numbers, starting with 2, and continuing until MANY primes have
been printed. A prime number is an integer that has no proper divisors except itself and 1.

Constant: MANY, the number of primes to be found and printed.

Restrictions: MANY must be small enough that an array of MANY integers can fit into memory and the last
prime calculated is less than the maximum integer that can be represented.

Input: None.

Output required: A neat list of primes, one per line.

Figure 10.15. Problem specifications: A table of prime numbers.

This main program calls the functions in Figure 10.17. It calculates and prints a table of the first MANY
prime numbers. Strategy: identify prime numbers in ascending order and print them. Save each prime in a
table and use them all to test the next number in sequence.

#include <stdio.h>

#define MANY 3000

void print_table(int primes[], int num_primes);

int divisible(int primes[], int n, int candidate); // Is it nonprime?

int main(void)

{

int k; // Integer being tested.

int primes[MANY]={2}; // To begin, put the only even prime in table.

int n = 1; // Number of primes currently in table.

printf("\nA Table of the First %i Prime Numbers\n", MANY);

for (k = 3; n <= MANY; k += 2) { // Test the next odd integer.

// Quit when table is full.

if (!divisible(k, primes, n)) { // If it is a prime...

primes[n] = k; // ... put it in the table...

++n; // ... and count it.

}

}

print_table(primes, MANY); // Print table of primes.

return 0;

}

Figure 10.16. Calculating prime numbers.

302 CHAPTER 10. AN INTRODUCTION TO ARRAYS

Second box: the table of primes.
• The table will be filled in with prime numbers. The list will be generated in order by testing every possible

odd number, starting with 3. As primes are discovered, we store them in the table. To test each integer,
we use the previously computed portion of the table.

• We choose an arbitrary constant for the length of this table. Computing more primes requires more time and
storage space. This method is limited by the space available and the largest integer that can be represented
in the ordinary way. The latter limit usually occurs first.

• The first prime, and the only even prime, is 2. We initialize the first slot in the table to 2 so that the
computation loop can be limited to testing odd numbers. The rest of the prime table will be initialized to
0.

• We already have stored one prime in the table, so we initialize n to 1. It will be incremented each time a
new prime is found.

Third box: filling the table.
• We use a for loop that starts at 3 and counts by twos to test all the odd numbers.

• This is a very unusual loop. While we initialize k and increment it each time around the loop, we use n, the
number of primes, to end the loop. We want to continue searching for primes until the table is filled; that
is, n==MANY. Since we do not know how big k will be at that time, we do not use k to terminate the loop.

Inner box: calling the function to test for primality.
• By definition, N is prime if it has no divisors except itself and 1. If N did have a divisor, it would have to

have two, and one of them would have to be less than or equal to
√
N . Also, if N did have a divisor, D,

either D would be a prime number or D itself would have at least two other divisors smaller than itself.
Thus, we can show that N is a prime by showing that it is not divisible by any prime less than or equal to√
N .

• If the divisible() function returns 1 (true), k is not a prime. If it returns 0 (false), we put k into the table
and increment n.

Last box: printing the table. The output is printed by calling print_table(). The first and last portions
of it are

A Table of the First 3000 Prime Numbers
2
3
5
7
9

11
13
15
17
19

......
5993
5995
5997
5999

Notes on Figure 10.17. Functions for the prime number program. The divisible() function can
identify primes up to the square of the largest prime currently stored in the table. Its parameters are candidate
(a number to test), primes (a table of primes), and n (the current length of the table).

10.5. AN ARRAY APPLICATION: PRIME NUMBERS 303

These functions are called from Figure 10.16.

// ---

// Test candidate number for divisibility by primes in the table.

// Return true if a proper divisor is found, false otherwise.

int

divisible(int primes[], int n, int candidate) {

int last = (int) sqrt(candidate);

int found = 0; // Initially false, no divisor has been found.

// Divide by every prime < square root of candidate.

for (int m = 0; m < n && primes[m] <= last; ++m) {

if (candidate % primes[m] == 0) {

found = 1; // Set to true; divisor has been found.

break;

}

}

return found;

}

// ---

// Print the list of prime numbers, one per line.

void

print_table(int primes[], int num_primes)

{

for (int m = 0; m < num_primes; m++) printf("%10i\n", primes[m]);

printf(" ---------------------\n");

}

Figure 10.17. Functions for the prime number program.

First and third boxes: the termination condition.
• We define a variable of type int, whose value will be returned later as the result of the function. We

initialize the variable to 0 (false) and later set it to 1 (true) if we find what we are searching for; that is, a
number that evenly divides the candidate.

• We return the value of found after the search either succeeds or exhausts the data in the table.

• This is a common control pattern and especially useful when several tests must be made and any one of
them could terminate processing.

Second box: the search loop.
• We use the modulus operator to test whether one number is divisible by another; a is divisible by b if the

remainder of a/b is 0; that is, if a%b == 0.

• To test a candidate number, we divide it by all the numbers in the table up to the square root of the
candidate and leave the search loop with a break statement the first time we find a proper divisor.

• If no divisor is found, one of two conditions will terminate the loop: Either we have tested every prime in
the table or the next prime in the table is greater than the square root of the candidate.

304 CHAPTER 10. AN INTRODUCTION TO ARRAYS

10.6 Searching an Array

A common application of arrays is to store a table of data that will be searched, and possibly updated repeatedly,
in response to user inputs. In the noncomputer world, a table has at least two columns: a column of index
values and one or more columns of data. For example, in a periodic table of the elements, the atomic numbers
(1. . . 109) are used as the index column, then the element names, atomic weights and chemical symbols are
data columns. If we use the same data for other purposes, a different column, such as the name, might be
chosen as the index column.

A table can either be sorted or unsorted. The data in a sorted table are arranged in ascending or
descending order, according to some comparison function defined on the values in the index column. For
example, a periodic table is sorted in ascending order by the atomic number. A dictionary is sorted in ascending
alphabetic order. The typical university course catalog is sorted in ascending order by department code, and
within a department, by course number.

To implement a table in the computer, we can use either a set of parallel arrays or an array of structures5.
When we implement a table as a set of parallel arrays, we use one array to represent the index column and
one more for each data column in the table.

As discussed in Chapter 6, a typical search loop examines a set of possibilities, looking for one that
matches a given key value. A sequential search of a table examines the index column for an entry that matches
the key, one item after another. In every table-searching application, we find the following elements:

• A table, consisting of an index column and one or more data columns.

• A search key, the input value that must be compared to the entries in the index column of the table.

• A comparison function that is defined for the base type of the array. With simple types, such as
numbers or characters, the == operator is appropriate. However, a programmer must define some other
comparison function to search an array whose base type is an aggregate type such as those defined in
Chapters 12 and 13.

• The position variable, the output from the search process, set to the subscript that identifies the value
in the index column matching the key value.

• A success or failure code, sometimes a separate output value, other times failure may be indicated by
setting the position variable to a value either too large or too small to be a legal subscript.

The next program example shows a search loop used for a simple application: recording bill payments in
an array of account information. Figure 10.18, gives the specification, Figure 10.19 is the main program, and
Figure 10.21 is the sequential search function implemented by a search loop.6

Notes on Figure 10.19. Main program for sequential search.

First box: prototypes for this application. The main program will call these three functions to do all
the work. The first two are more or less the same in every array application that works on parallel arrays: an
input function that fills the arrays and an output function that prints them.

Second box: modeling a table. We use a parallel-array data structure to implement a table. It has an
index column (ID) and one data column (owes). The maximum capacity of the table is defined at the top of
the program, (20 in this case) and the actual number of rows in the table will be determined at run time and
stored in n.

Third box: variables for the search. A sequential search function tries to locate a key value in an array.
If it is located, where will be used to store its position.

Fourth box and last box: input, echo, and final output. We call functions to read the input. In a
realistic program, the data would be input from a file rather than from the keyboard. With only minor changes,
the code in get_data can be changed to read the data from a file.

The output function is called twice: once to echo the input and again to print the results. When the output
code is written in a function, it is easy to use it more than once. This can be especially useful during debugging,
when one might wish to see the data in the array within the loop after every change.

5Structures are explained in Chapter 13. If a table is modeled as an array of structures, the structure has one member for
each column in the table. The array of structures usually is considered a better style because it is more coherent; that is, it
groups together all the values for a table entry. The relative merits of these two approaches are discussed in Chapter 13.

6Discussion of the binary search algorithm, which is more complex but much faster for sorted arrays, is deferred until
recursion is introduced in Chapter 19.

10.6. SEARCHING AN ARRAY 305

Problem scope: Starting with a list of payments that are due, record payment amounts and print a list of
account balances after recording the payments.

Inputs: Input will happen in two phases.
Phase 1. For each account, enter the account ID number and the initial amount due.
Phase 2. The payments will be entered. For each one, the ID number is entered first. If it is found in the
list of accounts, the user will be prompted for a payment amount.

Constants: ACCOUNTS must be defined as the maximum number of accounts that the company has simul-
taneously. The actual number of accounts can be smaller than this limit.

Output: For each account number entered in input phase 2, the position of that account in the list will be
displayed. At the end of Phase 2, a list of final balances will be displayed. If the bill was overpaid, this
balance will be negative.

Formulas: Each payment amount should be subtracted from the initial balance in the account.

Limitations: No attempt is made to validate payment amounts. ID numbers that are not in the list of
accounts will cause an error comment but otherwise have no effect.

Figure 10.18. Problem specifications: Recording bill payments.

Sample output up to this stage. The first block of output came from get_data(), the second block from
print_data().

Enter pairs of ID # and unpaid bill (two zeros to end):
31 2.35
7 3.19
6 2.28
13 1.09
22 8.83
38 13.25
19 5.44
32 6.90
25 1.70
3 41.
0 0

Initial List of Unpaid Bills:
ID Amount

[0] 31 2.35
[1] 7 3.19
[2] 6 2.28
[3] 13 1.09
[4] 22 8.83
[5] 38 13.25
[6] 19 5.44
[7] 32 6.90
[8] 25 1.70
[9] 3 41.00

10 items were read; ready for payments.

Fifth box: payments and account balances. We have read an ID number and are ready to process
a payment from that person. First, we must find the position of the person in the table; the call on
sequential_search() does this, and stores the answer in where.

306 CHAPTER 10. AN INTRODUCTION TO ARRAYS

If the ID is not found in the table, where will have a negative value. Otherwise, its value will be between
0 and n-1. We check this condition, and go on to input and process a payment if the search was successful.
Because this is a parallel-array data structure, the payment amount is subtracted from the bill at position
where in the owes array which corresponds to the person at position where in the ID array.

Sample output from this phase.

Enter ID number (zero to end): 31
ID 31 found in slot 0. Amount paid: 2.35
Enter ID number (zero to end): 25
ID 25 found in slot 9. Amount paid: 2

#include <stdio.h>

#define ACCOUNTS 20

int get_data(int ID[], float owes[], int nmax);

void print_data(int ID[], float owes[], int n);

int sequential_search (int ID[], int n, int key);

int main(void)

{

int n; // #of ID items; will be <=ACCOUNTS.

int ID[ACCOUNTS]; // ID’s of members with overdue bills.

float owes[ACCOUNTS]; // Amount due for each member.

int key; // ID number to search for.

int where; // Position in which key was found.

float payment; // Input: amount of payment for one ID#.

n = get_data(ID, owes, ACCOUNTS); // Input all unpaid bills.

printf("\nInitial List of Unpaid Bills:\n ID Amount\n");

print_data(ID, owes, n); // Echo the input

printf("\n%i items were read; ready for payments.\n\n", n);

for (;;) {

printf("Enter ID number (zero to end): ");

scanf("%i", &key);

if (key==0) break;

where = sequential_search(ID, n, key);

if (where<0) printf(" Item %i \t not found.", key);

else {

printf("\tID %2i \t found in slot %i. ", key, where);

printf(" Amount paid: ");

scanf("%g", &payment);

owes[where] -= payment;

}

}

printf("\n\nFinal Amounts Due:\n ID Amount\n");

print_data(ID, owes, n); // Print final amounts owed.

return 0;

}

Figure 10.19. Main program for sequential search.

10.6. SEARCHING AN ARRAY 307

// --

int // Actual number of data sets read.

get_data(int ID[], float owes[], int nmax)

{

int k; // Loop counter and array index

printf("Enter pairs of ID # and unpaid bill (two zeros to end):\n");

for (k=0; k<nmax; ++k) { // Don’t go beyond end of arrays.

scanf("%i%g", &ID[k], &owes[k]);

if(ID[k]==0) break; // No more data is available.

}

return k;

}

// --

void print_data(int ID[], float owes[], int n)

{

for (int k=0; k<n; ++k) { // Don’t read beyond end of ID array.

printf("[%2i] %2i %7.2f{\bk}n", k, ID[k], owes[k]);

}

}

Figure 10.20. Input and output functions for parallel arrays.

Enter ID number (zero to end): 13
ID 13 found in slot 3. Amount paid: 1
Enter ID number (zero to end): 38
ID 38 found in slot 5. Amount paid: 10
Enter ID number (zero to end): 0

Final Amounts Due:
ID Amount

[0] 31 0.00
[1] 7 3.19
[2] 6 2.28
[3] 13 0.09
[4] 22 8.83
[5] 38 3.25
[6] 19 5.44
[7] 32 6.90
[8] 3 41.00
[9] 25 -0.30

Termination. Both the get_data() function and the payment-processing loop terminate when a sentinel
value (an ID number of 0) is entered.

Notes on Figure 10.20. Input and output functions for parallel arrays.

Sequential array processing. These two functions and the one in Figure 10.21 follow a common pattern
used for processing an array sequentially. Each function uses a for loop to perform an operation (I/O or
calculation) on every array element, starting with the first and ending with the last. A programmer can use
arrays for a wide variety of applications by following this pattern and varying the operation.

The get_data() function.
• We use variable k with a for loop to process the array. We must declare k before the loop (not inside the

for’s parentheses) because the value of k is used after the end of the loop.

308 CHAPTER 10. AN INTRODUCTION TO ARRAYS

A simple sequential search function for an unsorted table.

int sequential_search(int ID[], int n, int key)

{

int cursor; // Loop counter and array index

for (cursor = 0; cursor < n; ++cursor) {

if (ID[cursor] == key) return cursor ;

}

return -1;

}

Figure 10.21. Sequential search of a table.

• Before entering the loop, we prompt the user to enter a series of data values. Within the loop, we use a
very short prompt to ask the user individually for each value. This is a clear and convenient interactive
user interface. During execution of get_data(), the user will see something like this:

Please enter data values when prompted.
x[0] = 77.89
x[1] = 76.55
x[2] = 76.32
x[3] = 79.43
x[4] = 75.12
x[5] = 64.78
x[6] = 79.06
x[7] = 78.58
x[8] = 75.49
x[9] = 74.78

• If we were reading data from a file, an interactive prompt would not be necessary.

• The variable k is used as the counter for the loop and also to subscript the array (the usual paradigm for
processing arrays). We initialize k to 0 and leave the loop when k exceeds the last valid subscript, based on
the current number of array slots that are in use.

• We also leave the loop if the user enters the sentinel signal: a zero ID number. Because we are reading
the ID and the amount owed with the same scanf(), a second number must be entered after the sentinel
value to “satisfy” the format. Our instructions say to enter two zeros, but the code does not test the second
number.

• On each repetition of the loop, we read one data value directly into &x[k], the kth slot of the array x. At
the end of each repetition, we increment k to prepare for processing the next array element. Each time
around the loop the variable k contains a different value between 0 and n-1; after n iterations, data fill the
first n array slots and the remaining slots still contain garbage.

• After the sentinel value has been read, we exit from the loop. At this time, the value of k is the number of
real data items that have been read and stored, excluding the sentinel. We return this essential information
to the caller, which will store it and use it to control all future processing on these arrays.

• When control returns to the caller, it can use the values stored in the array by the function.

Notes on Figures 10.21 and 10.22. Sequential search. This function assumes that the data are
unsorted and that all items must be checked before we can conclude that the search has failed. Two versions
are given, a simpler one with two return statements and a longer one with a status flag.

The function header. The parameters include elements required for a search algorithm: a table, the number
of items to be searched, and a search key. The table is a simple integer array containing n values. The return
value will be a failure code or the subscript of the key value in the array if it exists.

10.6. SEARCHING AN ARRAY 309

This is an alternative way to code a search function that uses only one return statement. To accomplish this
goal, we use a status flag.

int sequential_search(int ID[], int n, int key)

{

int cursor; // Loop counter and array index

int found = 0; // False now, becomes true if key is found.

for (cursor = 0; !found && cursor < n; ++cursor) {

if (ID[cursor] == key) found = 1; // true ;

}

return (found ? cursor-1 : -1);

}

Figure 10.22. Searching without a second return statement.

In the bill-payment application we use a pair of parallel arrays containing a list of account numbers and
the amount owed on each account. Most actions taken by the program (input, output) involve both arrays.
However, the arrays are treated differently when we search. Only the index column, in this case the ID array,
is passed to the search function.

Style. Some experts believe that programmers should never use two return statements in a function. This
slightly longer version of the search loop does the same job by using a status flag in place of the second return
statement.

First box: the status flag. To avoid using either a break statement or a second return statement, we
introduce a status flag named found. This is initialized to false (0) and will be set to true (1) within the search
loop if the key item is found.

Second box: the search loop. A counted loop is used to examine the data items. If a match is found for
the key, the loop terminates; otherwise, all n values are checked.

First inner box: the comparison. Since the base type of the array is int, we use the == operator to
compare each item to the key value. The search succeeds if the result is true (1).

Second inner box: Dealing with Success. If a match is found, we need to leave the loop. This is done in
different ways by our two versions of this function.
• Sometimes we abort a loop with a break statement. Here, we use return for the same purpose. It causes

control to leave both the loop and the function. The current item’s subscript is returned to the caller.

• We avoid using a second return statement tests by setting a status flag to true (1), indicating that the key
value has been found. Control does not leave the loop. It returns to the top of the loop and increments
cursor, making it one too large. The function return statement will have to compensate for this extra
increment.

Last box, Figure 10.21: Failure. If the loop goes past the last data item without finding a match, the
search has failed. Failure is indicated by returning a subscript of −1, a subscript that is invalid for any array,
and if often used to indicate error or failure.

Last box, Figure 10.22: Returning. This single return statement must handle both success and failure.
If the item was not found, we want to return −1 to indicate failure. If it was found, we must return the value
of cursor-1. The value of cursor is too largeby 1 because the for loop incremented it after found was set to
true and before found was tested to terminate the loop.

The little-used conditional operator provides a way to use a single return statement to return one thing or
another. It works like an if...else except that it is an expression, not a statement. Read the statement like
this: “If found is true, then return cursor-1 else return −1”.

310 CHAPTER 10. AN INTRODUCTION TO ARRAYS

#include <stdio.h>

#define ACCOUNTS 20

int get_data(int ID[], float owes[], int nmax);

int find_max(int ID[], int n);

int main(void)

{

int n; // #of ID items; will be <=ACCOUNTS.

int ID[ACCOUNTS]; // ID’s of members with overdue bills.

float owes[ACCOUNTS]; // Amount due for each member.

int where; // Position of maximum value.

n = get_data(ID, owes, ACCOUNTS); // Input all unpaid bills.

printf("\nLargest Unpaid Account:\n");

where = find_max(owes, n);

printf("\tID# %i owes $ %.2f\n", ID[where], owes[where]);

return 0;

}

Figure 10.23. Who owes the most? Main program for finding the maximum.

10.7 The Maximum Value in an Array

Finding the maximum value in an array is an easy but nontrivial task. The find_max() function presented
here scans the data array sequentially, like a search function, but it does not use a search key. To illustrate this
algorithm, we use the same parallel-array data structure that was used in Figure 10.19, and search the data
for the largest unpaid bill.

Notes on Figure 10.23. Who owes the most?

First box: Prototypes. The get_data() function is in Figure 10.21 and find_max is in Figure 10.24.

Second box: data declarations. We are using the same data structure as in the sequential search appli-
cation: a set of parallel arrays containing the ID numbers and unpaid balances of a set of up to ACCOUNTS
customers. We need n to store the actual number of customers that were input and where to store the position
of the customer with the largest bill.

int // Find the maximum value in an array.

find_max(float data[], int n)

{

int finger = 0; // Put your finger on the first value.

int cursor;

for (cursor = 1; cursor < n; ++cursor) {

if (data[finger] < data[cursor]) // If you find a bigger value...

finger = cursor; // ...move your finger to it.

}

return finger; // Your finger is on the biggest value.

}

Figure 10.24. Finding the maximum value.

10.8. SORTING BY SELECTION 311

Loop 1: update finger

Loop 1: compare

finger = 0 cursor = 1

3.19 2.282.35 1.09 1.705.44
Before the first scan. n = 6:

finger = 1 cursor = 1

3.19 2.282.35 1.09 1.705.44

finger = 1 cursor = 2

3.19 2.282.35 1.09 1.705.44

Loop 2: compare

finger = 1 cursor = 2

3.19 2.282.35 1.09 1.705.44

Loop 3: compare

finger = 1 cursor = 3

3.19 2.282.35 1.09 1.705.44

Loop 4: compare

finger = 1 cursor = 4

3.19 2.282.35 1.09 1.705.44

Loop 4: update finger

finger = 4
cursor = 4

3.19 2.282.35 1.09 1.705.44

Loop 5: compare

finger = 4 cursor = 5

3.19 2.282.35 1.09 1.705.44

The largest element is in slot 4.

Figure 10.25. The maximum algorithm, step by step.

Third box: doing the work. We call the find_max() function in Figure 10.24 to search for the largest value
in the array owes which contains n data items. The result is stored in where, and is then used to print out
both the biggest bill and the ID number of the customer who owes the most.

Notes on Figure 10.24. Finding the maximum value.

The function header. The find_max() function is called from main() in Figure 10.23. We only need two
parameters: the array to search and the length of that array.

First box: initialization. The idea is to scan the array sequentially, but at all times, to keep one “finger”
on the biggest value we have seen so far. To get started, we set finger to slot 0.

Second box: the search loop. To find the largest value in an array, we must examine every array element.
We start by designating the first value as the biggest-so-far, then scan start a sequential scan from array slot 1,
looking for something bigger. Whenever we find the value under the cursor is bigger than the one under the
finger, we update finger. When the loop ends, finger will be the position of the largest value. This process
is illustrated in Figure 10.25.

10.8 Sorting by Selection

A common operation performed on arrays is sorting the data they contain. Many sorting methods have been
invented: Some are simple, some complex, some efficient, some miserably inefficient. In general, the more
complex sorting algorithms are the most efficient, especially if the array is very long.

In this section, we look at selection sort, which can be used on a small number of items. It is one of the
simplest sorting methods, but also one of the slowest. Nonetheless, selection sort has the advantage that, if
you stop in the middle of the process, one part of the array is fully sorted, so it is a reasonable way to find the
either the largest or smallest few items in a long array.7

7A simple algorithm, insertion sort, has been shown to be the fastest sort of all when used on short arrays (fewer than
10 items). We present this algorithm in Chapter 16. The quicksort (discussed in Chapter 19) is a much better way to sort

312 CHAPTER 10. AN INTRODUCTION TO ARRAYS

The basic selection strategy has several variations: the data can be sorted in ascending or descending
order, the work can be done by using either a maximum or a minimum function, and the sorted elements can
be collected at either the beginning or the end of the array. In this section, we develop a version that sorts the
array elements in ascending order, by using a maximum function and collecting the sorted values at the end of
the array. At any time, the array consists of an unsorted portion on the left (initially the whole array) and a
sorted portion on the right (initially empty). To sort the array, we make repeated trips through smaller and
smaller portions of it. On each trip, we locate the largest remaining value in the unsorted part of the array,
then move it to the beginning of the sorted area by swapping it with whatever value happens to be there. After

moderate length and long arrays. Two other simple sorts, bubble sort and exchange sort, have truly bad performance for all
applications. They are not presented here and should not be used.

on trip #5
 n=6

on trip #4
 n=7

on trip #2
 n=9

on trip #6
 n=5

on trip #8
 n=3

on trip #7
 n=4

on trip #9
 n=2

on trip #3
 n=8

on trip #1
 n=10

where = 4

largest

largest

where = 4 largest

where = 4

largest

where = 9

where = 5

largest

largest

largest

largest

6.90

3.19

2.28

2.35

1.70

5.44

8.83 6.90 41.0013.253.19 2.282.35 1.09 1.705.44

8.83 6.90 41.0013.253.19 2.282.35 1.09 1.705.44

41.0013.25

8.836.90 41.0013.253.19 2.282.35 1.09 1.70 5.44

41.00

where = 1

where = 0

where = 2

where = 1

13.25

largest
8.838.83 6.903.19 2.282.35 1.09 1.70 5.44

8.836.90 41.0013.253.19 2.282.35 1.09 1.705.44

8.836.90 41.0013.253.19 2.282.35 1.09 1.70 5.44

8.836.90 41.0013.252.282.35 1.091.70 5.443.19

8.836.90 41.0013.252.28 2.351.09 1.70 5.443.19

8.836.90 41.0013.252.28 2.351.09 1.70 5.443.19

Sorted8.836.90 41.0013.252.28 2.351.09 1.70 5.443.19after trip 9

Figure 10.26. The selection sort algorithm, step by step.

10.8. SORTING BY SELECTION 313

Goal: Sort customer billing records in ascending order according to the amount owed. These records are
stored in a parallel-array data structure with two columns: ID number and amount owed. There are n

records altogether.

Input: ID numbers and amounts due for a set of customers.

Output: A list of customer records, in order, by the amount owed.

Algorithm: Use a selection sort, as follows:
Repeat the following actions n− 1 times:

1. Let where be the subscript of the maximum-valued element in the array between subscripts 0 and n-1.

2. Swap the element at position where with the element at position n-1. The swapped value will now be
in its proper sorted position.

3. Decrement n to indicate that there are now fewer unsorted items.

Figure 10.27. Problem specifications: Sorting the Billing Records

k trips, the k largest items have been selected and placed, in order, at the end of the array. After n− 1 trips,
the array is sorted. This process is illustrated in Figure 10.26.

A program to implement this algorithm is developed easily by a top-down analysis. A problem specification
is given in Figure 10.27.

10.8.1 The Main Program

A well-designed main program is like an outline of the process; it calls on a series of functions to do each phase
of the actual job. This kind of design is easy to plan, easy to read, and easy to debug. The sorting task has
three major phases: input (read the numbers), processing (sort them), and output (print the sorted list). For
each phase, the main program should call a function to do the job and display a comment that reports the
progress. Programs that contain arrays and loops often take a while to debug; during that time, generous
feedback helps the programmer identify the location and nature of the errors.

We start by writing the obvious parts of main(), borrowing elements from the previous programs (sequential
search and finding the maximum), where possible. Much can be borrowed, including

• Prototypes for the I/O functions that work with the parallel arrays (get_data() and print_data(),

• The skeleton of main(),

• Declarations within main() for the parallel-array data structure.

• Since the selection sort algorithm must find the maximum value in an array, we also include the prototype
for find_max().

Step 1: The obvious necessities.

#include <stdio.h>
#define ACCOUNTS 20

int get_data(int ID[], float owes[], int nmax);
print_data(ID, owes, n); // Print final amounts owed.
find_max(int ID[], int n); // Located largest key value in array.

int main(void)
{

int n; // #of ID items; will be <=ACCOUNTS.
int ID[ACCOUNTS]; // ID’s of members with overdue bills.
float owes[ACCOUNTS]; // Amount due for each member.
...
return 0;

314 CHAPTER 10. AN INTRODUCTION TO ARRAYS

get_data
 Fig 10.20

 main
Fig 10.29

 find_max
Fig 10.24

print_data
 Fig 10.20

sort_data
Fig 10.30

Array illustrations
in Figure 10.26

printfscanf
Array illustrations
in Figure 10.25

Specification in
Figure 10.27

printf

Figure 10.28. Call chart for selection sort.

}

Step 2: Input. At the position of the dots, we add calls on the input and output functions, following the
example of Figure 10.19.

n = get_data(ID, owes, ACCOUNTS); // Input all unpaid bills.
printf("\nInitial List of Unpaid Bills:\n ID Amount\n");
print_data(ID, owes, n); // Echo the input

Step 3: Processing. We invent the name sort_data() for the selection sort function. In general, the
function needs to know what array to sort and the length of that array. It rearranges the data within the array
and returns the sorted values in the same array, with no need for any additional return value. In this case,
we are sorting a pair of parallel arrays, so both arrays must be rearranged in parallel. Thus, the sort_data()
function must take both arrays as parameters. We write a prototype (at the top) and a call for this function
inside main():

void sort_data(int data[], float key[], int n);
...
sort_data(ID, owes, n);

Output. When sorting is finished, we need to output the sorted data. So we add another call on print_data()
at the end of main():

print_data(ID, owes, n); // The sorted data

A call chart for the overall program is given in Figure 10.28. The completed main() function is shown in
Figure 10.29.

10.8.2 Developing the sort_data() Function

We must start with a thorough understanding of the algorithm. This is illustrated in Figures 10.25 and
10.26 and defined carefully in Figure 10.27. Once the method is understood, we are ready to implement the
sort_data() function. (The code fragments that follow are assembled in Figure 10.30.) We begin with the
function skeleton and declare the variables mentioned in the problem specifications.

void sort_data(int data[], float key[], int n);
{

int where; ...
}

The loop skeleton and body. Step 2 of the specification calls for a process to be repeated n− 1 times to
sort n things. We write a for loop that implements this control pattern:

10.8. SORTING BY SELECTION 315

This program calls the sort function in Figure 10.30, and the input and output functions from Figure 10.21.

#include <stdio.h>

#define ACCOUNTS 20

int get_data(int ID[], float owes[], int nmax);

void print_data(int ID[], float owes[], int n);

void sort_data(int data[], float key[], int n);

int main(void)

{
int n; // #of ID items; will be <=ACCOUNTS.

int ID[ACCOUNTS]; // ID’s of members with overdue bills.

float owes[ACCOUNTS]; // Amount due for each member.

n = get_data(ID, owes, ACCOUNTS); // Input all unpaid bills.

printf("%i items were read; beginning to sort.\n", n);

sort_data(ID, owes, n);

puts("\nData sorted, ready for output");

print_data(ID, owes, n);

return 0;

}

Figure 10.29. Main program for selection sort.

for (start=n-1; start>0; --start) {
...

}

Now we need to write the body of the loop. We have a function that finds the maximum value in an array, so
we call it and save the result.

where = find_max(key, n);

Next, we must swap the large value at position where with the last unsorted value in the array, which is at
position start. Swapping takes three assignments, but since we are working on a parallel-array data structure,
identical swaps must be made on both arrays, for a total of six assignments. In the code below, the instructions
on the left swap the key array, those on the right swap the data array.

Also, on each repetition, we start at the high-subscript end of the unsorted array, that is, at slot n− 1. On
each repetition, one item is placed in its final position, leaving one fewer item to be sorted. So we decrement
n just before the end of the loop.

bigKey = key[where]; bigData = data[where];
key[where] = key[start]; data[where] = data[start];
key[start] = bigKey; data[start] = bigData;
--n;

This completes the algorithm and the program. We gather all the parts of sort_data() together in Figure 10.30.

Testing. We combined all of the pieces of the sort program, compiled it, and ran it on the file sele.in, which
contains the data listed in Figure10.31. The input is on the left and the corresponding output on the right.

316 CHAPTER 10. AN INTRODUCTION TO ARRAYS

This function is called from main() in Figure 10.29; it calls find_max() in Figure 10.24.

int find_max(float data[], int n); // Prototype not included by main().

void sort_data(int data[], float key[], int n)

{

int start; // End of unsorted data in the array.

int where; // Position of largest value in the key array.

int bigData; // For swapping the data column.

float bigValue; // For swapping the key column.

for (start=n-1; start>0; --start) {

where = find_max(key, n);

// Swap the two columns of the table in parallel.

bigValue = key[where]; bigData = data[where];

key[where] = key[start]; data[where] = data[start];

key[start] = bigValue; data[start] = bigData;

--n;

}

}

Figure 10.30. Sorting by selecting the maximum.

10.9 What You Should Remember

10.9.1 Major Concepts

Arrays and their use. An array in C is a collection of variables stored in order, in consecutive locations in
the computer’s memory. The array element with the smallest subscript (0) is stored in the location with the
lowest address. We use arrays to store large collections of data of the same type. This is essential in three
situations:
• When the individual data items must be used in a random order, as with the items in a list or data in a

table.

• When each data value represents one part of a compound data object, such as a vector, that will be used
repeatedly in calculations.

Input Phase Output Phase

Enter pairs of ID and unpaid bill (two zeros to end): Data sorted, ready for output
31 2.35 [0] 13 1.09
7 3.19 [1] 25 1.70
6 2.28 [2] 6 2.28
13 1.09 [3] 31 2.35
22 8.83 [4] 7 3.19
38 13.25 [5] 19 5.44
19 5.44 [6] 32 6.90
32 6.90 [7] 22 8.83
3 41. [8] 38 13.25
25 1.70 [9] 3 41.00
0 0

Figure 10.31. Input and output for selection sort.

10.9. WHAT YOU SHOULD REMEMBER 317

• When the data must be processed in separate phases, as in the problem from Figure 10.18. In this program,
all the account balances must first be read and stored. Then the stored data must be searched and updated,
using bill-payment amounts.

Parallel arrays. A multicolumn table can be represented as a set of parallel arrays, one array per column,
all having the same length and accessed using the same subscript variable. Multidimensional arrays also exist
and are discussed in Chapter 18.

Array arguments and parameters. An array name followed by a subscript in square brackets denotes one
array element whose type is the base type of the array. This element can be used as an argument to a function
that has a parameter of the base type. To pass an entire array as an argument, write just the array name with
no subscript brackets. The corresponding formal parameter is declared with empty square brackets. When the
function call is executed, the address of the beginning of the array will be passed to the function. This gives
the function full access to the array; it can use the data in it or store new data there.

Array initializers. C allows great flexibility in writing array initializers; we summarize the rules here:
• An array initializer is a series of constant expressions enclosed in curly brackets. These expressions can

involve operators, but they must not depend on input or run-time values of variables. The compiler must
be able to evaluate the expressions at compile time.

• If there are too many initial values for the declared length, C will give a compile-time error comment.

• If there are too few initial values, the uninitialized areas will be filled with 0 values of the proper type: an
integer 0, floating value 0.0, or pointer NULL.

• The length of an array may be omitted from the declaration if an initializer is given. In this case, the items
in the initializer will be counted and the count will be used as the length of the array.

Searching. Many methods can be used to search an array for a particular item or one with certain charac-
teristics. A sequential search starts at the beginning of a table and compares a key value, in turn, to every
element in the key column. The search ends when the key item is found or after each item has been examined.

The typical control structure for implementing a sequential search is a for loop that moves a subscript
from the beginning of the array to the end. In the body of this loop is an if...break statement that compares
the key value to the current table element.

The search can either succeed (find the key value) and break out of the loop or fail (because the key value
does not match any item in the table). A sequential search for a specific item is slow and appropriate for only
short tables. It is slightly more efficient when the table is in sorted order, because failure can be detected prior
to reaching the end of the table. However, binary search (see Chapter 19) is an even faster algorithm for use
with sorted data.

If the data are sorted according to the search criterion, shortcuts may be possible. However, a sequential
search is necessary when the order of the data in the array is unrelated to the criterion because all the data
items must be examined. For example, finding the longest word in a dictionary would require looking at every
word (a sequential search) because a dictionary is sorted alphabetically, not by word length.

Sorting. Locating a particular item in a table can be done much more efficiently if the information is sorted.
Many sort algorithms have been devised and studied; among the simplest (and slowest) is the selection sort.
It sorts n items by selecting the minimum remaining element n− 1 times and moving it to a part of the array
that will not be searched again. Other more efficient techniques such as the insertion sort (Chapter 16) and
the quicksort (Chapter 19) are examined later.

10.9.2 Programming Style

Usage.
• Use a defined constant to declare the length of an array. This way the use and the array declarations will

be consistent and easily changed if the need arises.

• A for loop typically is used to process the elements of an array. The values of the loop counter go from 0
to the length of the array (which is given by a defined constant or a function parameter); for example, for
(k=0; k<N; ++k) printf("%g ", volume[k]);. Note that this loop paradigm stops before attempting
to process the nonexistent element volume[N].

318 CHAPTER 10. AN INTRODUCTION TO ARRAYS

Names. Variable names such as j and k typically are used as array subscripts since they are commonly found
in mathematical formulas. However, when writing a program that sorts, it is very helpful to use meaningful
names for the subscript variables. You are much more likely to write the code correctly in the first place, and
then get it debugged, if you use names like cursor and finger rather than single-letter variable names such as
i and j.

Local vs. global. Constants should be declared globally if they are used by more than one function or if they
are purely arbitrary and likely to be changed. If a constant is used by only one function, it may be better to
declare it locally. However, a large set or table of such constants will incur large setup times each time the
function is called. These constants should be declared as static const values, which are only initialized once.

Don’t talk to strangers. Each object name used in a function should represent an object that fits into one
of the following categories:
• A global constant, #defined at the top of the program, or like NULL, in a header file.

• A parameter, declared and named in the function header.

• A local variable or constant, declared and named within the function (an object should be local if it is used
only within a function and does not carry information from one function to another).

• A global function whose prototype is at the top of the program or in a header file.

• A local function, declared within the function and defined after it (a function should be declared locally if
it is used only within that function. This does not cause any run-time inefficiency).

Modularity. We wrote a sort_data() function as a loop that calls the find_min() function. Within that
function is another loop. When written like this, the logic of the program is completely transparent and easily
understood. In many texts, this algorithm is written as a loop within a loop. This second form takes fewer
lines of code and executes more efficiently, because no time is spent calling functions. However, it is not so
easy to understand. Which form is better? The modular form. Why? Because it can be debugged more easily
and is less likely to have persistent bugs. Doesn’t efficiency matter? It often does, but if so, a better algorithm
(such as quicksort) should be used instead. It is a false economy to use bad programming style to optimize a
slow algorithm.

Sorted vs. unsorted. If the data we wish to search already are sorted, by all means we should take advantage
of this. If not, we need to decide whether to sort the data before searching. This issue will be addressed to
some extent in later chapters. However, it is a complex issue involving the data set size, how fast the data
set changes, which data structures and algorithms are used, and how many times a search will be performed.
The general topic of data organization and retrieval is the subject of dozens of books on data structures and
databases.

Software reuse. Do not waste time trying to reinvent the wheel. If a library routine meets your need, use it.
If you have previously written a function that does almost what you need, modify it as necessary. If someone
else has developed a solution for a certain task, such as sorting, go ahead and use it, after you have verified
that any assumptions it makes are satisfied by your data and structures.

10.9.3 Sticky Points and Common Errors

Array length vs. highest subscript. The number given in an array declaration is the actual number of slots
in the array. Since array subscripts start at 0, the highest valid subscript is one less than the declared length.
Often, though, there are more slots than valid data. This happens during an input operation and whenever
the total amount of data entered falls short of the maximum allowed. In such situations, another variable is
used to store the number of actual data elements in the array.

Subscript errors. Programmers accustomed to other languages often are surprised to learn that C does
absolutely no subscript range checking. If a subscript outside the defined range is used, there will be no error
comment from the compiler or at run-time. The program will run and simply access a memory location that
belongs to some other variable. For example, if we write a loop to print the values in an array and it loops too
many times, the program starts printing the values adjacent to the array in memory. At best, this results in
minor errors in the results; at worst, the program can crash.

10.9. WHAT YOU SHOULD REMEMBER 319

Caution: do not fall off the end of an array. Remember that C does not help you confine your processing
to the array slots that you defined. When you use arrays, avoid any possibility of using an invalid subscript.
Input values must be checked before using them as subscripts. Loops that process arrays must terminate when
the loop counter reaches the number of items in the array.

Ampersand errors. Arrays and nonarrays are treated differently in C. An array argument always is passed
to a function by address. We do not need to use an ampersand with an unsubscripted array name.

Array parameters. To pass an entire array as an argument, write just the name of the array, with no
ampersands or subscript brackets. The ampersand operator is not necessary for an array argument because the
array name automatically is translated into an address. The corresponding array parameter is declared with
the same base type and empty square brackets. A number can be placed between the brackets, but it will be
ignored.

Array elements as parameters. A single array element also can be passed as a parameter. To do this,
write the array name with square brackets and a subscript. If the function is expected to store information in
the array slot, as scanf() might, you must also use an ampersand in front of the name.

Sorting. Writing a sorting algorithm can be a little tricky. It is quite common to write loops that execute one
too many or one too few times. When debugging a sort, be sure to examine the output closely. Check that
the items at the beginning and end of the original data file are in the sorted file and that the output has the
correct number of items. Examine the items carefully and make sure all are there and in order. It is common
to make an error involving the first or last item. Test all programs on small data sets that can be thoroughly
checked by hand.

Parallel arrays. A table can be implemented as a set of parallel arrays. When sorting such a table, it is
important to keep the arrays all synchronized. If the items in one column are swapped, be sure to swap the
corresponding items in all other columns. Using an array of structures may solve this problem, but this solution
may have its own drawbacks, which we have discussed previously.

10.9.4 Where to Find More Information

• Arrays of strings are presented in Chapter 12, arrays of structures in Chapter 13 and arrays of functions
in Chapter 16.

• Dynamic allocation of arrays and arrays of pointers are found in Chapter 16.

• Pointers are introduced in Chapter 11 and the use of pointers to process arrays is explained in Chapter 16.

• Two dimensional arrays and their applications are covered in Chapter 18. Multidimensional arrays and
arrays of pointers to arrays are in the same chapter.

• Other sorting algorithms are presented in later chapters. Insertion sort is in Chapter 16; quicksort in
Chapter 19.

• Other array algorithms presented are: Binary search: Chapter 19, Shuffling a deck: Chapter 14, Gaussian
elimination: Chapter 18, Simulation: Chapter 16.

10.9.5 New and Revisited Vocabulary

These are the most important terms and concepts presented in this chapter:
aggregate type
array
base type
array slot
array element
array length
size of an array
subscript
array declaration
array initializer

constant expression
parallel arrays
effective address
walking on memory
memory error
array argument
array parameter
sequential array processing
prime number
divisibility

status flag
sequential search
search loop
key column
data column
search key
sorted table
position variable
finding the minimum
selection sort

320 CHAPTER 10. AN INTRODUCTION TO ARRAYS

10.10 Exercises

10.10.1 Self-Test Exercises

1. Which occupies more memory space, an array of 15 short ints or an array of 3 doubles? Explain your
answer.

2. An array will be used to store temperature readings at four-hour intervals for one day. It is declared
thus: float temps[6];

(a) Draw an object diagram of this array.

(b) What is its base type? Its length? Its size?

(c) Write a loop that will read data from the keyboard into this array.

(d) Write an if statement that will print freezing if the temperature in the last slot is less than or
equal to 32◦F and above freezing otherwise.

3. Array and function declarations.

(a) Write a declaration with an initializer for the array of floats pictured here.

ff
1.9 17.2 -3.12.5 0

[0] [1] [2] [3] [4]

(b) Write a complete function that takes this array as a parameter, looks at each array element, and
returns the number of elements greater than 0.

(c) Write a prototype for this function.

(d) Write a scanf() statement to enter a value into the last slot of the array.

4. In the indicated spots below, write a prototype, function header, and call for a function named CHKBAL
that computes and returns the balance in a checking account. Its parameters are an initial account
balance and an array of check amounts. You need not actually write a whole function to compute the
new account balance; just fill in the indicated information.

#define X 5
// insert prototype here

int main(void)
{

float check_amounts[X]; // $ amounts of checks
float start_balance; // balance before checks
float end_balance; // balance after checks
// put call here

}
// put function header here

5. The following are two declarations and a while loop.

int ara[13] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
int k = 12;
while (k > 0) {

printf("%2i: %i \n", k, ara[k]);
k -= 2;

}

(a) What is the output?

10.10. EXERCISES 321

(b) Rewrite the code using a for loop instead of the while loop.

6. Given the following declarations, the prototypes on the left, and the calls on the right, answer good if a
function call is legal and meaningful. If there is an error in the call, show how you might change it to
match the prototype.

int j, a[5];
float f, flo ;
double x, dub[4];

(a) double fun(double d[]); x = fun(dub[]);

(b) void fill(double d); x = fill(dub);

(c) int fix(float f) ; fix(flo[5]);

(d) int hack(int a[]); j = hack(a);

(e) double q(double d[], int n); x = q(dub[0], a[0]);

7. Use the following definitions in this problem:

#define LIMIT 5
int j;
double load[LIMIT];

(a) Draw an object diagram for the array named load; identify the slot numbers in your drawing. Also
show the values stored in it by executing the following loop:

for (j=0; j<LIMIT; j++) {
if (j % 2 == 0) load[j] = 10.2 * (j + 1);
else load[j] = (j + 1) * 2.5;

}

(b) Trace the following loop and show the output exactly as it would appear on your screen. Show your
work.

for (j = 0; j < LIMIT; ++j) {
if (j <= LIMIT / 2) printf("\t%6.3g", load[j]);
else printf("\t%5.2f", load[j] -.05);

}

8. The following diagram shows an array of odd integers. Declare and initialize a parallel array of type int
that contains 1 (true) in the slot corresponding to every prime number, and 0 (false) for the nonprime
numbers.

17 231915 21 255 1173 9 13

9. Consider an array containing six data items that you must sort using the selection sort algorithm. How
many data comparisons does the algorithm perform in the find_min() function? How many times is
find_min() called, and how many comparisons are made (total) during all these calls? How many (total)
data swaps does sort_data() perform?

10. Suppose you are searching for an item in a sorted array of N items. Using a sequential search algorithm,
how many items are you likely to check before you find the right one? Is this number the same whether
or not the item is present in the array? Express the answer as a function of N .

11. The selection sort in the text generated a list of values in ascending order. How would you change the
algorithm to generate numbers in descending order?

12. Consider the following list of numbers: 77, 32, 86, 12, 14, 64, 99, 3, 43, 21. Following the example in
Figure 10.24, show how the numbers in this list would be sorted after each pass of the selection sort
algorithm.

322 CHAPTER 10. AN INTRODUCTION TO ARRAYS

10.10.2 Using Pencil and Paper

1. Draw a flow diagram for the main program in Figure 10.16 and for the divisible() function in Fig-
ure 10.17 (you may omit the details of the other function). In your diagram, show how control flows from
one function to the other and back again.

2. An array will be used to store the serial numbers of the printers in the lab. It is declared thus:
long printer_ID[10];

(a) Draw an object diagram of this array.

(b) What is its base type? Its length? Its size?

(c) Write a loop that will read data from the keyboard into this array; the loop should end when the
user enters a negative number. Store the actual number of data items in the variable named count.

(d) Write a loop that will print out all count data items from the array.

3. Array and function declarations.
(a) Write a declaration with an initializer for the array of small integers pictured here:

scores
96 93 7968

[0] [1] [2] [3]

(b) Write a complete function that takes this array and an integer n as parameters, tests each array
element, and prints all array elements greater than n.

(c) Write a prototype for this function.

4. Use the following definitions in this problem:

#define LIMIT 7
int j;
short puzzle[LIMIT], crazy[LIMIT];

(a) Draw an object diagram for the array named puzzle; identify the slot numbers in your drawing.
Also show the values stored in it by executing the following loop. This loop performs an illegal
operation. Your job is to figure out what will happen and why.

for (j = LIMIT; j > 0; --j) {
if (j+4 > j*2) {

puzzle[j] = j*2;
crazy[LIMIT-j] = j + 2;

}
else {

puzzle[j] = j/2;
crazy[LIMIT-j] = j - 2;

}
}

(b) Trace the following loop and show the output exactly as it would appear on your screen. Show your
work.

for (j = 0; j < LIMIT; ++j) {
if (j % 2 == 1)

printf("\t%5i %3i", puzzle[j], crazy[j]);
else printf("\t%3i %5i", crazy[j], puzzle[j]);

}

5. The following are two declarations and a for loop.

(a) What is the output?

(b) Rewrite the code using a while loop instead of the for loop.

10.10. EXERCISES 323

int a[12] = {2, 4, 8, 3, 9, 27, 4, 16, 64, 5, 25, 125};
for (int k = 1; k < 10; k += 2) printf("%i: %i \n", k, a[k]);

6. Given the following declarations, the prototypes on the left, and the calls on the right, answer good if a
function call is legal and meaningful. If there is an error in the call, show how you might change it to
match the prototype.

int j, ary[5];
float f, flo ;
double x, dub[4];

(a) double list(double d[]); x = list(ary);

(b) void handle(int k); handle(ary[5]);

(c) void bank(float f, int n); bank(flo[5], j);

(d) int days(int a[]); j = days(&flo);

(e) int area(double d); x = area(dub[0]);

7. In the spots indicated below, write a prototype, function header, and call for a function named MISSING.
Its parameters are an array of student assignment scores and the number of assignments that have been
graded and recorded. The function will look at the data and return the number of nonzero scores in the
array. You need not actually write the whole function, just fill in the indicated information.

#define MAX 10
// insert prototype here

int main(void)
{

int assignments[MAX]; // grades
int actual; // # of assignments so far.
int done; // # of nonzero grades.
// put call here

}

// put function header here

8. An unsuccessful search for an item in sorted and unsorted data arrays will require different numbers of
comparisons. Compare a sequential search on these two types of data and explain why they are different
(in terms of the number of comparisons performed).

9. Modify the code in the sequential search function in Figure 10.21 so that it assumes the data in the array
are sorted in descending order. Do not search any more positions than necessary. Still return a value of
-1 if the key value cannot be found.

10. Consider an array containing N data items that you must sort using the selection sort algorithm. How
many data comparisons does the algorithm perform? How many data swaps does it perform? Express
the answer as a function of N .

11. Consider the following list of numbers: 77, 32, 86, 12, 14, 64, 99, 3, 43, 21. Following the example
in Figure 10.26, show how the numbers in this list would be sorted after each pass of a selection sort
algorithm that sorts numbers in descending order.

10.10.3 Using the Computer

1. Seeing bits.
The program in Figure 4.23 shows how to convert an integer to any selected base. Obviously, this
program works for base 2, binary notation. Modify this program so that it inputs a number and prints
the equivalent value in binary notation. Do not print it in the expanded form of the previous program,
but as a series of ones and zeros. You will need to store the binary digits in an array and print them
later in the opposite order, so that the first digit generated is the last printed. For example, if the input
were 22, the output should be 10110.

324 CHAPTER 10. AN INTRODUCTION TO ARRAYS

2. Global warming.
As part of a global warming analysis, a research facility tracks outdoor temperatures at the North Pole
once a day, at noon, for a year. At the end of each month, these temperatures are entered into the
computer and processed. The operator will enter 28, 29, 30, or 31 data items, depending on the month.
You may use −500 as a sentinel value after the last temperature, since that is lower than absolute 0.
Your main program should call the read_temps(), hot_days(), and print_temps() functions described
here:

(a) Write a complete specification for this program.

(b) Write a function, read_temps(), that has one parameter, an array called temps, in which to store
the temperatures. Read the real data values for one month and store them into the slots of an array.
Return the actual number of temperatures read as the result of the function.

(c) Write a function, hot_days(), that has two parameters: the number of temperatures for the current
month and an array in which the temperatures are stored. Search through the temperature array
and count all the days on which the noon temperature exceeds 32◦F. Return this count.

(d) Write a function, print_temps(), with the same two parameters plus the count of hot days. Print
a neat table of temperatures. At the same time, calculate the average temperature for the month
and print it at the end of the table, followed by the number of hot days.

3. The tab.
An office with six workers maintains a snack bar managed on the honor system. A worker who takes a
snack records his or her ID number and the price on a list. Once a month, the snack bar manager enters
the data into a computer program that calculates the monthly bill for each worker. No item at the snack
bar costs more than $2, and monthly totals are usually less than $100.

(a) Write a complete specification for this program.

(b) Using a top-down development technique, write a main program that will call functions to generate
a monthly report. These functions are described here. Declare an array of floats named tabs to
store total purchase amounts for each member and the guests.

(c) The purchases() function should have one parameter, the tabs array. This function should allow
the manager to enter two data items for each purchase: the price and the ID number of the worker
who made the purchase. The ID numbers must be integers between 1 and 6. In addition, the code
0 is used for guests, whose bills are paid by the company. As each purchase is read, the amount (in
dollars and cents) should be added to the array slot for the appropriate worker. When the manager
enters an ID code that is not between 0 and 6, it should be considered a sentinel value and a signal
to end the loop and return from the function. At that time, the array should contain the total
purchases for each worker and for the guests.

(d) The bills() function should have one parameter, the tabs array. Print a bill for each worker, giving
the ID number and the amount due.

4. Payroll.
The Acme Company has some unusual payroll practices and keeps the information in its personnel
database in a strange way. The firm never has more than 200 employees and pays all its employees twice
a month, according to the following rules:

(a) If the person is salaried, the pay rate will be greater than $1,000. There are 24 pay periods per year,
so for one period, earnings = payrate / 24.

(b) If the person is paid hourly, the pay rate will be between $5 and $100 per hour and the earnings are
calculated by this formula:
earnings = payrate * hours.

(c) A pay rate less than $5 per hour or between $100 and $1,000 per hour is invalid and should be
rejected.

(a) Write a complete specification for this program.

10.10. EXERCISES 325

(b) Using a top-down development process and following the example of Figure 10.13, write a main
program that prints the bimonthly payroll report. Since the number of employees changes frequently,
main() should prompt for this information. Then call functions to perform the calculations and
produce a report. Use the functions suggested here, and add more if that seems appropriate. You
will need a set of parallel arrays to hold the ID number, pay rate, hours worked, and earnings for
each employee.

(c) Following the example of Figure 10.21, write a function, get_earnings(). Read the data for all the
employees from the keyboard into the parallel arrays.

(d) Write a function, named earn(), that uses the pay rate and hours worked arrays to calculate the
earnings and fill in the earnings array.

(e) Write a function, named pay(), to calculate and return the earnings for one employee. If the pay
rate is invalid, print an error comment and return 0.0.

(f) Write a function, named payroll(), that prints a neat table of earnings, showing all the data for
each person. Also calculate the total earnings and print that value at the end of the list of employees.

5. Guess my weight.
At the county fair a man stands around trying to guess people’s weight. You’ve decided to see how
accurate he is, so you collect some data. These data are a set of number pairs, where the first number
in the pair is the actual weight of a person and the second number is the weight guessed by the man
at the fair. You decide to use two different error measures in your analysis: absolute error and relative
error. Absolute error is defined as Eabs = Wguess − Wreal, where Wguess and Wreal are the guessed
and real weights, respectively. The units of this error are pounds. The relative error is defined by
Erel = 100 × Eabs/Wreal, where the result of this equation is a percentage. Write a program that will
input the set of weight pairs you accumulated, using a function with a sentinel loop to read the data.
The number of weight pairs should be between 1 and 100. Write another function that will calculate
both the absolute and relative errors of the guesses and display them in a table. Finally, compute and
print the average of the absolute values of the absolute errors and the average of the absolute values of
the relative errors.

6. Having fen.
Ms. Honeywell, an American businessperson, is preparing for a trip to Beijing, China, and is worried
about keeping track of her money. She will take a portable computer with her, and wants a program
that will sum the values of the Chinese fen (coins and bills) she has and convert the total to American
dollars. Fen come in denominations of 1, 5, 10, 20, 50, 100, 200, 500, 1,000, and 2,000. The exchange
rate changes daily and is published (in English) in the newspaper and on television. Write a program
for Ms. Honeywell that will prompt her for the exchange rate and then for the number of fen she has of
each denomination. Total the values of her fen and print the total as well as the equivalent in American
dollars. Implement the table of fen values as a global constant array of integers.

7. A function defined by a table.
Write a function that computes a tax rate based on earned salary according to the following table. In
this function, if the salary value is not given exactly, use the rate for the next lower salary in the table.
For example, use the rate 20% for $38, 596.

Salary ($) Tax Rate (%)

0 0
10,000 5
20,000 12
30,000 20
40,000 33
50,000 38
60,000 45
70,000 50

Write a small program that will input a salary from the user, call your function to compute the tax rate,
and then print the tax rate and the amount of tax to be paid. Validate the input salary so that it does
not fall outside of the salary range in the table.

326 CHAPTER 10. AN INTRODUCTION TO ARRAYS

8. Moving average.
Some quantities, such as the value of a stock, the size of a population, or the outdoor temperature, have
frequent small fluctuations but tend to follow longer-term trends. It is helpful to evaluate such quantities
in terms of a moving average; that is, the average of the most recent N measurements. (N normally is
in the range 3. . .10.) This technique “smoothes out” the most recent fluctuations, exposing the overall
trend. Write a program that will compute a moving average of order N for the price of a given stock
on M consecutive days, where M > N + 4. To do this, first read the values of N and M from the user.
Next read the first N prices and store them in an array. Then repeat the process below for the remaining
M −N prices:

(a) Compute and print the average of the N prices in the array.

(b) If all M values have been processed, quit and print a termination message.

(c) Otherwise, eliminate the value in array slot 0 and shift the other N − 1 values one slot leftward.

(d) Read a new value into the empty slot at the end of the array.

9. A bidirectional sort.
Another sorting algorithm is similar to the selection sort, the “cocktail shaker” sort. This algorithm
differs from the selection sort in the way it selects the next item from the array. Our selection sort always
picks the maximum value from the remaining values and swaps it into the beginning of the sorted portion.
For the cocktail shaker sort, the first pass finds the maximum data value and moves it to one end of the
array. The second pass finds the minimum remaining value and moves it to the other end of the array.
Subsequent passes alternate choosing the maximum and minimum values from the remaining data and
moving that value to the appropriate end of the array. Eventually the two ends meet in the middle and
the data are sorted. Write a program that implements the cocktail shaker sort just described and uses it
to sort data sets containing up to 100 values.

Chapter 11

An Introduction to Pointers

In this chapter, we introduce the final remaining primitive data type, the pointer, which is the address of a data
object. We show how to use pointer literals and variables, explain how they are represented in the computer,
and present the three pointer operators: &, *, and =. We explain how, using pointer parameters, more than
one result can be returned from a function. Pointers are covered here only at an introductory level and will be
considered in greater depth in later chapters.

11.1 A First Look at Pointers

A pointer is like a pronoun in English; it can refer to one object now and a different object later. Pointers are
used in C programs for a variety of purposes:

• To return more than one value from a function (using call by value/address).

• To create and process strings.

• To manipulate the contents of arrays and structures.

• To construct data structures whose size can grow or shrink dynamically.

In this chapter we study only the first of these uses of pointers; the others will be explored in Chapters 12, 13,
16, and 16.

11.1.1 Pointer Values Are Addresses

A pointer value (also called a reference) is the address (i.e., a specific memory location) of an object. A pointer
variable can store different references at different times. If p is a pointer variable and the address of k is stored
in p, then we say p points at k or p contains is a reference to k or p refers indirectly to k. In the other direction,
we say that k is pointed at by p or k is the referent of p. In object diagrams, we represent pointer values as
arrows and pointer variables as boxes from which arrows originate. The tail of each pointer arrow is a small
circle that can be “stored” in a pointer variable; the head of the arrow points at its referent. Figure 11.1 shows
a pointer variable named p that points at the integer variable k, which itself has a value of 17. Figure 11.1
shows a simplified way to diagram pointer variables, without the explicit memory addresses.

Pointer variables. To declare a pointer variable, we start with the base type of the pointer; that is,
the type of object it can reference. After the type comes a list of pointer variable names, each preceded by an
asterisk, as shown in Figure 11.3. A common mistake is to omit the asterisk in front of p2. This makes it a
simple integer rather than a pointer. The asterisk must be written before each name, not just appended to the
base type. A pointer can refer only to objects of its base type. Although a given pointer can refer to different
objects at different times, we cannot use it to refer to an int at one moment and a double later. Therefore,
both p1 and p2 in the diagram can be used to refer to an integer variable k, but neither could refer to a char
or a double. When we use pointers in expressions, the base type of the pointer lets C know the actual type of
the values that can be referenced, so that it can compile appropriate operations and conversions.

327

328 CHAPTER 11. AN INTRODUCTION TO POINTERS

17
p: 28060 k:

28076
28076

p is a pointer variable stored at address 28060.
k is an integer variable stored at address 28076.
The contents of k is the integer 17.
The contents of p is the address of k, which is 28076.
The arrow is a reference to k

We say that p points at k or p refers to k

We say that k is the referent of p.

Figure 11.1. A pointer and its referent.

Pointer initialization. When a pointer is declared without an initializer (as an unitialized pointer),
memory is allocated for it but no address is stored there, so any value previously stored in that memory
location remains. Therefore, a pointer always points at something, even when that thing is not meaningful
to the current program. It could be an actual object in the program, a random memory address in the
middle of the code, or an illegal address that does not even correspond to a memory location the program is
allowed to access. Most C compilers will not detect or give error comments about uninitialized pointers. If
a program unintentionally uses one, the consequences will not be discovered until run time and can be quite
unpredictable, depending on the random contents of memory when the program begins execution. Anything
can happen, from apparently correct operation to strange output results to an immediate program crash. To
emphasize the unknown consequences of using such pointers, we diagram an uninitialized pointer as a wavy
arrow that ends at a question mark, as in the middle diagram in Figure 11.2.

The NULL pointer. Many data types include a literal value that means “nothing”: for type double this value
is 0.0, for int it is 0, and for char it is \0. There also is a “zero” value for pointer types, the NULL pointer, and
it is defined in stdio.h. We store the value NULL in a pointer variable as a sign that it points to nothing. NULL
is represented in the computer as a series of 0 bits and, technically, is a pointer to memory location 0 (which
contains part of the operating system). In diagrams, we represent NULL using the electric “ground” symbol, as
shown in the rightmost part of Figure 11.2, or an arrow that loops around, crosses itself, and ends in midair.
One of the basic uses of NULL is to initialize a pointer, to avoid pointing at random memory locations. We often
initialize pointers to NULL (see Figure 11.4). This indicates that the pointer refers to nothing, as opposed to
something undefined.

We diagram a pointer variable as a box containing an arrow (a pointer). Here, we diagram three pointer
variables. The first points at an integer, the second is uninitialized, and the third contains the NULL pointer.

k
31

Integer pointer
(points to variable k)

Uninitialized integer pointer
(points to a random location)

NULL pointer
(points to location 0)

?

Figure 11.2. Pointer diagrams.

Two uninitialized pointer variables are declared.

p1 p2

? ?

int *p1, *p2;

Base type

The asterisk makes a pointer variable
Repeat the asterisk for each pointer

Figure 11.3. Declaring a pointer variable.

11.1. A FIRST LOOK AT POINTERS 329

An integer pointer variable is declared and initialized to NULL.

int *p = NULL;

Base type Initializer

The asterisk makes a pointer variable

Figure 11.4. Initializing a pointer variable.

Which nothing is correct? A pertinent question is, What is the difference between 0.0, 0, \0, and NULL?
First, even though all are composed entirely of 0 bits, they are of different lengths. A double 0.0 often is 8
bytes long, but the character \0 is only 1 byte long. The NULL pointer is the length of pointers on the local
system, which, in turn, is determined by the number of bytes required to store a memory address on that
system. Second, these zero values have different types and a C compiler treats them like other values of their
type when it produces compile-time error comments. For example, if the value 3.1 would be legal in some
context, then the value 0.0 also would be legal. The value 0 would be acceptable and require conversion, while
the value NULL would be inappropriate and cause a compile-time error.

The implementation of pointers. A pointer variable is a storage location in which a pointer can be
stored. The pointer itself is the address of another variable. Thus, a pointer variable has an address and also
contains an address; a pointer is the address of its referent. The dual nature of pointers can be confusing, even
to experienced programmers. Sometimes it helps to understand how pointers actually are implemented in the
computer at run time. The basics are illustrated in Figure 11.5. There, we declare two integer variables and
two integer pointers, then diagram the variables created by the declarations. (We assume that an int fills 2
bytes and a pointer 4.) Hypothetical memory addresses are shown above the boxes to help explain the actions
of certain pointer operations in the next section.

11.1.2 Pointer Operations

C has three basic operators1 that deal with pointers: &, *, and =. In addition, scanf() supports a format
specifier for printing pointer values. While each operation is straightforward, sometimes the use of pointers can
be confusing.

1Pointers to aggregate types follow different syntactic rules than pointers to simple variables and use an additional operator.
The differences are explained in Chapters 13 and 16.

int *pt = NULL; // An int pointer variable, initialized to NULL.

int *p; // A pointer variable that can point at any int.

int k = 17; // An integer variable initialized to 17.

int m; // An uninitialized integer variable.

Storage for these variables might be laid out in the computer’s memory as follows:

address of pointer variable

variable name:

memory addresses:
memory contents:

p kpt

fd48fd44fd40

m

fd4c

NULL pointer
(points to address 0).

.
 ?? 17contents of pointer

 Uninitialized pointer
(points to a random address).

?

Figure 11.5. Pointers in memory.

330 CHAPTER 11. AN INTRODUCTION TO POINTERS

References and indirection. The expression &k (the & of a variable) gives us the address of the variable
k, also called a reference to k. The dereference operator, *, also called indirection, is the inverse of &;
that is, *p means the referent of p (the object at which p points). Since, by definition, & and * are inverse
operations, *&k == k and &*p == p.2

The expression *p stands for the referent the same way a pronoun stands for a noun. If k is the referent of
the pointer p, then m = *p means the same thing as m = k. We say that we dereference p to get k. Similarly, *p
= n means the same thing as k = n. Longer expressions also can be written; anywhere that you might write a
variable name, you can write an asterisk and the name of a pointer that refers to the variable. For example, m
= *p + 2 adds 2 to the value of k (the referent of p) and stores the result in m. Since the dereference operator
and the multiply operator use the same symbol, *, the C compiler distinguishes between them by context. If
the operator has operands on both the left and right, it means “multiply.” If it has only one operand, on the
right, it means “dereference.”

Pointer assignment. As just seen, a pointer can be involved in an assignment operation in three ways:

1. We can make an assignment directly to a pointer, as in p = &k.

2. We can access a value through a pointer and assign it to a variable, as in m = *p.

3. We can use a pointer to make an indirect assignment to its referent, as in *p = m+2.

Direct assignments are useful for string manipulation (Section 12.1). Indirect assignment and access through a
pointer are used with call by value/address parameters (Section 11.2). Figure 11.6 illustrates the three kinds
of pointer assignment using the variables declared in Figure 11.5.

Notes on Figure 11.6. Pointer operations. To show the actual relationship between a pointer variable,
its contents, and its referent, the addresses and contents of each pointer and variable in this program have been
printed and diagrammed.

First box: pointer declarations. Figure 11.5 contains a diagram of the initial contents of the two pointers
and the variables declared here.

Second box: direct pointer assignments. There are two ways to assign a value to a pointer: assign either
the address of a variable of the correct base type or the contents of another pointer of a matching type.
• The base type of p is the same as the type of k, so we are permitted to make p refer to k with the assignment
p = &k. In the diagram below the output, note that the address of k is written in the variable p and that
the arrow coming from p ends at k. We say that p refers to (or points at) k.

• Pointers p and pt are the same type, so we can copy the contents of p into pt with the assignment pt = p.
This causes the contents of p (which is the address of k) to be copied into pt. In the diagram, you can see
that both p and pt contain arrows with heads pointing at k.

Third box: indirect pointer assignments.
• The first line dereferences p to get k, then fetches the value of k and adds 2 to it. The result (19) is stored in
m; the value stored in k is not changed at this time. It is not necessary to use parentheses in this expression
because * has higher precedence than +.

• The second line copies the value of m into the referent of p, which still is k. This changes the value of k from
17 to 19, as diagrammed.

Fourth box: Output.
The output shows how memory is laid out in our computer, which is running Gnu C3 and uses 4-byte

integers. The memory addresses are printed using the %p format specifier, which prints numbers in unsigned
hexadecimal notation, with a leading 0x. Compare this diagram and the output to the memory diagram in
Figure 11.5.

2The combinations *&k and &*p, therefore, are silly and not written in a program.
3This is the open-code C compiler from the Free Software Foundation.

11.2. CALL BY VALUE/ADDRESS 331

11.2 Call by Value/Address

Most parameter values are passed from the caller to a function using call by value; that is, by copying the
argument value from the caller’s memory area into the parameter variable within the function’s memory area.
However, there are three situations in C in which copying the argument value is not done, is inefficient, or
cannot do the job that is required:

1. When an array of any size is being passed (discussed in Chapter 10).

2. When a function needs to return more than one result (discussed in this section).

3. When a large structure is being passed (discussed in Chapter 13).

All these situations are handled in C by passing an address, not a value, to the function.

This short program connects the program fragments from this section and adds output statements that
show the contents and addresses of the variables.

#include <stdio.h>

int main(void)

{

int * pt = NULL; // An int pointer variable, initialized to NULL.

int * p; // A pointer variable that can point at any int.

int k = 17; // An integer variable initialized to 17.

int m; // An uninitialized integer variable.

p = &k; // Use & to set a pointer to k’s memory location.

pt = p; // Copy a pointer.

m = *p + 2; // Add 2 to the value of p’s referent; store result in m.

p = m; // Copy the value of m into p’s referent.

printf("address of p: %p contents of p: %p\n", &p, p);

printf("address of pt: %p contents of pt: %p\n", &pt, pt);

printf("address of k: %p contents of k: %i\n", &k, k);

printf("address of m: %p contents of m: %i\n", &m, m);

return 0;

}

When compiled and run on a system with 4-byte integers, the following output was produced:

address of p: 0xbffffd44 contents of p: 0xbffffd48
address of pt: 0xbffffd40 contents of pt: 0xbffffd48
address of k: 0xbffffd48 contents of k: 19
address of m: 0xbffffd4c contents of m: 19

This corresponds to the memory layout that follows. Here, the memory addresses are shown in hexadec-
imal notation and only the last four digitsare shown.

p kpt

fd48fd44fd40
 17 19 19

m

fd4c
fd48 fd48

Figure 11.6. Pointer operations.

332 CHAPTER 11. AN INTRODUCTION TO POINTERS

Chapter 10 discusses call by reference, which is used to pass array arguments4. In this method, we pass
only the address of the first array slot, not the array’s list of values, into the function. Within the function,
the reference is transparent to the programmer. That is, references to the array, with or without subscripts,
are written exactly the same way in the function as they are in the caller. This makes a large amount of data
available to the function efficiently and allows the function to store information into the array. As demonstrated
in Section 10.4, a program can pass an empty array into a function, which then fills it with information. When
the function returns, that information is in the array and can be used by the caller.

This chapter discusses call by value/address. This is a special case of call by value in which the argument
is the address of a variable or a pointer to a variable in the caller’s memory area. This argument must be stored
in a pointer parameter in the function’s area. This gives the function full access to the variable that belongs
to the caller. This much is exactly like call by reference. However, the similarity ends there because call by
value/address is not transparent to the programmer; an indirection or dereference operator must be used in
the function’s code to access the underlying argument in the storage area of the caller. The remainder of this
section explains, in detail, how this works and how to use it.

11.2.1 Address Arguments

When call by value is used to pass an address argument, the function receives a reference to the caller’s variable
and can read from and write to that variable. By reading the caller’s variable, the function obtains the value
placed there by the calling program. By writing (storing) into the caller’s variable, the function can pass a value
back to the calling program. When the function ends, the value that it wrote is still in the caller’s variable.

You already are familiar with one function that requires an address argument: scanf(). When calling
scanf(), we use an & with arguments of simple types such as long and double. This technique is not limited
to scanf(). In any function, we can pass the address of a simple variable by writing an & followed by the name
of the variable. The function must have a corresponding parameter of a pointer type.

Another way to pass the address of a simple variable is to write the name (with no ampersand) of a pointer
variable that refers to it. In this case, the value of the pointer, which is the address of its referent, is passed.

11.2.2 Pointer Parameters

A function declares that it is expecting an address argument from the caller by declaring the corresponding
parameter with a pointer type.

When the argument is an array, as in the statistics program of Figures 11.12 through ??, the corresponding
parameter can be declared either as a pointer or as an array with an unspecified dimension. For example, if
the actual argument were an array of integers, a formal parameter named ara could be declared as either int*
ara or int ara[]. The two declarations are identical in most respects, but it is cleaner style to use the latter
for arrays. In either case, the parameter name can be used with subscripts within the function to refer to the
array elements.

For nonarrays, a pointer parameter is declared with an asterisk. When the function is called, the address
argument is copied into the corresponding pointer parameter. The base type of the pointer parameter must
match the type of the address argument. For example, if a function expects to receive the address of an
integer variable, it should declare the corresponding parameter to be of type int* (as in the function f1() in
Figure 11.7). The result is an in-out parameter.

Sometimes an address argument is used to pass a large data structure efficiently5. In this case, we may want
to have an input parameter that does not permit outward flow of information. To achieve this, the parameter
is declared as a constant pointer. For example, const int * xp (as in the function f3() in Figure 11.7).

Notes on Figure 11.7. Call by value/address. Here we have two simple functions that illustrate two
techniques for altering the value of a variable in the caller’s memory area.

First box: prototypes. Functions f1() and f2() have the same prototype, having one parameter that is an
integer pointer. The pointer permits the function to export information. C does not provide a way to restrict
a parameter to output-only. In function f2(), the usage is output-only, but the syntax would permit two-way
flow of information.

4Call-by-reference is much more widely used in Java and in C++.
5This will be discussed in Chapter 13.

11.2. CALL BY VALUE/ADDRESS 333

This program illustrates syntax for call by value/address and gives examples of in, in-out and output
parameters.

#include <stdio.h>

#include <math.h>

void f1(int * xp); // uses an in/out parameter

void f2(int * xp); // uses an output parameter

double f3(const int * xp); // uses an in parameter

int main(void)

{

int k = 1;

double answer;

puts("\n Call by value/address Demo.");

printf("Original value of k: %i\n", k);

f1(&k); // This function changes the value of k.

printf("After f1(), changed value of k: %i\n", k);

f2(&k); // This function changes the value of k.

printf("After f2(), input is stored in k: %i\n", k);

answer = f3(&k); // This function cannot change k.

printf("After f3(), the square root of %i = %.3f\n", k, answer);

return 0;

} // ---

void f1(int * xp) // xp is an in/out parameter

{

*xp = *xp + 2; // add 2 to the old value of xp’s referent.

}

// ---

void f2(int * xp) // xp is an output parameter.

{

printf("Enter an integer: ");

scanf("%i", xp);

}

// ---

double f3(const int * xp) // xp is an in parameter.

{

return sqrt(*xp); // use xp’s referent (no change).

}

Figure 11.7. Call by value/address.

334 CHAPTER 11. AN INTRODUCTION TO POINTERS

This version of swap does not work because call by value is used to pass the parameters.

#include <stdio.h>

void badswap(double f1, double f2);

int main(void) {

double x = 10.2, y = 7;

printf("Before badswap: x=%5.1g y=%5.1g\n", x, y);

badswap(x, y);

printf("After badswap: x=%5.1g y=%5.1g\n", x, y);

}

void badswap(double f1, double f2) {

double swapper = f1;

f1 = f2;

f2 = swapper;

}

Figure 11.8. A swap function with an error.

Second box and function f1: indirect reference through an in-out parameter.
• We pass &k, the address of k, as the argument to the pointer parameter in f1(). This address will be stored

in the memory location for xp when the call occurs, so xp will refer to k.

• We use the initial value of k in this function by writing *xp. After adding 2, we store the result back into
k by writing *xp =

• We call xp an input parameter because we use the information that the caller stored in it. We call it an
output parameter because we change that information. Thus, it is an in-out parameter.

• The value of k is displayed before and after the function call to show that the call both used and changed
the value of main’s variable. (See the output, below.)

Third box and function f2: using an output parameter.
• We use xp, an output parameter here, to return a value from scanf() back to the caller. The new value is

printed in main() after the function call.

• We want to pass the address of k to scanf() so that input can be stored in k. We could do this by writing
&*xp as the argument, but this simplifies to just xp, which contains the original address of k as it was passed
into the function. The scanf() call stores a value directly into main()’s variable k.

Fourth box and function f3: using a const * input parameter.
• Sometimes our data is stored in large structures (presented in Chapter 13) that occupy many bytes of

memory. It is undesirable to copy the whole structure because of the time and the space that would
consume. In such a situation we use call by value/address. However, we also want to protect the caller’s
variable against the possibility of being changed by the function or by any other function it might call. To
do this, we can use a const pointer parameter, also known as a read-only parameter .

• In this function, we use a const * parameter. This lets us use but not change the value of main’s variable.
To access that value, we write *xp.

Sample output.

Original value of k: 1
After f1(), changed value of k: 3
Enter an integer: 7
After f2(), input is stored in k: 7
After f3(), the square root of 7 = 2.646

11.2. CALL BY VALUE/ADDRESS 335

double

double

x

y

10.2

7.0

main

double

double

f1

f2

10.2

7.0

7.0�

10.2

double swapper 10.2

badswap

double

double

x

y

main

double*

double*

fp1

fp2

double swapper 10.2

swap

10.2

7.0

7.0�

10.2

Figure 11.9. Seeing the difference.

11.2.3 A More Complex Example

In some situations, call by value does not provide enough information to enable a function to do its task. The
simplest example consists of a function that wants to swap the values of its two parameters. In Figures 11.8
through ??, we examine two possible versions of this simple swap function. The first fails to swap the values;
the second works properly.

The memory use for Figure 11.8 is diagrammed on the left. Each function has its own memory area, and
values of the arguments are copied from variables of main() into the parameters of badswap(). Assignments
change only the values in the parameters.

The memory use for Figure 11.10 is diagrammed on the right. The arguments here are pointers to variables
of main(). Indirect assignments made through these pointers change the underlying variables.

Notes on Figures 11.8, 11.10, and 11.9. Seeing the difference in the swap functions.

First and second boxes, Figure 11.8: the first version of the swap. The first box declares two
parameters as type double, not double*, so the arguments will be passed by value. When main() calls
badswap(x,y) (second box), the current values of x and y are copied into badswap()’s parameters f1 and
f2. The function receives these values, not the addresses of the variables. This is shown in the diagram for
badswap() on the left side of Figure 11.9.

Third box, Figure 11.8: the bad swap. When badswap() swaps the values, it swaps the copies stored in
the parameters, not the originals. In the diagram, note that the assignments in badswap() cause no changes
to the variables of main(). The program output is

Before badswap: x= 10.2 y= 7.0

After badswap: x= 10.2 y= 7.0

This version of swap works because call by value/address is used to pass the parameters.

#include <stdio.h>

void swap(double * fp1, double * fp2);

int main(void) {
double x = 10.2, y = 7;

printf("Before swap: x=%5.1g y=%5.1g\n", x, y);

swap(&x, &y);

printf("After swap: x=%5.1g y=%5.1g\n", x, y);

}

void swap(double * fp1, double * fp2) {

double swapper = *fp1;

*fp1 = *fp2;

*fp2 = swapper;

}

Figure 11.10. A swap function that works.

336 CHAPTER 11. AN INTRODUCTION TO POINTERS

Problem scope: Calculate the arithmetic mean, variance, and standard deviation of N experimentally
determined data values.

Input: The user will specify the number of data values, N , then N data values will be typed in. These will
be real numbers.

Restrictions: No more that 50 data values will be processed.

Formulas:

Mean =
∑N

k=1 xk

N

Variance =
∑N

k=1(xk−mean)2

N−1 for N < 20

Variance =
∑N

k=1(xk−mean)2

N for N ≥ 20

Standard deviation =
√

Variance

Output required: The mean, variance, and standard deviation of the N points, accurate to at least two
decimal places.

Figure 11.11. Problem specifications: Statistics.

First and second boxes, Figure 11.10: the good version of swap. In contrast, this version uses call
by value/address (first box). The arguments are two addresses (second box), which are stored in the swap()
parameters fp1 and fp2. In the diagram, you can see that the parameters of swap() are pointers to the variables
of main().

Third box, Figure 11.10: the good swap. The function receives pointers to the variables, not copies of
their values. When swap() says swapper = *fp1, it copies the value of the referent of fp1 into swapper. When
it executes *fp1 = *fp2;, it copies the value of the referent of fp2 into the referent of fp1. This changes the
value of the corresponding variable in main(), not the pointer in the swap() parameter. We say that *fp1 =
*fp2; fetches the value indirectly through fp2 and stores it indirectly through fp1. The final output from this
program is

Before swap: x= 10.2 y= 7.0

After swap: x= 7.0 y= 10.2

11.3 Application: Statistical Measures

In many experiments, the measured values of the experimental variable are distributed about the mean value
in a bell-shaped curve centered on the mean value of the array; that is, the arithmetic average of the data
values. Such a distribution is called a normal , or Gaussian, distribution.

The variance and standard deviation of a set of data are measures of how significantly the measured
values differ from the true mean of the distribution. To compute these measures accurately, we need at least
20 data values. For fewer than 20 data points, we use the slightly different formulas, shown in Figure 11.11,
to estimate the variance and standard deviation. In these equations, x1, x2, x3, . . . , xN are the data values and
N − 1 is called the degree of freedom of the data.

In the next program example, we introduce a method for computing these statistical measures for N data
values: x1, x2, x3, . . . , xN .6 The program specification is given in Figure 11.11 and the main program is shown
in Figure 11.12. To keep the flow of logic in all parts of the program simple and uniform, major phases of the
computation have been written as separate functions that work with a data array. We call get_data() to read
the data into an array, then pass that array to the stats() function, and finally, print the answers. A call
graph is given in Figure 11.13 and the two array-processing functions are found in Figure 11.14.

6J. P. Holman, Experimental Methods for Engineers, 7th ed. (New York: McGraw-Hill, 2001).

11.3. APPLICATION: STATISTICAL MEASURES 337

The specification for this program is in Figure 11.11 and the call graph is in Figure 11.13. The three
programmer-defined functions are in Figures ?? and ??.

#include <stdio.h>

#include <math.h> // For sqrt()

#define N 50 // Maximum number of data values.

void get_data(double x[], int n);

void stats(const double x[], int n, double * meanp, double * variancep);

int main(void)

{

double x[N]; // An array for the N data values.

int num; // Actual number of data values.

double mean; // The mean of the values in array x.

double var; // Variance of the data in array x.

double stdev; // Standard deviation of the data in array x.

puts("\n Computing statistics on a set of numbers.");

printf("\n Enter number of values in data set (2..%i): ", N);

for (;;) {

scanf("%i", &num);

if (num > 1 && num <= N) break;

printf("Error: %i is out of legal range, try again: \n", num);

}

printf(" Computing statistics on %i data values.\n", num);

get_data (x, num);

stats(x, num, &mean, &var);

stdev = sqrt(var);

printf("\n\n The mean of the %i data values is = %.2f \n", num, mean);

printf(" The variance is = %.2f\n", var);

printf(" The standard deviation is = %.2f \n", stdev);

return 0;

}

Figure 11.12. Mean and standard deviation.

This graph is for the program found in Figures 11.12 and 11.14.

 main

stdio
library sqrt

pow
 math
library

puts get_dataprintf scanf stats

Figure 11.13. Call graph for the mean and standard deviation program.

338 CHAPTER 11. AN INTRODUCTION TO POINTERS

Notes on Figure 11.12. Mean and standard deviation.

First and third boxes: the data array and the definition of N .
Every part of this program uses the value of N to define the number of data values that are to be read,

processed, or output. We easily can increase or decrease the length by changing only the #define at the top of
the program. This is one of the most important ideas in computing: By using loops and arrays, we can process
a virtually unlimited number of data items. Files that store large amounts of data are the final element needed
in this application. We will revisit this example in Chapter 14 to show how such data can be read from a file.

It is rare that the maximum number of data values is used, since the value of N usually is set to a
comfortably large value. Therefore, the user needs to specify the size of the current data set. This value, rather
than N , will serve as the processing limit in each of the array functions.

Second box: the function prototypes.

These functions are called from the main program in Figure 11.12. After reading a set of n experimentally
determined data values into an array, x, we use summing loops to calculate the mean and variance of those
values.

// --

// Given an empty array of length n, input data values to fill it. */

void get_data(double x[], int n)

{

int k; // Loop counter and subscript.

puts("Please enter data values when prompted.");

for (k = 0; k < n; ++k) {

printf("x[%i] = ", k); // Prompt for kth value.

scanf("%lg", &x[k]); // Read into array slot k.

}

}

// --

void stats(const double x[], int n, double * meanp, double * variancep)

{
int k; // Counter and array subscript for both loops.

double sum; // Accumulator for both loops.

double divisor; // From the definition of variance.

double local_mean; // Local copy of first answer.

for (sum = k = 0; k < n; ++k) {

printf("\n x[%d] = %.2f", k, x[k]);

sum += x[k];

}

*mean = local_mean = sum / n; // Store average locally, also return it.

for (sum = k = 0; k < n; ++k) {

sum += pow((x[k] - local_mean), 2);

}

if (n < 20) divisor = n-1;

else divisor = n;

*variance = sum / divisor; // Return the variance.

}

Figure 11.14. The get_data() and stats() functions.

11.3. APPLICATION: STATISTICAL MEASURES 339

These are the prototypes for the functions in Figure 11.14. Both of these functions have an array parameter
and an integer parameter that gives the size of the data set. In stats(), we restrict the array to input-only by
writing const as part of the parameter type. We do this because stats() needs to use, but not to modify, the
array values. In addition, stats() has two output parameters. Note that the square brackets must be used for
an array in the parameter declaration, but they are omitted in the function call.

Fifth box: the function calls.
• The function calls must correspond to the prototypes. Each call must have the same number of arguments

(of the same type and in the same order) as the parameters declared by the prototype. The pairs are

– In get_data(), x is an array parameter which is passed by reference into a double[] parameter. Because
x is an array, this is a a reference parameter, and therefore is in/out. However, it will be used in an
output-only style, to carry the data back to main().

– In stats(), x is an array parameter which is passed by reference into a const double[] parameter.
This is an input parameter. Because it is a reference parameter, the function will be able to read input
from the array. Because of the const, the function will not be able to change the data in the array.

– num, in both functions, the length of the array, which is passed by value into an int parameter. This is
an input parameter; call by value with an argument of a simple type does not support outward flow of
information.

– meanp and variancep in stats() are used as output parameters. In the call, we write & mean and &
variance to pass references into function, where they are stored in the parameters. The parameter
meanp is type double*, which is appropriate for storing the address of a double variable.

Sixth box: Using the returned value.
After returning from stats, the variables mean and var contain meaningful values. We now call sqrt(var)

to compute the standard deviation, then print the statistics.

Output.
The main() function prints headings, reads the number of data items, calls the four functions, and then

prints the answers. Following is sample output:

Computing statistics on a set of numbers.

Enter number of values in data set (2..50): 5
Computing statistics on 5 data values.
Please enter data values when prompted.
x[0] = 77.89
x[1] = 76.55
x[2] = 76.32
x[3] = 79.43
x[4] = 75.12

x[0] = 77.89
x[1] = 76.55
x[2] = 76.32
x[3] = 79.43
x[4] = 75.12

The mean of the 5 data values is = 77.06
The variance is = 2.72
The standard deviation is = 1.65

Notes on Figure 11.14. The get_data() and stats() functions.

The get_data() function.
The array parameter, x, is an output parameter that is passed by reference, When control enters this

function, the parameter array is empty. After the last data value has been read, control returns to the caller
and the caller can use the values stored in the array by the function.

First box: variables for the stats() function.
The third parameter will be used to send one answer (the average) back to the caller. But we also define

a local variable for the average to make it easier and more efficient to use in later calculations.

340 CHAPTER 11. AN INTRODUCTION TO POINTERS

Second box: the average.
This is the usual loop for computing the average of an array. Once all n values have been summed, we can

calculate the average and return it to main(). The division that computes the mean is after the loop, rather
than within it, because there is no need to perform a division on every repetition. We need not worry about
division by 0 because n has been validated in main().

The average is first stored in a local variable, then returned to the caller in the same statement by writing
*meanp = local_mean. We keep a local copy of the average because we will use it again, repeatedly, in the
next loop.

Third box: the pow() function.
The pow() function is in the math library. It raises a double value to a double power and returns a double

result. In this call, the integer 2 will be coerced to type double before it is passed to the function. The result
will be the square of the first argument.

Fourth box: returning the second answer.
Once all n squares have been summed, we set the divisor to n or n-1, according to the specifications, then

perform the division and return the result to main() by assigning it to *variancep.
Unlike the average, we do not store the variance in a local variable after we compute it because we do not

need it again in this function.

11.3.1 Summary: Returning Results from a Function

We have now demonstrated three ways to return a result from a function:

1. By using the return statement.

2. By using a pointer parameter.

3. By storing the results in an array parameter.

The first method is simple and it supports a total separation between the “territory” of the calling program
and the actions of the function. The function need not receive an address from the caller to use return. This
kind of separation is a highly important debugging tool and should be used wherever possible. Unfortunately,
the return statement is limited to one result.7

The second method can be used for multiple results, as in the previous program, but it involves the use
of the address-of operator (&) in the function call, the dereference operator (*) in the function body, and a
pointer declaration in the function’s prototype and header. Using these operators is somewhat awkward and can
become confusing. Sometimes the required stars and ampersands are omitted accidentally. More significant,
though, is that each pointer parameter supplies the function with an address in the memory area that belongs
to its caller. Each such address can be a source of unintended damaging interaction between the two code
units. Therefore, we prefer to pass parameters by value wherever possible. Even so, call by value/address is
quite important in C and frequently must be used. 8

Finally, returning large numbers of results of the same type is possible by using an array. It generally is
convenient, efficient, and not confusing. However, the array parameter still is an address of storage that belongs
to the caller. Therefore, an array parameter (like a pointer parameter) reduces the isolation of one part of the
program from the other, potentially making debugging harder.9

11.4 What You Should Remember

11.4.1 Major Concepts

• A pointer is an address. If p is a pointer, then the base type of p determines how the compiler will
interpret the data stored in the referent of p. For example, if a float pointer is dereferenced, the result
is treated like a float.

7This one result however can be a complex object, such as a structure that contains multiple components. Structures will
be discussed in Chapter 13.

8This is a defect of C. It is corrected in C++, which supports a third form of parameter passing, termed call by reference.
9Clearly, none of these three mechanisms is an ideal solution to the problem. For this reason, the reference parameter, a

fourth method of returning results, was implemented in C++.

11.4. WHAT YOU SHOULD REMEMBER 341

• There are two major pointer operators, & and *, which are the inverses of one another. The address
operator, &, is used to refer to the memory location of its operand. The dereferencing operator, *, uses
the address in the pointer operand to either retrieve or store a value at that location.

• Pointer variables, like all others, can have garbage in them if they are not initialized. Sometimes this
garbage could be an accessible memory location and other times not. The value NULL often is used to
initialize pointers. Any attempt to reference this location on a properly protected system will cause an
immediate and consistent run-time error that can be tracked down more easily than the intermittent
errors caused by using a random address.

• When a parameter is a pointer variable, the corresponding argument must be an array, a pointer, or an
address. The called function then can store data at that address and, by doing so, change the value in a
variable that belongs to the caller. We call this method of parameter passing call by value/address.

• When a parameter is a const pointer variable, the corresponding argument must be an array, a pointer,
or an address. The called function then can use the data at that address but cannot change it.

• Using pointer parameters, one can return multiple results from a single function. An array parameter is
translated as a pointer and lets us pass a large amount of data to or from a function efficiently.

11.4.2 Programming Style

• In this text, pointer variable declarations place the * next to the base type (as in float* f) or let it float
(as in float * f) between the type and the name. However, it is quite common, for various historical
reasons, for programmers to use the style float *f, in which the asterisk is attached to the variable
name. We prefer the style float* f because it clarifies that the data type of the variable is a pointer
type.

• To avoid confusion about which variables are pointers and which are not, it is best to declare only one
pointer per line. This lets you maintain our preceding style convention and provides space for a comment.
If you declare more than one pointer on the same line, be sure to use an * for each one.

• Use the correct zero literal. For pointers, use NULL. Reserve 0 for use as an integer.

• It is good practice to initialize pointers to NULL, which makes pointer usage errors easier to find.

• Do not use the operator combinations &* and *&. Since the operators cancel each other out, there is no
need for either.

• In a function definition, put the parameters that bring information into the function first and the call-
by-value/address parameters that carry information out of the function last. Any in-out parameters can
be placed in between.

• Minimizing the use of call by value/address increases the separation between caller and subprogram,
which is helpful when debugging. However, call by value/address is an important mechanism. Learn to
use it wisely.

• Do not use a global variable to pass information into or out of a function. In all other cases, pass the
information as a parameter. The one exception to this rule is when the global variable is used with a
piece of pre-existing code that you cannot change,

• When using both the return value and pointer parameters to return results from a function, use the
return value for a result that always is meaningful, such as a status code. Use parameters for results that
may or may not be meaningful, depending on circumstances.

• If a function, f(), is not called by main() and is called by only a single other function, then the prototype
for f() may be written inside the function that calls it. This properly limits its accessibility to the scope
the programmer intended.

11.4.3 Sticky Points and Common Errors

• The most common pointer error is an attempt to use a pointer that has not been set to refer to anything.
Sometimes such pointers have a NULL value; sometimes they contain garbage. In both cases, the attempt
to use such a pointer is an error. On some systems, this causes an immediate crash. On others, execution
may continue indefinitely before anything unexpected happens. Pointers are like pronouns; until they are
initialized to point at specific variables, they must not be used. Be careful with your pointers and check
them first when a program that uses pointers malfunctions.

342 CHAPTER 11. AN INTRODUCTION TO POINTERS

• There can be confusion between the multiply and dereference operators. It should be clear from the
context which is being used. If, by accident, an operand is omitted in an expression, the compiler might
interpret the * as multiplication (when dereference was intended) without generating an error message.
Using redundant parentheses can help the compiler interpret your code as you intended, but excess
parentheses can clutter the expression, potentially causing other kinds of errors. Some compromise in
style is needed.

• Do not reverse the use of & and *. Using the wrong operator always leads to trouble.

• When using call by value/address, a common oversight is to omit some of the required asterisks in the
function or the ampersand in the call. This can produce a variety of compile-time error comments that
may warn you about a type mismatch between argument and parameter but not tell you exactly what
is wrong. For example, if the omission is in the parameter declaration, the error comment actually will
be on the first line in the function where that parameter is used. Sometimes a beginner “corrects” the
thing that was not wrong, which leads to different errors, and so on, until the code is a mess. When you
have a type mismatch error, think carefully about why the error happened and fix the line that actually
is wrong. Sometimes drawing a memory diagram can help clear up the confusion.

• Even if you have no type mismatches between arguments and parameters, you may not have the kind of
communication you want. If you want call by value/address, you must declare things properly; otherwise,
you get functions like badswap() in Figure 11.8. Still other times you might omit the * where it is needed
inside the function, and the address in a pointer parameter will be changed rather than the contents of
the other memory location. The compiler may not complain about this, but it certainly will affect the
logic of your program. Also, forgetting the & in front of an argument for a pointer parameter may not
generate a compiler error, but the value of the parameter during execution will be nonsense and usually
cause the program to crash. Some compilers give warnings about errors like this.

11.4.4 Where to Find More Information

• Strings pointers and ragged arrays are covered in Chapter 12.

• Array processing using pointers is explained in Chapter 16.

• Pointers to functions are covered in Chapter 16.

• Pointers to dynamic storage allocation areas are found in Chapter 16.

11.4.5 New and Revisited Vocabulary

These are the most important terms, concepts, and keywords presented in this chapter.
pointer memory address call by reference
pointer variable & of a variable call by value/address
base type of pointer * operator address argument
NULL pointer indirection pointer parameter
uninitialized pointer output parameter swap function
referent input parameter mean value of an array
reference in-out parameter variance
dereference call by value standard deviation

11.5 Exercises

11.5.1 Self-Test Exercises

1. Complete each of the following C statements by adding an asterisk, ampersand, or subscript wherever
needed to make the statement do the job described by the comment. Use these declarations:

float x, y;

float s[4] = {62.3, 65.5, 41.2, 73.0};

float * fp;

11.5. EXERCISES 343

(a) fp = y; // Make fp refer to y.

(b) fp = s; // Point fp at slot containing 65.5.

(c) x = fp; // Copy fp’s referent into x.

(d) fp = y; // Copy y’s data into fp’s referent.

(e) fp = s[]; // Copy 73.0 into fp’s referent.

(f) scanf("%g", x); // Read data into x.

(g) scanf("%g", fp); // Read data into fp’s referent.

(h) printf("%g", s); // Print value of second slot.

2. (a) Given the following diagram of four variables, write code that declares and initializes them, as
pictured. On this system, an int occupies two bytes.

3

1000 1002 1004

ptr1 m

1006

n

0

1008 1010

ptr2

Memory addresses:
Memory contents:
Variable name:

(b) Now write two or three direct or indirect pointer assignment statements to change the memory
values to the configuration shown here:

3

1000 1002 1004

ptr1 m

1006

n

9

1008 1010

ptr2

Memory addresses:
Memory contents:
Variable name:

3. Consider the function prototype that follows. Write a short function definition that matches the prototype
and the description above it. Then write a main program that declares any necessary variables, makes a
meaningful call on the function, and prints the answer.

// Return true via out1 if in1 == in2, false otherwise.
void same(int in1, int in2, int* out1);

4. All the questions that follow refer to the given partially finished program.

#include <stdio.h>
void freeze(int temperatures[], int n);
void show(int temperatures[], int n);

int main(void)
{

int max = 6;
int degrees[6] = { 34, 29, 31, 36, 37, 33 };
freeze(degrees, max);
printf("\n After freeze: max = %i\n", max);
...........................

}
// --
void freeze(int temperatures[], int n)
{ int k;

for(k = n-1; k >= 0; --k)
if (temperatures[k] >= 32) --n;

}

(a) The second parameter of the freeze() function is supposed to be a call-by-value/address parameter.
However, the programmer forgot to write the necessary ampersands and asterisks in the prototype,
call, function header, and function code. Add these characters where needed so that changes made
to the parameter n actually change the underlying variable max in the main program.

(b) Write a function named show(), according to the prototype given, that will display all the numbers
in the array on the computer screen. Write a call on this function on the dotted line in main().

(c) Draw a storage diagram similar to the one in Figure 11.9 and use it to trace execution of the call
on freeze() and the following printf() statement. On your diagram, show every value that is
changed.

344 CHAPTER 11. AN INTRODUCTION TO POINTERS

(d) What is the output from this program after the additions?

5. (Advanced question) Trace the execution of the program that follows. Make a memory diagram following
the example of Figure 11.9 and showing each program scope in a separate box. On your diagram, show
the value given to each parameter when a function is called, how the values of its variables change as
execution proceeds, and the value(s) returned by the function. Show the output produced on a separate
part of your page.

#include <stdio.h>
int y = 2, z = 3; // Global variables!

int func1(int* x, int* y);
void func2(int* x){ *x = y; y = z; z = *x; }

int main(void)
{

int x = func1(&y, &x);
printf("X = %i Y = %i Z = %i\n", x, y, z);

}

int func1(int* x, int* y)
{

*y = z+1;
*x = *y;
func2(y);
z = *x+2;
return *y;

}

11.5.2 Using Pencil and Paper

1. Complete each of the following C statements by adding an asterisk, ampersand, or subscript wherever
needed to make the statement do the job described by the comment. Use these declarations:

short s, t;

short age[] = { 30, 65, 41, 23 };

short * agep, * maxp;

(a) agep = age; // Make agep refer to first age in array

(b) s = agep; // Copy value of agep’s referent into s.

(c) agep = age[]; // Copy 65 into agep’s referent.

(d) maxp = agep; // Make maxp refer to agep’s referent.

(e) agep = (age[]+age[])/2; // Store mean of 2nd and last ages in agep’s referent.

(f) scanf("%hi", age[]); // Read into third array slot.

(g) scanf("%hi", agep); // Read into agep’s referent.

(h) printf("%hi", agep); // Print agep’s referent.

2. (a) Given the diagram of three variables and an array, write code that declares the variables and
initializes the array and the pointers, as pictured.

1000 1004

p1 p2

20 35 ?80

1008 1010Memory addresses:
Memory contents:

Variable names:
1012 1014

dimensions n

(b) Write a function that takes the dimensions array as its parameter. Use a nested if...else state-
ment to identify the smallest dimension and return the subscript of its slot.

(c) Now call the function and store the result in n, then use n to set p2 to point at the smallest dimension.

11.5. EXERCISES 345

1000 1004

p1 p2

20 35 180

1008 1010Memory addresses:
Memory contents:

Variable names:
1012 1014

dimensions n

3. Draw a call graph for the bisection program on the text website. Include all programmer-defined and
library functions.

4. Consider the function prototype that follows. Write a short function definition that matches the given
prototype and description. Write a main program that declares necessary variables, makes a meaningful
call on the function, and prints the answer.

// Set the referent of dp to its own absolute value.
// Return +1 if it was positive, 0 if it was zero,
// and -1 otherwise.
int signum(double* dp);

5. The questions that follow refer to the given partially finished program.

#include <stdio.h>
#define MAX 10
void count(int ages[], int adults, int teens);

int main(void)
{

int family[MAX] = {44, 43, 21, 18, 15, 13, 11, 9, 7};
int Nadults=0, Nteens=0, Nkids=0;

puts("\nFamily Structure");
count(family, Nadults, Nteens);
Nkids = MAX - (Nadults + Nteens);
printf("Family has %i adults, %i teens, %i kids\n",

Nadults, Nteens, Nkids);
puts("--\n");

}
void count(int ages[], int adults, int teens)
{

int k;
for (k = 0; k < MAX; ++k) {

if (ages[k] >= 18) ++adults;
else if (ages[k] >= 13) ++teens;

}
}

(a) The second and third parameters of the count() function need to be pointer parameters. However,
the programmer forgot to write the necessary ampersands and asterisks in the prototype, call,
function header, and function code. Add these characters where needed so that changes made to
the parameters adults and teens actually change the underlying variables in the main program.

(b) Draw a storage diagram similar to the one in Figure 11.9 and use it to trace execution of the
corrected program. On the diagram, show every value changed and show the output on a separate
part of the page.

6. Look at the main program and functions for the bisection program on the text website. Fill in the
following table, listing the symbols defined (not used) in each program scope. List global symbols on the
first line. Allow one line below that for each function in the program (main() has been started for you).

Scope Input Output Variables Constants
Parameters Parameters

global — —

main() — —

...

346 CHAPTER 11. AN INTRODUCTION TO POINTERS

11.5.3 Using the Computer

1. More stats.

Start with the statistics program in Figures 11.12 through 11.14. Add a parallel array for the student ID
numbers, which should be read as input. Add functions to do these three tasks:

(a) Find the maximum score and return the score and its array index through pointer parameters.

(b) Find the minimum score and return the score and its array index through pointer parameters.

(c) Find the score that is closest to the average and return the score and its array index through pointer
parameters.

In main(), call your three functions and print the student ID number and score for the best, closest to
average, and weakest student.

11.5. EXERCISES 347

2. Class average and more.

An instructor has a set of exam scores stored in a data file. Not only does he want a report containing
the average and standard deviation for the exam, he wants lots of other statistics. These include the high
score, the low score, the median score, and the coefficient of variation, cv. The median score is defined to
be the middle one in the array of scores, if that array is sorted. This coefficient of variation relates the
“error” measured by the standard deviation to the “actual” value measured by the arithmetic mean as
cv = stdev/mean. Write a program that will read, at most, 100 exam scores from a user-specified file and
print out the indicated statistics. Use portions of the statistics programs in this chapter, as appropriate.

3. Pointer and referent.

Write a program that creates the integer array int ara[] = {11, 13, 17, 19, 23, 29, 31}. Also
create an integer pointer pt and make it point at the beginning of the array. Write printf() statements
that will print the address and contents of both ara[0] and pt. Use this format:

printf("address of pt: \t %p contents:\t %p\n", &pt, pt);

Then write 10 similar printf() statements following the same format to print the address and contents
of the slots designated by the following expressions: (*pt+3), *pt, (pt[3]), *&pt, *pt[3], &*pt, *(pt+3),
(*pt++), *(pt++), (*pt)++.

Some of these will cause compile-time errors when printing the address field, the contents field, or both;
in such cases, delete the illegal expression and print dashes instead of its value. When the program finally
compiles and runs, use the output to complete the following table, grouping together items that have the
same memory address:

Address Contents

pt

ara

...

Finally, make four lists: (a) illegal pointer expressions, (b) expressions that have identical meanings, (c)
expressions that change pointer values, and (d) expressions that change integer values. It will require
careful reasoning to get the last two lists correct.

4. Exam grades.
Start with the program in Figures 11.12 through 11.14; modify it as follows:

(a) In the main program, declare an array to store exam scores for a class of 15 students. Print
out appropriate headings and instructions for the user. Call the appropriate functions to read in
the exam scores and calculate their mean and standard deviation. Print the mean and standard
deviation. Then call the grades() function described here to assign grades to the students’ scores
and print them.

(b) Modify the average() function so that it does not print the individual exam scores during its
processing.

(c) Write a new function, named grades(), with three parameters: the array of student scores, the
mean, and the standard deviation. This function will go through the array of exam scores again and
assign a letter grade to each student according to the following criteria. Using one line of output
per student, print the array subscript, the score, and the grade in columns. The grading criteria are

i. A, if the score is greater than or equal to the mean plus the standard deviation.
ii. B, if the score is between the mean and the mean plus the standard deviation.
iii. C, if the score is between the mean and the mean minus the standard deviation.
iv. D, if the score is between the mean minus the standard deviation and the mean minus twice

the standard deviation.
v. F, if the score is less than the mean minus twice the standard deviation.

If a score is exactly equal to one of these boundary limits, give the student the higher grade.

348 CHAPTER 11. AN INTRODUCTION TO POINTERS

5. Positive and negative.

Write a function, named sums(), that has two input parameters; an array, a, of floats; and an integer,
n, which is the number of values stored in the array. Compute the sum of the positive values in the array
and the sum of the negative values. Also count the number of values in each category. Return these four
answers through output parameters. Write a main program that reads no more than 10 real numbers
and stores them in an array. Stop reading numbers when a 0 is entered. Call the sums() function and
print the answers it returns. Also compute and print the average values of the positive and negative sets.

6. Sorting.

Write a void function, named order(), that has three integer parameters: a, b, and c. Compare the
parameter values and arrange them in numerical order so that a < b < c. Use call by value/address so
the calling program receives the values back in order. In addition, the function order() should start by
printing the addresses and contents of its parameters, as well as the contents of the locations to which
they point. Write a main program that enters three integers, prints their values and addresses, orders
them by calling the function order(), and prints their values again after the call. Add a query loop to
allow testing several sets of integers.

7. Compound interest.

(a) Write a function to compute and return the amount of money, A, that you will have in n years if
you invest P dollars now at annual interest rate i. Take n, i, and P as parameters. The formula is

A = P (1 + i)n

(b) Write a function to compute and return the amount of money, P , that you would need to invest
now at annual interest rate i in order to have A dollars in n years. Take n, i, and A as parameters.
The formula is:

P =
A

(1 + i)n

(c) Write a function that will read and validate the inputs for this program. Using call by value/address,
return an enumerated constant for the choice of formulas, a number of years, an interest rate, and
an amount of money, in dollars. All three numbers must be greater than 0.0.

(d) Write a main program that will call the input routine to gather the data. Then, depending on
the user’s choice, it should call the appropriate calculation function and print the results of the
calculation.

8. Sorting boxes.
A set of boxes are on the floor. We want to put them in two piles, those larger than the average box
and those smaller than or equal to the average box. Write a program to label the boxes in the following
manner:

(a) Rewrite the get_data() function in Figure 11.14 so that you can enter data into three arrays rather
than one. These arrays should hold the length, width, and height of the boxes, respectively.

(b) Write a function, named volume(), to compute and store the volume of each box in a fourth parallel
array. The volume of a box is the product of its length, width, and height.

(c) Simplify the stats() function in Figure 11.14 so that it computes only the average, not the variance.
Rename it average(). Then write a function, print_boxes(), that will print the data for each box
in a nice table, including a column containing the appropriate label, big or small, depending on
whether the volume of the box is larger or smaller than the average volume.

