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Chapter 16

Dynamic Arrays

In this chapter, we introduce two important parts of the C++ language: allocating arrays dynamically and
using pointers to process them. We show how pointers and subscripts are alternative ways to process an
array, how an array of unpredictable length can be allocated at run time, and how dynamic allocation can be
used to remove limitations from algorithms that work with arrays. Destructors are introduced for managing
the dynamic memory.

Finally, two basic sorting algorithms are presented and used to illustrate all the other techniques intro-
duced in the chapter.

16.1 Operator Definitions

In C++, a programmer may define additional methods for any operator defined by the C precedence table1.
We call these definitions operator extensions, and they are a very powerful tool for making it possible to
write C++ code that looks like the formulas you would see in a textbook on mathematics or physics. For
example, it is common to define the arithmetic operators on the class Complex.

An operator definition must have the same number of parameters as the original C operator, and it will
have the same precedence and associativity. If it also has the same purpose and general meaning as the
original, we call it an operator extension. For example, if the definition of + on Complex performs complex
addition, then the new operator is an extension of the original.

If the new operator has a different meaning, it is generally called an operator overload. For instance, if
you define + to mean string concatenation, that is an overload, because now + has two unrelated meanings.
Operator overloads should normally be avoided, although some are built into C++, for example << and >>

for I/O and + for strings.
Operator extensions should be used carefully, and only to allow a new class to “behave like” the pro-

grammer expects it to behave. For example, in this chapter we define a class, Flex, which implements an
array that can grow longer if needed to store an unpredictable amount of information. Because this class is
used to replace simple C arrays, programmers want it to behave like an array – they want to be able to access
the data inside the Flex by using subscript. So the Flex class extends the subscript operator, and delegates
the subscripting operation to the simple dynamic array inside the Flex array. You can see the prototype for
the new subscript function in Figure 16.11 and the actual method definition in Figure 16.12.

16.2 Pointers—Old and New Ideas

This section collects, reviews, and elaborates on the material concerning pointers introduced in earlier
Chapters, and extends it to show new ways pointers may be used with arrays. In many ways, a pointer in

1A complete treatment of this topic is beyond the scope of this book. However, in the next few chapters, we need to be able
to extend the subscript operator, so that one special operator extension will be presented.
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510 CHAPTER 16. DYNAMIC ARRAYS

We declare an array and show how to set a pointer to its first slot or to an interior slot.

double z[3] = {0.0, 1.0, 0.0};

double* zp = z;

double* wp = &z[2]; z
0.0

zp

1.0 0.0

wp

[0] [1] [2]

Figure 16.1. Pointing at an array.

C++ is like a pronoun in English. Both can be attached, or bound, to an object and changed later to refer
to a different object.

16.2.1 Pointer Declarations and Initialization

A pointer variable is created when we use an asterisk after a type name in a declaration. The declaration
int k, with no *, creates an int variable, but int* p creates a pointer variable that can refer to any int.
The type named is called the base type of the pointer, and the pointer can point meaningfully only at
variables of that type.

The referent of a pointer (the address of an object of a matching type) can be set either by initialization
or by assignment. Figures ?? through ?? give examples of declarations of several types of pointers. In the
following paragraphs, we briefly summarize the syntax and meaning of these pointer assignments.

Pointing at an array. In C and in C++, an array is a sequence of variables that have the same type and
are stored consecutively and contiguously in memory. When we point at an array, we actually point only
at one of the elements (slots) in that array, not at the entire object. However, pointing at one slot gives us
access to all the other slots that precede and follow it. Figure 16.1 illustrates pointing to an array.

To point at a single slot in an array, we use the array name with both an ampersand and a subscript, as
in wp = &z[2]. To set a pointer to the beginning of an array, we could write zp = &z[0] or, more simply,
omit both the ampersand and subscript and write zp = z. We normally use the second form. This simpler
syntax works because, in C and in C++, the name of an array is translated as a pointer to the first slot of
that array.2 Similarly, there are two ways to set a pointer to the third array element: zp = &z[2], as just
discussed, and zp = z+2, which is discussed in a later section.

16.2.2 Using Pointers

To use pointers skillfully, the meanings of several pointer operations must be understood. These include
subscript, direct and indirect reference, direct and indirect assignment, input and output through pointers,
and pointer arithmetic. The following paragraphs review or present these operations.

Pointers with subscripts. Syntactically, there is no difference between using an array name and a pointer
to an array. If the referent of pointer p is one of the slots within an array, then p can be used with a subscript
to refer to the other slots of that array. For example, in Figure 16.1, the pointer zp refers to array element
z[0], so using a subscript with zp means the same thing as using a subscript with z, and &zp[1] means the
same thing as &z[1]. The subscript used with a pointer is interpreted relative to the pointer’s referent. In
Figure 16.1, pointer wp refers to z[2], so wp[0] means the same thing as z[2], and wp[1] would be the slot
after the end of the diagrammed array. The ability to use a pointer with a subscript is important because
array arguments are passed by address. Within a function, the parameter is a pointer to the beginning of
the array argument. The notational equivalence of arrays and pointers lets us use subscripts with array
parameters.

2This nonuniform syntax causes confusion for many people. It permits an efficient implementation with an economy of
notation at the expense of clarity. When C was a new language, efficiency was a major concern, and the C language developers
expected only experts to use it.
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An indirect reference accesses the value of the pointer’s referent. These declarations create two double

variables and two objects of class PointT. The assignments change the values marked by a large X.

double w = 16.2;

double* wp = &w;

double x;

PointT corner = {1.5, -2.0};

PointT* cp = &corner;

PointT c2;

x = *wp; // Refers to a double.

c2 = *cp; // Refers to an object.

w = cp->x; // Refers to a member.

c2wp cp

w
17.2 1.5

??
x

17.2
.x

1.5
.y

 -2.0????

corner
.x

1.5
.y

 -2.0

Figure 16.2. Indirect reference.

Indirect reference. Two operators in C++ dereference pointers: the asterisk (*) and the arrow (->).
The expression *p stands for the referent of p, the same way a pronoun stands for a noun. We say that we
can use p to reference k indirectly. If p points at k, then m = *p means the same thing as m = k. Longer
expressions also can be written; anywhere that you might write a variable name, you can write an asterisk
and the name of a pointer that refers to the variable. For example, the expression m = *p + 2 adds 2 to
the value of k (the referent of p) and stores the result in m. Figure 16.2 shows two more examples of this
indirect referencing.

The arrow operator, ->, is used only for pointers that refer to objects. It gives a convenient way to
dereference the pointer and select a member of the object in one operation. Therefore, in Figure 16.2, the
expression cp->x would mean the same thing as (*cp).x; namely, “dereference the pointer cp and select the
member named x from the object that is the referent of cp.” Programmers should use the “cp ->” notation
rather than the clumsier “(*cp).” notation. (When the expression is written with the asterisk, parentheses
are necessary because of the higher precedence of the . operator.) Pointers often are used to process arrays
of structures; in such programs, the arrow operator is particularly convenient.

Direct reference. Like any other variable, we can simply refer to the value of a pointer, getting an
address. This address can be passed as an argument to a function, stored in another variable, and so forth.
For example, the assignment p1 = p2; copies the address from p2 into p1 so that both point at the same
referent.

Direct and indirect assignment. C++ permits assignment between any two simple variables, objects,
or pointers that have the same type. The meaning is the same for any type: The value of the expression
on the right is copied into the storage area for the object on the left. With pointers, an assignment can be
either direct, as in p2 = ??, or indirect, as in *p2 = ??. A direct assignment changes the value stored in
the pointer and makes the pointer refer to a different variable. In contrast, an indirect assignment, which
is written with an asterisk in front of the pointer name, changes the value of the underlying variable. For
example, if p points at k, then *p = n means the same thing as k = n. Figure 16.3 gives an example of each
of these assignments.

Input and output. Finally, let us look at the use of pointers with >> and <<. This is illustrated in
Figure 16.4, where the pointer ap refers to a[0]. We use ap to read data indirectly into a[0], then we read
input directly into a[1]. Similarly, we print the first input indirectly, the second one directly.

Printing a pointer. The memory address contained in a pointer also can be printed and will appear in
hex: : cout <<ap. This technique can be useful when debugging a pointer program.
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Indirect assignment changes the value stored in the pointer’s referent; direct assignment changes the pointer
itself.

int k;

int* p;

p = &k; // Direct assignment.

*p = 17; // Indirect assignment.

k
??

Initial state:

??

p 

After assignments:
k

17

p

Figure 16.3. Direct and indirect assignment.

16.2.3 Pointer Arithmetic and Logic

Some, but not all, of the operations defined for numbers also are defined for pointers. Addition, subtraction,
comparison, increment, and decrement are defined because these have reasonable and useful interpretations
with pointers. Division, multiplication, modulo, and the logical operators are not defined for pointers because
they have no meaning.

Addition and subtraction with pointers. All pointer arithmetic relates in one way or another to
the use of pointers to process arrays. If a pointer points at some element of an array, then adding 1 to it
makes it refer to the next array slot, while subtracting 1 moves a pointer to the prior slot. This is true of
all arrays, not just arrays of 1-byte characters. A pointer and the array it points into must have the same
base type, and the size of that base type is factored in when pointer arithmetic is performed. In Figure 16.5,
ip1 points at the beginning of the array, which has memory address 100. (The actual content of the pointer
variable is the address 100.) Similarly, ip2 points at the fourth slot of the array, which has memory address
106.

Adding n to a pointer creates another pointer n slots further along the array. In Figure 16.5, we set ip1
to point at the beginning of the array ages. So ip1 + 1 refers to the second array slot, at memory address
102. Now we can address any slot in the array by adding an integer to ip1 or ages. As long as the integer is
not negative and is smaller than the length of the array, the result always will be a pointer to a valid array
slot.3 For example, ages[5] is the last slot in the array. So, ip1+5 refers to the same location as ages[5].4

Warning: The result of a pointer addition is an address, not a data value Do not use pointer arithmetic
instead of a subscript for normal processing. Use it only to set pointers.

3Any address resulting from pointer arithmetic refers to the beginning (not the middle) of an array slot because C adds or
subtracts a multiple of the size of the base type of the array.

4Both also are synonyms for ages+5, because the name of an array is translated as a pointer to slot 0 of the array.

Two declarations are given on the left, resulting in the memory layout shown. On the right are calls on
cin >> and cout << and their results.

double a[3];

double* ap = a;

Initial state:

a

ap

?? ??
[0] [1] [2]

??

cin >>*ap >>a[1];

cout << fixed <<setprecision(2);

cout <<"Input was " <<*ap <<", " <<a[1] <<endl;

After I/O:

a
17.26

ap

0.3 ??
[0] [1] [2]

Output: Input was 17.26, 0.3

Figure 16.4. Input and output through pointers.
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Pointers can be set to refer to an element in an array using the array name and the element’s index value.
In the diagram, subscripts are given below the array and memory addresses above it.

short int ages[6] = {52,51,29,24,22,16};

int* ip1 = ages;

int* ip2 = ages + 3;

int n = ip2 - ip1;

[0] [1] [2] [3] [4] [5]

ip2

29 16
ages

ip1

52 51 24 22

100

100 102 104 106 108 110

1063
n

If two pointers point at elements in the same array, subtracting one from the other tells you how many array
slots are between them.

Figure 16.5. Pointer addition and subtraction.

If two pointers point at slots in the same array, subtracting one from the other gives the number of array
slots between them. In Figure 16.5, ip2 - ip1 is 3. The result of the subtraction ip2 - ip1 is 3, not 6,
because all pointer arithmetic is done in terms of array slots, not the underlying memory addresses.

Pointer subtraction is routinely used to find out how may data values have been input and stored in an
array. If head is a pointer to slot 0 of the array and last is a pointer to the first unfilled array slot, then
last - head is the number of values stored in the array.

Increment and decrement with pointers. Sometimes, pointers, rather than integer counters, are used
to control loops. The increment and decrement operators make pointer loops easy and convenient. Increment
moves a pointer to the next slot of an array; decrement moves it to the prior slot. For example, in Figure 16.6,
the pointer ip1 is initialized to the beginning of the array ages, then it is incremented. After the increment,
it points to ages[1].

Pointer comparisons. All six comparison operators are defined for use with two pointers that refer to
the same data type. Two pointers are equal (==) if they point to the same slot, unequal otherwise. In
Figure 16.7, (ip1 == ages) is true but (ip1 == ip2) is false. In general, a pointer ip1 is less than a
pointer ip2 if the referent of ip1 is a slot with a lower subscript than that of the referent of ip2. Pointer
arithmetic can be used in these pointer comparisons. In the diagram, (ip1 < ip2) is true, as is (ip2 <

ip1+5).

A pointer can traverse the elements of an array using pointer arithmetic. In the diagram, subscripts are
given below each array and memory addresses above it.

int* ip1 = ages;

ip1++;

[0] [1] [2] [3] [4] [5]
29 16

ages

ip1

52 51 24 22 52
[0] [1] [2] [3] [4] [5]

29 1651 24 22
ages

ip1

Initial state: After increment:
100 102 104 106 108 110

102100

100 102 104 106 108 110

Figure 16.6. Incrementing a pointer.
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Comparing pointers or addresses is just like comparing integers.

short int ages[6] = {52,51,29,24,22,16};

short int* ip1 = ages;

short int* ip2 = ages + 3;

short int* ipend = ages + 6;

if (ip1 == ip2) ... // false

if (ip1 > ip2) ... // false

if (ip2 < ipend) ... // true

29 16

ip2

ages

ip1

52 51 24 22
[0] [1] [2] [3] [4] [5]

ipend

Figure 16.7. Pointer comparisons.

16.2.4 Using Pointers with Arrays

There is a very close relationship between pointers and arrays: A pointer to an array can be used with a
subscript, just like the array itself. The difference between a pointer to an array and the name of an array
is that the latter refers to a particular area of storage, while the former acts like a pronoun that can refer
to any array or any part of an array. In this section, we show how pointers can be used to process an entire
array.

A major use of pointers in C++ is sequential processing of arrays, especially dynamically allocated
arrays. Three kinds of pointers are commonly used for this purpose: head pointers, scanning pointers, and
tail pointers. A head pointer stores the address of the beginning of the array that is returned by new when
an array is allocated dynamically. The name of an array that is declared with dimensions can be treated
like a head pointer in most contexts. A tail pointer is initialized to the end of an array. Both head and
tail pointers, after they are set, should remain constant during their useful lifetime, and the head pointer is
used to free the storage. In contrast, a scanning pointer, or cursor, usually starts at the head of an array,
points at each array slot in turn, and finishes at the end of the array.

We can use pointer arithmetic to cycle through the elements of an array with great efficiency and
simplicity. The scanning pointer initially is set to the head of the array, as shown in Figure 16.8. The tail
pointer, often called a sentinel , is used in the test that terminates the loop. It points either at the last slot
in the array (on-board sentinel) or at the first location past the end of the array (off-board sentinel).
During scanning, all unprocessed array elements lie between the cursor and the sentinel. To process the entire
array, we use a scanning loop to increment the cursor value so that it scans across the array, dereferencing
it (*cursor) to access each array element in turn. We leave the loop when the cursor reaches the end of
the array; that is, when it surpasses an on-board sentinel or bumps into an off-board sentinel. Figure 16.9
shows such a loop that will print the contents of an array. The upper diagram shows the positions of the
pointers after the first pass through the loop. The lower diagram shows the positions of the pointers after
exiting from the loop.

Measuring progress with pointer subtraction. We can use pointer arithmetic to calculate how much
of an array has been processed and how much remains. Remember that, if pp1 and pp2 are pointers and

Suppose we start with the declarations on the left. Array ages contains six integers. A cursor is initialized
to the head of ages and an off-board sentinel is set to point at its end.

#define N 6

short int ages[N] = {52,51,29,24,22,16};

short int* cursor = ages;

short int* offBoard = ages + N;
off_board

ages

cursor

52 51 29 24 22 16
[0] [1] [2] [3] [4] [5]

Figure 16.8. An array with a cursor and a sentinel.
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Starting with the declarations in Figure 16.8, we write a loop to process the ages array:

for (cursor = ages; cursor < off_board; ++cursor) {

cout <<*cursor ;

}

After the first pass through the loop, the output is: 52

offBoardcursor

52 51 29 24 22 16
  [1]

ages

[0] [2] [3] [4] [5]

After exiting from the loop, the output is: 52 51 29 24 22 16

[0]

offBoardcursor

52 51 29 24 22 16
  [1] 

ages

[2] [3] [4] [5]

Figure 16.9. An increment loop.

both are pointing at the same array, then pp2 - pp1 tells us how many array slots lie between pp1 and
pp2 (including one end of the range). Remember also that an unsubscripted array name is translated as a
pointer to the beginning of the array. Therefore, if we are processing an array sequentially, we can calculate
how many array slots already have been processed by subtracting the array name from a cursor pointing
to the first unprocessed slot. For example, consider the loop in Figure 16.9. At the beginning of the loop,
cursor-ages == 0; after the first pass through the loop, cursor-ages == 1 because the cursor has been
incremented and one data value has been printed. Similarly, subtracting the cursor from a sentinel tells us
how many array slots are left to process between the cursor and the end of the array. For example, after
the increment operation in Figure 16.9, offBoard - cursor is 5. This information can be useful in any
program that processes an array using pointers.

Subscripts vs. pointers. Programmers converting to C or C++ from other languages often prefer to use
subscripts. However, experienced C programmers use pointers more often, because once mastered, they are
simple and convenient to use. Many applications of arrays use the array elements sequentially, visiting the
slots in either ascending or descending order. For these situations, pointers provide a more concise and more
efficient way to code the application. Every time a subscript is used, the corresponding memory address
must be computed. To do so, the compiler generates code to multiply the subscript by the size of the base
type, then adds the result to the base address of the array. In contrast, when you increment a pointer, the
compiler generates code to add the size of the base type to the contents of the pointer. No multiplication
is needed, just one addition. Also, once a pointer has been set to refer to a desired location, its value can
be used many times without further computations. So, overall, sequential processing is more efficient with
pointers than with subscripts. Therefore, experienced programmers often prefer using pointers when an
array is to be processed sequentially but use subscripts for nonsequential access to array elements or for
processing parallel arrays.
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16.3 Dynamic Memory Allocation

When an array is declared with a constant length, like the dataList array in Figure 10.29, a C or C++
translator calculates the size of the array at compile time. At run time, the predetermined amount of storage
is allocated and the program must work within fixed array boundaries. In many applications, though, the
amount of data to be processed and, therefore, the length of an array to store the data are not known ahead
of time. A sort program is a good example of an application that may operate on a small or large amount
of data; the operation of the program is not tied to any particular amount of data. However, defining a
maximum array length at compile time limits the usefulness of a sort program to data sets smaller than that
maximum.

We can eliminate this artificial restriction by using pointers and dynamic memory allocation. We
can write a program that can sort any amount of data that will fit into the memory of the computer. If the
initial amount of memory is inadequate, the array is resized to be able to contain the entire data set.

This makes the program much more flexible than one with a #defined array length. Image processing
and graphics applications profit from dynamically allocated memory, because images and graphical objects
come in many sizes, from small to large, but the processing methods remain the same.

Both C and C++ support a set of functions for creating and handling dynamically allocated memory.
When given the required size of a memory area, these functions interact with the operating system and ask
it to reserve an additional block of memory for the program’s use. The beginning address of this block is
returned to the program as a pointer value that can be saved and later used to access the memory. The
dynamic-memory functions for C++ are listed below and described in more detail in the subsections that
follow. The corresponding functions in C are listed in Appendix E.

Dynamic memory allocation functions. These functions are defined in C++.

• new TypeName;

Allocate a block of memory large enough to store this type and some bookkeeping information. Initialize
the memory using the TypeName constructor. Return a pointer to the beginning of the initialized
object5.

• new TypeName[n];

Allocate a block of memory large enough to store an array of n objects of this type, plus some bookkeep-
ing information. Initialize the memory by using the TypeName default constructor n times. Return
a pointer to the beginning of the array. The array length, n must be stored as part of this allocation
because it is needed later to free the memory.

• delete pointerName;

Recycle the memory block pointed at by the pointerName6. Return it to the operating system for
possible future use. A block that was created using new should be deleted when it no longer is needed
by the program. Objects that were created by declarations must never be manually deleted. (Deletion
for local variables happens automatically when the variable goes out of scope.)

• delete[] pointerName;

Recycle the entire memory block pointed at by the pointerName. First, however, run the destructor
for the base type of the array n times to free all memory attached to the objects stored in the array.

16.3.1 Simple Memory Allocation

When a programmer cannot predict the amount of memory that will be needed by a program, the new can
be used at run time to allocate the desired number of bytes. For example, we can use LumberT from Chapter
13:

5New is analogous to malloc and calloc in C
6Delete is analogous to free in C
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This is the conceptual model of what happens when you call new.

board

0.0 0 0\0  0  034

Figure 16.10. Allocating new memory.

LumberT* board = new LumberT; // Allocate one object.

LumberT* array = new LumberT [3]; // Allocate three objects.

Before returning, the default constructor for LumberT will be called to initialize the objects. Conceptually,
this code allocates memory areas like the ones in Figure 16.10

0.0

board

0 0  0  0
0.0 0 0  0  0
0.0 0 0\0  0  0

0.0 0 0\0  0  0

array
\0
\0

Actually, the allocation is somewhat more complex, although the programmer rarely needs to know about
it, and the implementation is not covered by the standard. The truth is, some additional storage is allocated
to allow the system to manage the dynamic memory. The area is, at least, the size of a long integer, and the
location is normally immediately preceding the first byte of the new object. The gray area in the diagram
represents these additional bytes that the C++ system sets aside; it stores the total size of the allocated
block (the size of a size_t value plus the size of the white area). The importance of these bytes becomes
clear when we discuss delete.

In old C, it was necessary to check for the success of any request for dynamic allocation. In C++, that
is not necessary and not appropriate If the computer does not have enough memory to satisfy the request
for a new allocation, a bad_alloc exception will be thrown. Unless an exception handler is written as part
of the code, this will terminate execution.

Freeing Dynamic Memory

In many applications, memory requirements grow and shrink repeatedly during execution. A program may
request several chunks of memory to accommodate the data during one phase then, after using the memory,
have no future need for it. Memory use and, sometimes, execution speed are made more efficient by recycling
memory; that is, returning it to the system to be reused for some other purpose. Dynamically allocated
memory can be recycled by calling delete, which frees a block of memory by returning it to the system’s
memory manager. The number of bytes in the gray area at the beginning of each allocated block determines
how much memory is freed. The use of delete is illustrated in the Flex class in Figure 16.11.

While each program is responsible for recycling its own obsolete memory blocks, a few warnings are in
order. A block should be deleted only once; a second attempt to delete the same block is an error. Similarly,
we use delete only to recycle memory areas created by new. Its use with a pointer to any other memory area
is an error. Another common mistake, described next, is to attempt to use a block after it has been deleted.
These are serious errors that cannot be detected by the compiler and may cause a variety of unpredictable
results at run time.
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Dangling Pointers

A dangling pointer is one whose referent has been reclaimed by the system. Any attempt to use a dangling
pointer is wrong. Typically, this happens because multiple pointers often point at the same memory block.
When a block is first allocated, only one pointer points to it. However, that pointer might be copied several
times as it is passed into and out of functions and stored in data structures. If one copy of the pointer
is used to free the memory block, all other copies of that pointer become dangling references. A dangling
reference may seem to work at first, until the block is reallocated for another purpose. After that, two parts
of the program will simultaneously try to use the same storage and the contents of that location become
unpredictable.

To avoid the problems caused by dangling pointers, the programmer must have a clear idea about which
class, and which variable within the class, is responsible for keeping the “master pointer” to each dynamic
object, and later, for freeing the dynamic memory.

Memory Leaks

If you do not explicitly free the dynamically allocated memory, it will be returned to the system’s memory
manager when the program completes. So, forgetting to perform a delete operation is not as damaging as
freeing the same block twice.

However, some programs are intended to run for hours or days at a time without being restarted. In such
programs, it is much more important to free all dynamic memory when its useful lifetime is over. The term
memory leak is used to describe memory that should have been recycled but was not. Memory leaks in major
commercial software systems are common. The symptoms are a gradual slowdown in system performance
and, eventually, a system “lock up” or crash.

Thus, it is important for programmers to learn how to free memory that is no longer is needed, and it is
always good programming style to do so. This is even true when the memory is used for a short time by only
one function. Functions often are reused in a new context, they always should clean up after themselves.

Using Dynamic Arrays

A pointer to a dynamic array can be used with a subscript, just like the array itself, as shown in this code
fragment below that allocates space for n long integers, then reads that many numbers from cin:

lptr = new long[n];

for (int k = 0; k < n; ++k) cin >> lptr[k] );

The close relationship between an array pointer and an unsubscripted array name makes it very easy
to take an application written for ordinary arrays and convert it to use dynamic arrays. As an example,
consider the selection sort program from Figure 10.29. This program consists of main() and four other
functions and uses an array whose length is defined at compile time. To allow this program to use dynamic
allocation in C , only six lines in the main program need be changed; namely, the lines that determine the
length of the array and allocate it. None of the function definitions or prototypes need to be modified. We
will revisit the selection sort program, written in C++ later in this chapter after presenting dynamic arrays
that can grow, as needed.

16.4 Arrays that Grow

When we declare an array length in a program, we then must write code to guard that array and ensure
that no part of the program walks off the end of the array and stores information into adjacent memory
cells. Array-based programs become longer and more complex because of these efforts. The situation is
worst when allocating an array to hold input. How do we guess how much input there will be? How do we
detect when there is not enough space, and what do we do if there is more input?
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Using new to allocate arrays at run time is the first step in removing restrictions on the length of an
array. However, that array space still must be allocated before the data are read and before we know how
many data items actually exist. A dynamic array still cannot accommodate an amount of data greater than
expected.

Flex Arrays. To remove the size restrictions, we need to be able to resize the data array. We want to
replace the existing (too small) memory block by a larger one that contains the same data. To do this we
define a class that contains the dynamic array, the two integers needed to manage it, and functions to handle
resizing and related needs. The Flex class needs three data members:

• The dynamic array.

• The current capacity of the array, max (the number of slots in it).

• The number of data items currently stored in the array, n

At least two function members are needed. The first is push_back(), which puts data into the first unoc-
cupied slot in array. The second is grow(), which actually does the resizing. The push_back() method has
two steps:

• Check whether there is currently space in the array for another data item. If not, call grow().

• Whether or not growth happened, put the additional data item into the first empty slot in the array,
and increment n.

The grow() method has several steps:

• Use a temporary variable to point at the existing array.

• Double max. By doubling the array capacity each time, we guarantee that the time required to
reallocate and copy data will always be acceptable, and that the total number of data items copied in
the lifetime of the array will not exceed the current length of the array.

• Allocate a new memory area with the new max capacity.

• Copy n data objects from the old memory into the new area.

• Delete the old memory area.

Finally, C++ allows a program to define the subscript operator for that class. Doing so allows the programmer
to treat the Flex array as if it were an ordinary array.

16.4.1 The Flex Class

The C++ language supports a sophisticated and generic growing array type named vector. A practicing
programmer would use vector when storage needs are unpredictable. This section presents a much simpler
class named Flex that works the same way as vector but is easier to study. By learning how Flex works,
the student learns how vector works.

Notes on Figures 16.11 and 16.12: Flex: a growing array. This is the header file for the Flex class.
The function definitions are in Figure 16.12. This class is used in the selection sort program in Figure 16.19.

First box: dealing with the environment.
• This is the first example program that is composed of three classes and a main program, and the first

where a module needs to #include two user-defined header files. At this level of complexity, we begin to
have a problem with the #include statements: the code will not compile with too few of them, or if a
header is included twice in the same module or if there is a circular include.

• The #pragma statement on the first line tells the compiler to include this file once, but if it has already
been included in a module, do not include it again. It is good style to include the #pragma once whether
or not it is needed. In this particular program, it is needed in the file trans.hpp but not in the files
charges.hpp and flex.hpp.
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#pragma once

#include <iostream>

using namespace std;

#include "trans.hpp"

typedef Transaction BT;

#define START 4 // Default length for initial array.

class Flex {

private: // -----------------------------------------------------------------

int max = START; // Current allocation size.

int n = 0; // Number of array slots that contain data.

BT* data = new BT[max]; // Allocate dynamic array of base type BT.

void grow(); // The Flex is full, so double the allocation.

public: // ------------------------------------------------------------------

Flex() {} // An array of Transactions.

∼Flex() { delete[] data; } // Free dynamically allocated data.

void push_back( BT data ); // Store data and return the subscript.

int size() { return n; } // Provide read-only access.

BT& operator[]( int k );

void print(ostream& out) { for (int k=0; k<n; ++k) out <<data[k] <<endl; }

};

Figure 16.11. Flex: a growing array.

Second box: dealing with the environment.
• This is a generic class, defined in terms of an abstract base type, BT. This class can be used to hold data

of any base type by defining BT to mean the target type. We use Flex in the selection sort program to
hold a series of transactions. To make that possible, we need to include the transaction header here.

• We use a typedef to say that the BT, is really the Transaction class.

Third and fourth boxes: Private data members.
• In Flex, as in most classes that define data structures, the data members of the class must not be modified

by any other class. If they were modified, the data structure would malfunction. Thus, the data members
are private.

• In this class, it is possible to give meaningful initializations for the data members at compile time. We
choose an arbitrary small number, START as an initial allocation size. If it is too large, little memory is
wasted. If it is too small, it will grow. We don’t need to guess, and this number does not need to depend
on the application.

• Since the initial array length is a constant, and a new Flex is always empty, it is possible to initialize all
of the data members in the class declaration. That permits us to have a constructor that does nothing.

Fifth box: a private function.
• Just as it would be disastrous to let another class modify n or max, it would make a mess if another

class called grow() at the wrong time. Therefore the grow() function is private.
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#include "flex.hpp"

// ----------------------------- Store object in array. Grow first, if needed.

void Flex ::

push_back( BT obj ) {

if ( n == max ) grow(); // Create more space if necessary.

data[n] = obj;

++n;

}

// ---------------------------------------------- Double the allocation length.

void Flex ::

grow() {

BT* temp = data; // Hang onto old data array.

max *= 2;

data = new BT[max]; // Allocate a bigger one.

for (int k=0; k<n; ++k) data[k] = temp[k]; // Copy info into new array.

delete temp; // Recycle (free) old array.

}

//------------------------------------------- Access the kth char in the array.

BT& Flex ::

operator[]( int k ) {

if ( k >= n || k < 0 ) fatal("Flex bounds error.");

return data[k]; // Return reference to desired array slot.

};

Figure 16.12. Flex functions.

• In this class, it is possible to give meaningful initializations for the data members at compile time. We
choose an arbitrary small number, START as an initial allocation size. If it is too large, little memory is
wasted. If it is too small, it will grow. We don’t need to guess, and this number does not need to depend
on the application.

• Since the initial array length is a constant, and a new Flex is always empty, it is possible to initialize all
of the data members in the class declaration. That permits us to have a constructor that does nothing.

Sixth box: the constructor and destructor.
• The Flex constructor is empty; there is no work to be done. All the initializations were done in the fourth

box.

• The Flex class does dynamic allocation, therefore it must take the responsibility of freeing the dynamic
memory when it is no longer needed. This is what a destructor is for.

• The name of a destructor is a tilde (∼) followed by the name of the class. All dynamic memory blocks
created anywhere in the class must be deleted by the destructor.

• There is only one dynamic memory block, an array, and its pointer is stored in data. Therefore, we write
delete[] data;

Seventh box and Figure 16.12: the class functions.
• Two of the class functions are inline, and one-line definitions are given here. They are size() and
print(). The other three functions, grow(), push_back(), and operator[]are defined in flex.cpp, the
implementation file, which is shown in Figure 16.12 and included in the comments here.
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• The names push_back() and size are the same as the names of the corresponding function in the
standard vector class.

• push_back().

This function is the only correct way to store new data in the Flex array. It tests for a full array and, if
found, extends the array. The class member n is always an accurate count of the number of objects in
the array.

• grow().

The grow() function was explained in Section 16.4. It is a private function because only the Flex class
should ever use it. It is called when there is a request to store another thing in the Flex array but the
array is full.

• subscript().

To define the subscript operator for this class, we write a definition of operator []( int ); Writing
operator definitions is beyond the scope of this text. However, an operator definition is necessary here
to allow subscript to be used in the ordinary way. The student does not need to understand this code at
this time.

• In this definition, the Flex class delegates the subscript operation to the dynamic array and returns the
value that the array subscript returns. The return value is the address of one slot in the array. This
allows us to use subscript for either reading or writing an array element.

• Note that the code performs a bounds check, and will not allow storing into a subscript outside of the
filled portion of the Flex array.

16.5 Application: Insertion Sort

The first application of the Flex array is an insertion sort algorithm. Insertion sort is one of two easy sorting
algorithms that are often useful and should be learned7.

On the surface, the insertion sort algorithm looks a lot like the selection sort studied earlier; both have an
outer loop that executes n−1 times to sort n items. Both have an inner loop, but this is where the similarity
ends. When doing selection, we repeatedly examine the remaining unsorted items to find the largest one.
We must look at all of them to find the largest. When found, we swap it with the last unsorted value in the
array.

In the insertion sort algorithm, the data array is divided into two segments: the sorted portion first,
followed by the unsorted portion. To sort, we pick the first unsorted item and then scan backwards through
the list of sorted items from the high end to the beginning of the array, looking for the correct position for the
new item. As soon as we locate an item smaller than the one being inserted (assuming we sort in ascending
order), we stop looking. On the average, this search for the correct insertion slot takes fewer comparisons
than looking through the remaining unsorted items to find the next smallest item during a selection sort.

Since we can’t just create new space for a value between two others in an array; we have to move some
of them to make space for an insertion. (See Figure 16.13.) We do this by shifting each sorted data item
one slot toward the end of the array as we pass it during our search, in essence moving a hole backwards
along the array, so that it is always adjacent to the item we are testing. When the proper insertion slot is
found, we simply store the current value in our hole. This sequence of movements requires more work than
the single data swap in a selection sort. However, because the number of comparisons needed is smaller,
insertion sort usually is faster.

This insertion process is repeated n-1 times. After each of the n-1 passes, the sorted part is one item
longer and the unsorted part is one item shorter. An example is illustrated by the diagrams in Figure 16.16,
which show the intermediate states of an array of 10 items after each pass.

7The other useful easy sort is selection sort, which is presented later in this chapter. A third sort in the same general category
is bubble sort, which should never be used for any purpose because it can take twice as long to execute as insertion sort.
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This represents the fifth pass through the array.

3.1

hole-1 hole

2.2.83 2.3 41  109  

hole-1 hole

2.2.83 2.3 41    109 

hole-1 hole

2.2.83 2.3    41 109 

hole-1 hole

2.2.83 2.3 3.1   41 109 

Ready to begin pass #5, with newcomer:

Step 1: newcomer < *(hole-1), so move data and hole:

Step 2: newcomer < *(hole-1), so move data and hole:

Step 3: newcomer > *(hole-1), so break out of 
loop and store newcomer in the hole:

Figure 16.13. Inner loop of the Insertion sort.

The insertion algorithm is implemented by the function insertionSort() listed in Figure 16.18. Point-
ers are used, instead of subscripts, to access the data array. The main program for insertion sort is in
Figure 16.15. Following that are the controller class, Sorter and the data class, Transaction. The struc-
ture of the application is diagrammed in Figure 16.16.

The controller class uses a Flex array to store all the data from an input file. Flex arrays are dynamically
allocated data structures that create, manage, and free the dynamic memory they use. The client class, in
this case Charges, can rely on this dynamic flexibility but does not need to take any responsibility for it,
since all management is handled by the Flex class.

Notes on Figure 16.15: Insertion sort. This is the main program for the insertion sort. It uses the
Sorter class defined in Figures 16.17 and 16.18 and the Flex array class in Figures 16.11 and 16.12.

First box: Dealing with the environment.
• This main program uses the class Sorter, and includes the header for that class.

• The #define statement supplies the name of the input file as a quoted string, a form that is appropriate
for opening the file.

Second box: Opening the file.
• The input stream is declared and opened in the same line. This is better style than using two lines to do

the two actions separately.

• As usual, we test for a properly opened file. The error comment has three parts: it begins and ends
with a quoted string and has the #defined symbol between the quoted strings. This uses two advanced
features of the C language: macros and string merging.

• Macros: #define commands are interpreted at compile time, not at run time. Wherever you write the
#defined symbol, the compiler’s preprocessor removes what you wrote and replaces it by the definition
of the symbol. So these two lines:

ifstream fIn( FILE );

if (!fIn.good()) fatal( "Cannot open " FILE " for reading."); are replaced by this code
prior to compilation:

ifstream fIn( "insr.in" );

if (!fIn.good()) fatal( "Cannot open " "insr.in" " for reading.");

• String merging: Whenever two strings are written in a program and the quote marks are separated by
nothing except possible whitespace, the compiler will merge the two strings into a single string. In this
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Sorting 10 items with a pointer-based insertion sort.

412.3
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1.7 132 109 5.4.83 3.1 6.9

1.7 132412.3 2.2 109 5.4.83 3.1 6.9before sorting

end

hole pass
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newcomer
2.2
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newcomerhole pass
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nums.data

Figure 16.14. Insertion sort.
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#include "sorter.hpp" // File: main.cpp

#define FILE "insr.in"

int main( void ) {

cout <<"Insertion Sort Program for type float\n";

ifstream fIn( FILE );

if (!fIn.good()) fatal( "Cannot open " FILE " for reading.");

Sorter nums( fIn );

cout << nums.getN() <<" numbers were read; beginning to sort.\n";

nums.insertionSort();

cout <<"\Data sorted, ready for output\n";

nums.print( cout );

return 0;

}

Figure 16.15. Insertion sort using a dynamic array.

case, the result from the preprocessor is three adjacent strings, and they are merged to form one string,
thus:

if (!fIn.good()) fatal( "Cannot open insr.in for reading.");

This is what the compiler sees and compiles: a single string.

Third box: Doing the work.
• This main function follows the ordinary form for an OO main program: (1) Call the constructor to create

an object. (2) Use it to get the work done. (3) Print the results.

• We don’t try to sort the data or print it here in the main function. The Sorter class is the expert on this
data set, so we delegate the sorting and printing operations to the expert.

A call-chart for the insertion sort.

   ~Flex
 Fig 16.11

   main 
Fig 16.15

Diagram 
Fig16.14

constructor 
Fig 16.18

  insertionSort
  Fig 16.18

print
Fig16.18

push_back
Fig 16.12

grow
Fig 16.12

   new [ ]  

 constructor
Fig 16.18

[ ]
Fig 16.12

getN
Fig16.17

size
Fig 16.11

  ~Sorter
 Fig 16.17

Sorter::
Fig 16.17

Flex::
Fig 16.11

   delete[ ]
  

Figure 16.16. Insertion sort.
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#pragma once // File: sorter.hpp

#include "tools.hpp"

#include "flex.hpp"

class Sorter {

private:

Flex data; // Dynamic data array.

istream& inFile;

public:

Sorter( istream& inF ); // Constructor for the controller.

void print( ostream& out ); // Output the data array.

void insertionSort();

int getN() { return data.size(); }

};

Figure 16.17. The Sorter class.

• After each phase is a line of output. This kind of output is important during program development and
debugging. It also lets the user know what is going on inside the program.

Notes on Figures 16.17 and 16.18: The Sorter class. This is the header file for the Sorter class. The
function definitions are in Figure 16.18. This class is used in the insertion sort program in Figure 16.15.

First box: Dealing with the environment.
This controller class instantiates a Flex array and uses it to store floats. Therefore, we include the header
file for Flex arrays. By including the tools header file, we bring in all the standard headers we are likely to
need, and the required namespace declaration.

Second box: Data members. There are only two data members: an open istream to supply the data and
a Flex array to store it. They are not initialized because we do not have the information, at compile time,
to write meaningful initializations. Both will be initialized by the constructor.

Third box Figure 16.17 and first box, Figure 16.18: the constructor
• Main will open the input file and pass an open istream& as a parameter. The only way to use an &

parameter is a ctor (constructor initializer), shown in the small box on the first line of the constructor.
The ctor takes the parameter (named inF) and stores it in the data member named inFile.

• Bringing a database from a file into the program is something that a constructor often does. It is part
of making the class ready to use.

• The second box in the constructor is a loop that reads one line of the input file at a time and does a
minimal check for read errors and end-of-file. If either happens, the loop ends and the program processes
the data it already has.

• Any illegal character in the file will end the input and will not warn the user about the problem. This is
not a good way to design an application! It is done here as a bad example of file handling. The selection
sort program later in this chapter does a better job of error handling.

• If there was good data, then we push it onto the end of the Flex array. If the array is full, it will grow.
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Fourth box in Figure 16.17: an accessor. The getN() function is a typical accessor. The main function
calls it in order to provide high-quality user feedback. It is not used by the sorting algorithm. It is inline to
increase efficiency.

Fourth box in Figure 16.17 and second box in Figure 16.18: sorting.
• This sort algorithm is written to use pointers, not subscripts. Note that pointers can be incremented

and decremented, just like subscripts, and that we use an asterisk here instead of a subscript to access a
data value.

• Note that this code uses helpful names, newcomer and hole, instead of using variables named i and j.
Using meaningful names makes code far, far easier to understand.

Sorter::Sorter( istream& inF ) : inFile( inF ) {

float temp;

int k;

for (k=0; ; k++) {

inFile >> temp;

if (! inFile.good()) break;

data.push_back( temp );

}

}

void Sorter::

insertionSort() {

float* head = &data[0]; // The beginning of the array.

float* end = head + data.size(); // Off-board sentinel.

float* pass; // Starting point for pass through array.

float* hole; // Array slot temporarily containing no data.

float newcomer; // Data value being inserted on this pass.

for (pass = &data[1]; pass < end; ++pass) { // Outer loop; n-1 passes.

newcomer = *pass; // Pick up next item,

// ...and insert into the sorted portion at the head of the array.

for (hole = pass; hole > head; --hole) {

if (*(hole-1) <= newcomer) break; // Insertion slot is found.

*hole = *(hole-1); // Move item back one slot.

}

hole = newcomer;

}

void Sorter::

print( ostream& outFile ) {

float* cursor = &data[0];

float* end = cursor + data.size(); // an off-board sentinel

for( ; cursor<end; ++cursor) { // Use a pointer to walk the array.

outFile << *cursor <<’\n’;

}

}

Figure 16.18. Insertion sort using a Flex array.
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• The logic of the insertionSort() algorithm is as follows:

1. To sort n items, write an outer loop that will execute n− 1 times.

2. In the body of the loop, pick up a copy of the first unsorted data value and call it the newcomer. A
list of one item is always sorted, so start the first pass with the value in data[1]. This leaves a hole
in the array at subscript 1.

3. Each time around the outer loop, walk backwards from the hole to the head of the array. At each
step compare the newcomer to the value in the current array slot. If the newcomer is smaller, move
the other value into the hole, then decrement the hole-pointer and repeat the inner loop.

4. Eventually, we come to either the end of the array or a slot containing a value smaller than newcomer.
At this point, the current hole position is where newcomer must be inserted, so we terminate the
inner loop and put the newcomer in the hole.

5. We might shift as few as no items or as many as currently are in the sorted portion of the array.
On the average, we move about half of the sorted items.

6. The data is sorted after the last value in the array has been inserted into its place.

Fourth box in Figure 16.17 and third box in Figure 16.18: printing.
• The print function uses a pointer-loop to access the data values. To set it up, pointers are defined for

the beginning and end of the data in the Flex array.

• As is customary in C and C++, the end pointer is off-board, that is, it points at the first unoccupied
array slot, not the last occupied slot. Using an off-board pointer makes it easier to write a loop. The
language standard guarantees that this is OK.

• At each step, one number is printed with whitespace to separate it from all the other output. It is easy
to forget that the whitespace is essential. When forgotten, the output is unreadable.

16.6 Selection Sort

In this section, we present a second version of the selection sort algorithm. This algorithm was first presented
in C in Figure 10.29. The version presented here has been transformed to an object-oriented design imple-
mented in C++. Although the logic is the same, the organization of the code is totally changed. The main
program is now brief and all the work is done in a controller class (Charges) and a data class (Transaction).

The form and content of this program are very much like the insertion sort program, above. Details are
different, and the complexity is greater because the data being sorted are objects, not simple numbers. The
controller class uses a Flex array to store the data from an input file. The client class, in this case Charges,
can rely on this dynamic flexibility but does not need to take any responsibility for it, since all management
is handled by the Flex class.

Notes on Figure 16.19: Selection sort.

First box: Dealing with the environment.
• This main program uses the class Charges, and includes the header for that class.

• The #define statement supplies the name of the input file as a quoted string, a form that is appropriate
for opening the file.

Second box: the body of main(). The code here is exactly parallel to the insertion sort code in Figure
16.15. The comments will not be repeated here.

Notes on Figure 16.20: The Charges class. This is the header file for the Charges class. The function
definitions are in Figure 16.21. This class is used in the selection sort program in Figure 16.19. The unboxed
parts of this class are exactly parallel to the Sorter class in Figures 16.17 and 16.18, so the comments will
not be repeated here.
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This is the main program for the selection sort. It uses the controller class, Charges, in Figures 16.20
and 16.21. The data class, Transaction, is in Figures 16.22 and 16.23.

#include "charges.hpp"

#define FILE "charges.txt"

int main( void ) {

cout <<"Club Snack Bar Accounting Program\n";

ifstream fIn( FILE );

if (!fIn.good()) fatal( "Cannot open " FILE " for reading.");

Charges snacks( fIn );

cout << snacks.getN() <<" transactions were read; beginning to sort.\n";

snacks.sort();

cout <<"\nData sorted, ready for output\n";

snacks.print( cout );

return 0;

}

Figure 16.19. Selection sort using a dynamic array.

This is a controller class. It is instantiated by the main function in Figure 16.19 and carries out the logic of
the application. To do this, it creates and operates on an array of data objects (Transactions).

#pragma once // File: charges.hpp

#include "trans.hpp"

#include "flex.hpp"

class Charges {

private:

const char* name = "ECECS Snack Club";

istream& inFile;

Flex mems;

int findMaxID( int last);

public:

Charges( istream& in );

int getN() { return mems.size(); }

void sort();

void print( ostream& out );

};

Figure 16.20. The controller class: Charges.
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First box: Dealing with the environment.
This controller class instantiates a Flex array and uses it to store Transactions. Therefore, we include the
header files for both classes.

Second box in Figure 16.20 and second box in Figure 16.21: a private function.
This class has one private function and three public functions. The findMaxID() function is private because
it intended for use by the public sort function, and not for use by a client class. The code could be written
as an inner loop in the sort function, but the selection sort algorithm is clearer this way.

Third box Figure 16.20 and first box, Figure 16.21: the constructor
• The first inner box in the constructor reads one line of the input file and does a complete error check.

The first if statement looks for a normal end of file and leaves the input loop if it is found.

• The second if statement tests for all other input errors. If the stream state is not good, no further input
can happen. It must be corrected. We reset the stream’s error flags to the good state by calling clear().

• The most minimal action that could possibly correct the problem is to eliminate the character that caused
the input error. ignore(1) does that job.

• If there was good data, then we use it to instantiate a new transaction and immediately put the transaction
into the Flex array. If the array is full, it will grow.

Fourth box in Figure 16.20 and third box in Figure 16.21: sorting.
• The sort() function implements a selection sort:

1. To sort n items, write an outer loop that will execute n− 1 times.

2. Each time around the loop, find the largest value in the array between slot 0 and slot n − 1, and
swap it to the end of the array.

3. Subtract one from n and repeat the loop.

• Note that this code uses helpful names, last and where, instead of using variables named i and j. Using
meaningful names makes code far easier to understand.

Fourth box in Figure 16.20 and fourth box in Figure 16.21: printing.
• The last class function, print(), relies on two major OO techniques: expertise and delegation. The

Flex array is the expert on storing Transactions and it knows how many have been stored. Similarly, the
Transaction class is the expert on formatting and printing a transaction. The Charges class is not expert
on either of these things.

So Charges::print() calls on mems, the Flex array to find out how many items to execute its print loop,
then calls Transaction::print() to do the printing. In both cases, the action is delegated to the expert.

Notes on Figures 16.22 and 16.23: Transactions. This is the data class. It is used in the selection
sort program in Figure 16.19.

First box, Figure 16.22: Dealing with the environment.
• This header file must be included twice: in flex.hpp and in charges.hpp because both classes refer to

Transactions. Therefore the #pragma once declaration is essential.

• By including the tools header file here, we make it unnecessary to include it in flex.hpp and charges.hpp

Second box, Figure 16.22: Data members.
This very simple class records one transaction made by one person. It has only a member’s ID and the price
of the item he took from the snack bar.
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Charges::Charges( istream& in ) : inFile( in ) {

int ID;

float owes;

for (;;) { // Growing array will hold all data in file.

inFile >> ID >> owes;

if (inFile.eof()) return;

if (!inFile.good()) { // Remove faulty line after input error.

inFile.clear();

cerr <<"Bad data on line " <<mems.size() <<endl;

}

mems.push_back( Transaction( ID, owes ) );

}

}

int Charges:: // Find the maximum ID in the array

findMaxID( int last ) {

int finger = 0; // Put your finger on the first ID.

// Now compare the fingered value to the values that follow it.

for (int cursor = 1; cursor < last; ++cursor) {

// If next is bigger, move your finger to it.

if (mems[cursor].bigger( mems[finger] )) finger = cursor;

}

return finger; // Your finger is on the biggest value.

}

void Charges::

sort() {

int last = mems.size(); // Number of actual data items in the array.

int where; // Position of largest value in the index array.

while (last > 0 ) {

where = findMaxID( last-- );

// Swap the two transactions.

Transaction temp = mems[where];

mems[where] = mems[last];

mems[last] = temp;

}

}

void Charges::

print( ostream& out ){

for( int k=0; k<mems.size(); ++k ) mems[k].print(out);

}

Figure 16.21. Functions for the Charges class.
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This is a data class. It is used by the Charges class, and indirectly, by the main program in Figure 16.19.

#pragma once // File: trans.hpp

#include "tools.hpp"

// ----------------------------------------------------------------------------

class Transaction {

private:

int ID; // Transaction number

float owes; // Amount owed by Transaction

public:

Transaction() = default;

Transaction( int ID, float owes );

ostream& print( ostream& out );

bool bigger( Transaction& b ) const { return ID > b.ID; }

};

inline ostream& operator<<(ostream& out, Transaction& t){ return t.print(out); }

Figure 16.22. The data class: Transaction.

Third box, Figure 16.22 and second box in Figure 16.23: Constructors.
• There are two constructors in this class. The default constructor is called by the system when a Charges

object is created because Charges contains a Flex array of Transactions. When an array is created for
any type, a default constructor is required for that type.

• The second constructor is the most ordinary form there is: it has one parameter per data member, used
to initialize the new object.

• The definition of this method in Figure 16.23 is also very ordinary: one assignment statement per pair
of a parameter and a data member. The parameters have the same names as the data members of the
class, so this-> must be used to refer to the data members. If the names are different, this-> is not
needed.

• No destructor is needed because there is no call on new anywhere in this class.

Fourth box, Figure 16.22: Comparing two transactions.
• The function bigger() is public and is called from Charges::findMax() to compare two transactions.

The Transaction class is the expert on which transaction is bigger, so the Charges class delegates the
comparison to it. This is a better design than having Charges::findMax() do the comparison itself,
after using a getter function to get each of the money amounts.

• We made the function bigger() inline because it fits on one line. Being inline improves the time and
space efficiency of short functions.

Fifth box, Figure 16.22 and third box, Figure 16.23: Printing.
• The Transaction class declaration is followed by an inline function definition for operator<<, the output

operator. Operator extensions are beyond the scope of this book, and the student does not need to
understand this code at this time.

• Defining this method for operator<< enables us to use << to print Transactions. The definition, itself,
simply reaches inside the class to call the public print function in the Transaction class.
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These are the function definitions for teh Transactions class in Figure 16.22

#include "trans.hpp" // File: trans.cpp

// ----------------------------------------------------------------------------

Transaction:: Transaction( int ID, float owes ) {

this->ID = ID;

this->owes = owes;

}

ostream& Transaction:: print( ostream& out ) {

return out <<"[" <<setw(2) <<ID <<"] " <<fixed <<setw(7) <<setprecision(2)

<<owes <<endl;

}

Figure 16.23. Functions for the data class, Transaction.

• Transaction::print() returns an ostream& result which is then returned again by operator<<. This
allows us to use one line of code with a chain of calls on << to print several things, including a Transaction
and a newline.

16.7 What You Should Remember

16.7.1 Major Concepts

Pointer operations. To use pointers skillfully, several pointer operations must be understood:

• Direct assignment. To set a pointer, p, to point at a selected referent, r, write p = r for arrays or
functions but write p = &r for structures or simple variables.

• Indirect assignment. To assign a new value, v, to the referent of pointer p, use *p = v (v cannot be
an array or function).

• Direct reference. To copy pointer p into another pointer q write q = p.

• Indirect reference. To use the referent of pointer p in an expression, write *p for simple variables and
array elements, p->member_name if p points at a structure, and simply use p(...) if it points at a
function.

• Pointer increment. To make pointer p point to the next (or previous) slot of an array, write ++p (or
--p).

• Pointer arithmetic. To calculate the number of array slots between two pointers, p and q (where q

points to a later slot), write q - p. Accessing an array element has two equivalent forms; *(p+5) and
p[5] reference the same value. The latter is preferred.

• Pointer comparison. To test whether two pointers, p and q, refer to the same object, simply use p ==

q. To compare the values of the referents, compare *p to *q using an appropriate comparison operator
or function (== or your own function for comparing two objects).

Array and pointer semantics. In a very strong sense, C doesn’t really have array types. An array is
simply a homogeneous, sequential collection of variables of the underlying type. We can do nothing with
an array as a whole except initialize it and apply sizeof to it. When a pointer refers to an array, whether
subscripted or not, it refers to only one slot at a time.
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Array allocation time. If an array is declared with square brackets and a #defined length, its size is
fixed at compile time and can be changed only by editing and recompiling the source code. At very little
additional cost in terms of time and space, many programs can be made more flexible by using dynamic
memory. The maximum expected amount of data is determined at run time, and storage is then allocated
for an array of the appropriate size. Such an array is declared in the program as an uninitialized pointer
variable, p. Then at run time, either malloc() or calloc() is called to allocate a block of memory, and the
resulting starting address is stored in p. (Of course, this must be done before attempting to use p.)

Resizeable arrays. It is possible to resize a dynamic array, making it either longer or shorter. If the array
is lengthened, it may be reallocated starting at a new memory address. Therefore, when implementing your
own growing data structures, you must copy all the data from the old block to the new block. Resizing an
array is an appropriate technique for applications in which the amount of data to be processed cannot be
predicted until after processing has begun.

Recycling storage. A program that uses dynamic memory is responsible for freeing that memory when
no longer needed. Blocks used during only one phase of processing should be recycled by calling delete or
delete[] as soon as that phase is complete. Some memory blocks remain in use until the end of the program.
If all is working properly, such blocks will be freed by the system automatically when the program ends, and
so the program should not need to free them explicitly. However, relying on some other program to clean up
after yours is risky. It is better if every program frees the dynamic storage it allocates. Recycling memory
is especially important if a program requests either several very large memory blocks or many smaller ones.
Failure to free salvageable blocks can cause program performance to deteriorate. If the virtual address space
becomes exhausted by many requests to allocate memory, and none to free it, there will be a fatal run-time
error.

Sorting. Insertion sort is a simple sorting algorithm, implemented here using a double loop that moves
data within the array. The sorting strategy is to pick up items from the unsorted part of the data set and
insert them, in order, into the sorted portion. Insertion sort should not be used for large data sets, because
it is very slow compared to other sorts such as quicksort, which is covered later in this book. However, it is
considered the best sorting algorithm for small data sets (up to about 25 or 30 items on a modern computer).

16.7.2 Programming Style

Data encapsulation. Object-oriented languages such as C++ permit the programmer to define objects
and data structures in a way that encapsulates everything about them. The Flex array implements this
philosophy – it gathers together the information about an object into a structure and treats it as a single
object.

Pointers vs. subscripts. A pointer can be used (instead of a subscript) to process an array. The scanning
technique of using cursor and sentinel pointers is easy and very efficient when the array elements must be
processed sequentially. When random access to elements is made, using a subscript is more practical with
either an array name or a pointer to an array.

Sorting preferences. Always use the appropriate sorting algorithm for a particular situation. Speed
usually is the deciding factor. For small data sets, the insertion sort performs well. For larger data sets, a
fundamentally different sort is needed, like the quicksort algorithms discussed in Chapters 19 and 20.

Coding idioms. Errors with pointers are hard to track down because the symptoms may be so varied.
Any computation or output that happens after the original error could be invalid because the program may
be storing information in the wrong addresses and, thereby, destroying the data used by the rest of the
program. This kind of error generally requires that the whole job be rerun and is doubly frustrating because
the cause of the error can be hard to localize and, therefore, hard to fix. We address this problem by using
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coding idioms, presented throughout this chapter, that ensure all references to an array (either through
subscripts or through pointers) refer to slots that are actually part of the array. A few of these are

• Initialize pointers to nullptr. Using a null pointer should cause the program to terminate quickly and
make the problem easier to find.

• When referencing an element, i, of an array using a pointer, use the syntax p[i] rather than *(p+i).

• Use an off-board sentinel pointer to mark the end of an array for a scanning loop.

16.7.3 Sticky Points and Common Errors

Pointers out of bounds. One danger of pointers in C++ is pointing at something unintended. Common
errors are to use a subscript that is negative or too large or to increment a pointer beyond either end of an
array and then attempt to use the pointer’s referent. You cannot use a declaration to restrict a pointer to
point at a legitimate array element. Also, C++ does not “enforce” the boundaries of an array at run time.
In general, it does not trap pointer errors. An attempt to use a pointer that is out of bounds (or NULL) may
cause the program to crash but, on some systems, may not be detected at all; the program will simply walk
on adjacent memory values.

Uninitialized sentinel. Another common error is to use a pointer to process an array but forget to initialize
the end pointer. The loop almost certainly will not terminate at the end of the array. After processing the
actual array elements, the cursor will fall off the end of the array and keep going until, eventually, the
program malfunctions or crashes. When you use a sentinel value, be careful to set your loop test correctly,
depending on whether you are using an on-board or off-board pointer.

Pointers and arrays. Since an array name, without subscripts, is translated as a pointer to the first slot
in the array, some books say that “an array is a pointer.” However, this clearly is not true. Since we can
use an unsubscripted array name in almost any context where a pointer is expected,8 we, accurately, could
say that an unsubscripted array name becomes a pointer to the beginning of the array. But an array is not
a pointer. A pointer requires only a small amount of storage, often 4 bytes.9 In contrast, an array is a series
of storage objects of some given type and can occupy hundreds of bytes. Conversely, a pointer certainly is
not an array, it is not limited to use with arrays and cannot be used where an array is needed unless it refers
to an array.

A common error of this sort is to attempt to use a string variable for input, but forget that an array
must be declared to hold the characters that are read in. When the pointer is dereferenced, the program
will usually crash.

Wrong reference level. The most common reason for pointer programs to fail is that the wrong number
of ampersands or asterisks is used in an expression. Although most compilers give warning comments about
mismatched types, they still finish the translation and generate executable code. Do not ignore warnings
about pointer type errors.

Incorrect referencing. It also is common to write syntactically correct code with pointers that do not do
what you intend. For example, you may wish to change the value of a pointer’s referent and, instead, change
the value of the pointer itself. Also, you may forget to insert parentheses in the proper places, such as using
*p+5 rather than *(p+5) to access an array element. Finally, you may attempt to use a pointer of one data
type to access the memory area in which data of another type are stored. Dereferencing such a pointer will
result in a garbage value.

8For instance, we cannot do an assignment such as arrayname = pointer.
9This is true of many modern computers. However, some computers may have pointers of different lengths. Microprocessors

in the Intel 80x86 family have two kinds of pointers, local (near pointers) and general (far pointers). The near pointer occupies
only 2 bytes of storage. In the near future, computers may have such large memories that they will need more than 4 bytes for
a pointer.
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Precedence. When dereferencing a pointer using *, don’t be afraid to use parentheses around the deref-
erenced value when other operators are involved, thereby making sure that the proper precedence is both
understood by you and used by the computer. Watch out for the precedence of * in an expression involving
pointers, such as *p++. Depending on the situation, this expression might have been intended to increment
the contents of the address in p, but at other times it might have been necessary to increment the contents
of p and then use the new address. Use parentheses where needed for clarity.

Pointer diagrams. Errors sometimes stem from having an unclear idea about what the ampersand and
asterisk operators really mean. The best way to avoid such trouble is to learn to draw diagrams of your
pointers, objects, and intended operations, following the models at the beginning of this chapter. Having a
clear set of diagrams can help reduce confusion when you begin to write code.

Pointer arithmetic and logic. It is not meaningful to use address arithmetic on a pointer unless the
pointer refers to an array. Similarly, it is not meaningful to compare or subtract two pointers unless they
point at parts of the same array.

16.7.4 Vocabulary

These are the most important terms and concepts discussed in this chapter.
base type
referent
& (address of)
* (indirect reference)
-> (dereference or select)
new
delete
delete[]

pointer with subscript
pointer assignment
indirect assignment
pointer arithmetic
pointer comparisons
off-board sentinel
tail pointer (sentinel)
head pointer
scanning pointer (cursor)

scanning loop
dynamic allocation
constructor
destructor
Flex array
insertion sort
selection sort
reference level error

16.7.5 Self-Test Exercises

1. Given the array of values that follows, show the positions of the values after each pass of a selection sort
that arranges the data in descending order:

21 4 13 17 24 8 15

2. Repeat the previous problem on the data above using the insertion sort algorithm for ascending order.

3. Add the correct number of asterisks to the following declarations. Also add the correct number of
ampersands in the initializers so that the declaration actually creates the object described by the phrase
on the right. In the last item, replace the ??? by the correct argument.

(a) char a[12] = "Ohio"; An array of chars

(b) char b ; An array of char pointers

(c) char p = b[0]; A pointer to the first slot in an array of char pointers

(d) char q = new char[12]; A pointer to a dynamically allocated array of 12 chars

(e) char s = new ??? ; A pointer to a dynamically allocated array of 4 char pointers

4. You are given the declarations and diagram that follow:

typedef struct { double x, y; } PointT;
double x;
PointT tri[3];
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double* xp;
double* yp;
PointT* pp;

xptp x

??

.x .y

tri[0]

yp pp

0.0 0.0
.x .y

[1]

0.0 1.0
.x .y

[2]

1.0 0.0

(a) Change the declaration of tri to include an initializer for the values shown in the diagram.

(b) Declare another pointer named tp and initialize it to point at the beginning of the array that
represents the triangle, as shown.

(c) Declare and initialize triEnd, an off-board sentinel for the triangle.

5. Use the diagram in the preceding exercise to write the following statements:

(a) Write three assignment statements that make the pointers xp, yp, and pp refer to the objects
indicated.

(b) Using only these four pointers (and not the variable names tri and x), write an assignment statement
that copies the x coordinate of the last point of the triangle tri into the variable x.

(c) Using the array name tri and a subscript, store the value 3.3 in the referent of yp.

(d) Using the pointer tp and no subscripts, print the x coordinate of the last point in the array.

6. Using the representation for triangles diagrammed and described in problem 5, write a function, triIn(),
with no parameters that will read the coordinates of a triangle from the cin stream. Dynamically allocate
storage for the triangle within this function and return the completed triangle by returning a pointer to
the first point in the array. Use pointers, not subscripts, throughout this function.

16.7.6 Using Pencil and Paper

1. Show the changes that must be made to adjust the insertion sort program to sort numbers in descending
order. Then use the data array first presented in Figure 16.5 to trace the steps of execution of the new
insertion sort algorithm, as was done in Figure ??.

2. Given the data structure in the following diagram, look at each of the statements. If the operation is
valid, say what value is stored in x or in p2 by each of these operations. If the operation is not valid,
explain why. Assume that all numbers are of type double and all pointers are of type double*.

0.0 1.2 3.4 5.6 7.8 9.9

ar[0] [1] [2] [3] [4] [5]

p1 p2 p3

(a) x = *p1;

(b) x = p1 + 1;

(c) x = *(p2 + 1);

(d) x = *p2 + 1;

(e) p2 = p1[4];

(f) p2++;

(g) p2 = p1 + 1;

(h) p2 = p3 - p1;
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3. Given the data structure diagrammed in the next problem, write a type declaration and the set of variable
declarations to construct (but not initialize) the payroll structure, the pointer scan, and pointers (not
illustrated) end and p10, which will be used to process the structure.

4. Given the data structure in the following diagram, write a statement for each item according to the
instructions given. Assume that all numbers are type float. Declare the pointers appropriately.

12.30[0] 30.0

.payrate

payroll

.hours .pay

6.50[1] 15.5

10.00[2] 5.0

8.75[3]

(Off-board) [4]

21.5

scan

(a) Set scan to point to the first structure in the array, as illustrated.

(b) Set end to be an off-board pointer for the array.

(c) Move scan to the next array slot.

(d) Set pointer p10 to point at the slot with pay rate $10.00.

(e) Give the last person a $.50 pay raise.

(f) Calculate and store the pay for the person who is the referent of p10.

16.7.7 Using the Computer

1. Pointer selection.
Rewrite the selection sort program presented in Chapter 10 to use pointers for array searching and data
accessing as in the insertion sort program in this chapter.

2. Sorting a poker hand.
This program asks you to begin implementing a program that runs a poker game. To start, you will need
to define two enumerated types:

(a) Represent the suits of a deck of cards as an enumeration (clubs, diamonds, hearts, spades). Define
two arrays parallel to this enumeration, one for input and one for output. The input array should
contain one-letter codes: {’c’, ’d’, ’h’, ’s’}. The output array should contain the suit names
as strings.

(b) Represent the card values as integers. The numbers on the cards, called spot values, are entered and
printed using the following one-letter codes: {’A’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’,
’T’, ’J’, ’Q’, ’K’}. These should be translated to integers in the range 1 . . . 13. Any other card
value is an error.

(c) Represent a card as class with two data members: a suit and a spot value. In the Card class,
implement these functions:

i. Card::Card(). Read and validate five cards from the keyboard, one card per line. Each card
should consist of a two-letter code such as 3H or TS. Permit the user to enter either lower-case
or upper-case letters.

ii. void print(). Display the cards in its full English form, that is, 9 of Hearts or King of
Spades, not 9h or KS.

(d) Represent a poker Hand as array of five cards. In the public part of the class, implement the
following functions:

i. Hand::Hand(). Read and validate five cards from the keyboard, one card per line. Each card
should consist of a two-letter code such as 3H or TS. Permit the user to enter either lower-case
or upper-case letters.

ii. void sort(). Sort the five cards in increasing order by spot value (ignore the suits when
sorting). For example, if the hand was originally TH, 3S, 4D, 3C, KS, then the sorted hand would
be 3S, 3C, 4D, TH, KS. Use insertion sort and pointers.
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Value Description

Royal flush The suits all match and the spot values are T, J, Q, K, A
Straight flush The suits all match and the spot values are consecutive
Four of a kind The hand has four cards with the same spot value
Full house The hand has one pair and three of a kind
Flush All five cards have the same suit
Straight The spot values of all five cards are consecutive
Three of a kind The hand has three cards with the same spot value
Two pairs The hand has two pairs of cards
One pair The hand has two cards with the same spot value
Bust Five cards that include none of the above combinations

Figure 16.24. Poker hands, high to low.

iii. void print(). Display the five cards in a hand, one card per line.

(e) Write a main program to instantiate a Hand and test these functions.

3. Beginner’s poker.
The object of poker is to get a hand with a better (less likely) combination of cards than your opponents.
The scoring combinations are listed in Figure 16.24, from the best possible hand to the worst. Define an
enumerated type to represent these values and a parallel array for output. Start with a program that can
read, sort, and print a poker hand, as described in the previous problem. Add these functions to begin
implementing the game itself:

(a) Write nine private functions, one for each scoring combination. Each function will analyze the
five cards in this hand and return true if the hand has the particular scoring combination that
thefunction is looking for. (Return false otherwise.) Some of these functions might call others.

(b) int handValue(). Given a sorted hand, evaluate it using the scoring functions in Figure 16.24.
Return the highest value that applies. For example, the hand TS, JS, QS, KS, AS is a royal flush, a
straight flush, a flush, and a straight. Of these possibilities, royal flush has the highest value and
should be returned.

(c) Write a main program that reads two hands, calls the evaluation function twice, prints each hand
and its value, then says which hand wins, that is, has a higher value. If two hands have the same
value, then no one wins. (This is a slight simplification of the rules.)

4. Average students.
At Unknown University, the Admissions department has discovered that the best applicants usually
end up going to the big-name schools and the worst often do poorly in courses, so the school wants to
concentrate recruitment efforts and financial aid resources on the middle half of the applicants. You must
write a program that takes a file containing a list of applicants and prints an alphabetical list of the
middle half of these applicants. (Eliminate the best quarter and the worst quarter, then alphabetize the
rest.)

Define a class Applicant with data members of a name and a total SAT score. This can be done using a
simple iterative technique. Following the example in Figures 16.22 and 16.23, define a constructor, and
the functions print and bigger and smaller.

Read the data from a file named apply.dat into a Flex array of Applicants. Let N be the number of
objects in the Flex array.

Then begin a loop that eliminates applicants two at a time, until only half are left. Within this loop, let
first be a pointer to the first array element that is still included, last be a pointer to the last one, and
r (the number remaining) be initialized to N/2. Each time around the loop, first is incremented, last
is decremented, and r decreases by 2. At each step,
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(a) Using smaller() find the remaining applicant with the lowest SAT score and swap it with the
applicant at position first. Then increment first . Then find the remaining applicant with the
highest SAT score and swap it with the applicant at last. Then decrement last, subtract 2 from
r, and repeat.

(b) Quit when r ≤ N/2. Return the values of first and r.

When only half the applicants are left, use any sort technique to sort them alphabetically using an
insertion sort. Write the sorted list to a user-specified output file.



Chapter 17

Vectors and Iterators

This chapter gives an overview of the C++ standard template library, introduces the standard vector template
class and explains how it works by analogy to the Flex array. Two applications are presented that rely on the
dynamic nature of vectors.

17.1 The Standard Template Library–STL

A student of computer science must learn about data structures– these are classes that organize a collection of
data for efficient storage and retrieval. With any particular type of data structure, the operations performed
on it depend wholly on the structure and not on the data stored in it. STL is a library of pre-programmed
data structures written by the best C++ developers, in the form of templates.

A template is an abstract class definition. When a real type is supplied as a parameter, the template code
is instantiated with that type to create a real class definition that can then be compiled. The result is code that
is customized for the given type parameter. For example, STL provides a template for a stack class. Suppose
your program defines an Item class. Then you would create a stack of Items, named s, like this: stack<Item>
s;

In the implementation of the Flex class, a typedef for an abstract type BT was used to instantiate the Flex
for the desired base class. This use of typedef is an old C trick that is still useful, but it is not as powerful as
a template implementation.

The STL library. STL was designed with extreme care so that it is complete and portable and as safe as
possible within the context of standard C++. Among the design goals were:

• To provide standardized and efficient template implementations of common data structures, and of algo-
rithms that operate on these structures.

• To produce correct and efficient code. The level of efficiency is greater than Java and Python are able to
produce.

• To unify array and linked list concepts, terminology, and interface syntax. This supports plug-and-play
programming and permits a programmer to design and build much of an application before committing
to a particular data structure.

There are three major kinds of components in the STL:

• Containers manage a set of storage objects (vector, list, stack, map, etc). Twelve basic kinds are defined,
and each kind has a corresponding allocator that manages storage for it.

• Iterators are pointer-like objects that provide a way to traverse a container.

• Algorithms (sort, swap, make_heap, etc.) use iterators to act on the data in the containers. They are
useful in a broad range of applications.

In addition to these components, STL has several kinds of objects that support containers and algorithms
including key–value pairs, allocators (to support dynamic allocation and deallocation) and function-objects.

541
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Code Meaning

vector< BT > vc; Construct an empty vector of default size to hold BT objects.

vc.push_back( bto ) Insert an object at the end of the vector. Grow if necessary.
vc.pop_back() Remove and discard the most recently inserted object.
vc.clear() Remove all of the elements from the vector.

k = (int) vc.size() Return the number of objects stored in vc (type size_type)
c = (int) vc.capacity() Return the number of slots currently allocated (type size_type)
vc[k] = bto Store a value in the contents of the kth slot of the vector.
bto = vc[k] Return the contents of the kth slot of the vector.
bto = vc.front() Return the first element in the vector.
bto = vc.back() Return the last element in the vector.

Figure 17.1. Vector operations.

17.1.1 Containers

The C++ standard gives a complete definition of the functional properties and time/space requirements that
characterize each container class. The intention is that a programmer will select a class based on the functions
it supports and its performance characteristics. Although natural implementations of each container are sug-
gested, the actual implementations are not standardized: any semantics that is operationally equivalent to the
model code is permitted1.

Member operations. Some member functions are defined for all containers. These include: Constructors
a destructor, traversal initialization: (begin(), end()), size() (current fill level), capacity() (current allocation
size), and empty() (true or false).

Other functions are defined only for a subset of the containers, or for a particular container. For more
information, go to cplusplus.com and click on Reference, then Containers, then <vector> or the name of
another container.

17.2 The vector Class

The growing array is probably the most important data structure in use today. There are simple implemen-
tations, such as Flex array, and more powerful, general solutions such as the ArrayList class in Java and the
C++ template class vector.

Both FlexArray and vector copy the data values into the data structure. This means that the base type
must be copyable. Once copied, the vector “owns” the data object and will properly delete it at the end of the
program. If the base type of the vector is a pointer type, pointing to a dynamic object, you must write a loop
to delete those objects yourself.

It is essential to remember that any iterators in use are invalidated if the data structure grows or if elements
are removed from the data structure.

A vector works the same way as a Flex array: it tracks its current capacity and the number of items stored
in it. When those numbers are equal and more data is inserted, the vector “grows” in the same way that a
Flex array grows: by doubling its capacity. The FlexArray is simpler and easier to use for those things it does
implement. However, vector is a standard type that presents the same interface as the other STL container
classes. Figure 17.1 lists the most important vector functions. Many functions are omitted here; for more
information, consult a standard reference. In this chart, BT stands for the base type of the array, bto stands
for an object of that type, and vc stands for the vector object.

The vector class is not as restricted as a Flex array. It implements more functions, including swap() and
sort(). It can be used with any base type, whereas the implementation shown for Flex arrays cannot be used
to store objects that contain dynamic parts and have a destructor that manages them.

1Big-Oh notation is used to describe performance characteristics. In the following descriptions, an algorithm that is defined
as time O(n), is no worse than O(n) but may be better.
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Code Meaning

vector< BT >:: iterator p1, p2, pos; Create three iterators to point at vector elements.

p1 = vc.begin(); A iterator that points to the first element in the vector.
p2 = vc.end(); An offboard iterator pointing to the first unused slot in vc.
p1++ , ++p2 Move the iterator forward to the next array slot.
−−p2 , p2−− Move the iterator backwards to the previous array slot.
if (pos == vc.end()) Test whether an iterator has reached the end of the vector.

pos = find( p1, p2, bto ); Return pointer to first copy of bto in the vector; p2 for failure.
vc.sort (p1, p2) Sort the elements of the vector from p1 to but not including p2

Figure 17.2. Vector iterators.

Iterators. An iterator is a generalization of a pointer, and is used the way a pointer would be used. You
can think of an iterator as a “smart pointer”. All STL containers have associated iterator types that “know
about” the internal structure of the container and are able to move from the first element to the last element,
hitting each element on the way. It is important to remember that any iterators in use are invalidated if
the data structure grows or if elements are removed from the data structure. Figure 17.2 lists the essential
vector::iterator functions.

17.2.1 Using the STL vector Class

In this example program (Figure 17.3) we create a vector of ints and an iterator for it, populate the vector,
sort it, search it, remove some items and print it. The STL vector functions used are the default constructor,
push_back(), pop_back(), [ ], size(), sort(), find(), erase(), front(), begin(), and end().

Notes on Figure 17.3: Vector demo program.

First box: The environment.
• The vector header file is needed to use the vector class.

• The algorithm header file is needed to use the sort and find functions.

Second box: A global print function.
• This is just a demo program, not a proper OO design. There is no class declaration. main() instantiates a

vector and uses it. So there is nowhere to put a print function except in the global namespace. Because it
is not in a class, this function must take the vector as a parameter. It is passed by reference (&) to avoid
copying the data structure.

• The type qualifier const means that the print function will not modify the vector.

• Subscripts are used in this function to access the elements of the vector. Iterators are used for the same
purpose in box 4.

• We use vec.size() to find our how many ints are stored in the vector, then we use the information to
control the printing loop.

• An ordinary for loop was used in this example to illustrate calls on size() and and to give better quality
output. However, it is not the easiest or most modern way to write the print loop. Here is the modern
alternative, using a for-each loop:

void print(const vector<int>& vec) // print the elements of the vector
{

for (int k : vec) cout << k << endl;
cout << "--- done ---\n";

}

Read this code as “for each int (call it k) in vec (the vector of ints), print k”.
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#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

void print(const vector<int>& vec) { // print the elements of the vector

int count = vec.size();

for (int idx = 0; idx < count; idx++)

cout << "Element " << idx << " = " << v[idx] << endl;

cout << "--- done ---\n";

}

int main( void ) {

vector<int> ages; // create a vector of int’s

// insert some numbers in random order

ages.push_back(11); ages.push_back(82); ages.push_back(24);

ages.push_back(56); ages.push_back(6);

cout << "Before sorting: " <<endl;

print(ages); // print vector elements

sort(ages.begin(), ages.end());

cout << "\nAfter sorting: " <<endl;

print(ages); // print elements again

cout << "First element in vector is " << ages.front() << endl;

int val = 3; // search the vector for the number 3

vector<int>::iterator pos;

pos = find(ages.begin(), ages.end(), val);

if (pos == ages.end())

cout << "\nThe value " << val << " was not found" << endl;

cout << "\nNow remove last element and element=24 "<< endl;

ages.pop_back();

// remove an element from the middle; the hole will be closed up.

pos = find(ages.begin(), ages.end(), 24);

if (pos != ages.end()) ages.erase(pos);

print(ages); // print 3 remaining vector elements

return 0;

}

Figure 17.3. Vector demo program.
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Third box: Creating and filling the vector.
• To instantiate a vector, we must supply a base type enclosed in angle brackets. This type can be any defined

primitive type or class. Initially, this vector is empty.

• We put five elements into the vector (each goes at the end).

• Using push_back() is the only proper way to insert more data into a vector. Only push_back() will cause
the structure to grow.

Fourth box: Before and after sorting.
• ages.begin() is an iterator pointing at the first item in the vector. ages.end() is an offboard iterator

pointing at the vector slot not occupied by data. The functions begin() and end() are defined on all
containers.

• Calling sort(ages.begin(), ages.end()) sorts the data from the beginning to the end. A smaller portion
of the data can be sorted by supplying iterators to slots in the middle.

• The contents of the vector are printed before and after sorting. Here is the output, condensed into two
columns. Read the left column first.

• The contents of the vector are printed before and after sorting. Here is the output, condensed into two
columns. Read the left column first.

Before sorting:
Element 0 = 11
Element 1 = 82
Element 2 = 24
Element 3 = 56
Element 4 = 6
--- done ---

After sorting:
Element 0 = 6
Element 1 = 11
Element 2 = 24
Element 3 = 56
Element 4 = 82
--- done ---

Fifth box: Accessing and searching a vector.
• The call on ages.front() gets the first element in the vector but does not erase it from the vector.

• We prepare for searching by declaring an iterator named pos of the right kind for vector¡int¿.

• Like sort(), a call on find() takes two iterator parameters to mark the beginning and the end of the part
of the vector to be searched. The third parameter is the value to search for.

• The result of find() is an iterator pointing at the desired value, if it exists, or a copy of the second parameter
if the value is not in the array.

• In this box, the sought-for value is not on the vector, so the call pos = find(ages.begin(), ages.end(),
val), sets the iterator pos to point at ages.end(), the first vector slot not occupied by data. We test for
this condition and the error comment is printed.

• The output:

First element in vector is 6
The value 3 was not found

Sixth box: Removing data from a vector
• We can remove the last vector element by calling pop_back(). This function is very efficient: it simply

decrements the vector’s counter for data items.

• We can also remove any element that an iterator is pointing at. Here, we use find() to set an iterator to
the slot containing 24, then use erase() to remove the 24. This operation is slow because the remove()
function must shift each element that follows the 24 one slot to the left to fill up the hole.

• A final call on print() verifies the actions described here. The output is:

Now remove last element and element=24
Element 0 = 6
Element 1 = 11
Element 2 = 56
--- done ---
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The Pleasant Lakes Club
A group of neighboring families got together, bought two cottages on a lake, and incorporated as the Pleasant
Lakes Club. Their bylaws say that there must be no more than 20 families in the club, so that each family
can use a cottage one week per summer. Although the club currently has fewer than 20 families, they are
willing to buy another cottage if the membership grows.

The software.
The club secretary maintains a file of member information and decided to write a program to help with that
task. He has found that the sizes of families and the length of their names vary dramatically, so he decided
that his program will use dynamic allocation (vectors and strings) to organize this information. When a new
family joins, a Family object is created and pushed onto the membership vector. The family object contains
some family data and a vector that stores the name of each person in the family.

Figure 17.4. Problem Specification.

17.3 A 3-D dynamic object.

As a first example of the application of vectors, we implement the software described in Figure 17.4. Our
solution creates a vector of objects, where each object contains a vector of strings. We use this data structure
to model the membership of a small club. This is a 3-dimensional dynamic data structure: (1) the vector of
families can grow as large as needed, (2) the vector of names in each family can grow during input, and (3)
each name (a string) can be as long as needed.

This program is a preliminary version of a membership-management tool that intended to maintain a club’s
membership database file. The use of vectors and strings makes it easy to handle all the variability in the data.

The overall strategy is to read in the current file of members and display them so that the secretary can
see who is there and who is not. Then, if he has a new member family, the family information can be typed
in, stored in the vector, and ultimately written back out to the file.

Input and output for variable-length objects is significantly trickier that input for a flat database. The main
program and the functions in the FamilyT class must work closely together to handle the nature of the data
file and the possible kinds of input errors. They share responsibility for detecting end-of-file and for interacting
with the user.

The input file and the output file have the same name to make it easy to use the system over and over.
After reading the input, the file is closed and renamed as a backup file. Then a new file of the same name is
opened for output. By doing this, we avoid the danger of losing the data entirely if the program crashes while
the file is open for output.

Notes on Figure 17.5: The Pleasant Lakes Club.

First box: The environment.
• By including family.hpp we are including tools.hpp and, indirectly, including <vector>, <string>, <iostream>,
<fstream>, <iomanip>, several C header files, and the namespace command. Therefore we do not need to
list all of these things at the top of this program.

• File names are defined at the top of the program and used throughout. This is good practice. Names for
both the backup file and the output file are provided.

Second and fourth boxes of main program: The input and output files.
• The second box opens an input file in the ordinary way. The third box uses the file, and the fourth box

closes it.

• It is always good to close a file as soon as the program is done with it. In this case, however, it is not just
good, it is necessary. We want to rename the input file as a backup file, and we want to reuse the name for
a different file. It needs to be closed first.

• The rename() function is from the C standard I/O library (<cstdio>). If a backup file already exists, it
will be overwritten.

• After renaming the input tile, we open a new output file with the original file name. If a file already exists
by this name in the directory, it will be overwritten.
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#include "family.hpp"

#define FILE "famFile.txt"

#define BAKFILE "famFile.bak"

int main( void )

{

char reply; // For a work loop.

ifstream iFams( FILE );

if( !iFams.is_open()) fatal( "Cannot open " FILE " for input." );

cout <<"\n Pleasant Lakes Club Membership List \n";

vector<FamilyT> club;

for(;;) {

FamilyT f; // Create an empty family.

f.realize( iFams ); // Read 1 family’s data from the file.

if (iFams.eof()) break;

f.print( cout ); // If data, display and add to club vector.

club.push_back( f );

}

cout <<"\n------- Done reading club members -------\n";

iFams.close();

rename( FILE, BAKFILE );

ofstream oFams( FILE );

if( !oFams.is_open()) fatal( "Cannot open " FILE " for output." );

for(;;) {

cout <<" Do you want to enter a new family? (y/n): ";

cin >>reply; // Read.

cin.ignore(1); // Remove newline from stream.

if (tolower( reply )!=’y’) break;

FamilyT f;

f.input(); // Interactive input.

club.push_back( f );

}

// Finally, write it all out again. --------------------------------

for (FamilyT f : club) f.serialize( oFams );

oFams.close();

cout <<" Data is in file " <<FILE <<’\n’ <<" Normal termination." <<endl;

}

Figure 17.5. The Pleasant Lakes Club.
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#include "tools.hpp"

class FamilyT {

private:

int n = 0; // Number of people in this family.

string fName; // The family’s last name (father or mother).

vector<string> fam; // Dynamic array of strings.

public:

FamilyT() = default;

void input(); // Input a family interactively.

void print( ostream& out ); // Display a family, formatted nicely.

void realize( istream& in ); // Read a family from a file.

void serialize( ostream& out ); // Write a family to a file.

}

Figure 17.6. The FamilyT class.

Third box of main program: File input.
• To begin, we create an empty vector of families and, inside the loop a single empty family, f, with a default

initialization.

• Having f allows us to call functions from the FamilyT class. First, we call realize(). We use this name
for a function when it initalizes a data structure by bringing in data from backup storage (in this case a
disk file).

• All the details of reading the data are inside the FamilyT class, which is the expert on how to read the data
for a family. Each time it is called, it reads one family from the stream.

• The end of file flag will be set during serialize() when we try to read another family that is not there.
Serialize() does test for eof. However, we also need to know about eof in this function that we can end
the loop.

• When eof happens in a stream, the stream eof flag is set and stays set until the stream is closed. We can
test for eof anywhere in the program., even in a different function in a different module.

• If there was no eof(), then f has real data in it, so we call FamilyT::print() to display the data on the
screen, then push the new family object into the vector.

• During the push_back(), the object is copied from the local variable f into the vector. The next time
around the loop, f is recreated and reinitialized. We are never writing new family data on top of a former
family.

Fifth box: Interactive input.
• This is written as a query loop. The user is asked each time around the loop whether he wishes to enter

another family.

• After reading the single-character answer to the query, a newline character is left unread in the stream
buffer. It must be removed; ignore(1) does the job.

• Inner box: Interactive input. Again, the FamilyT class hides all the details of reading the input for a new
family. When the function returns, f has been initialized and can be pushed into the vector.
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#include "family.hpp"

void FamilyT:: input() {

string name; // For input of family’s name.

cout <<"\n Please enter the surname of the head of the family: ";

getline( cin, fName );

cout <<"\n Now enter the names of family members.\n The surname"

<<" may be omitted if same as family’s name.\n"

<<" Enter RETURN to quit.\n";

for (;;) { // Read & install new names.

cout <<" > ";

getline( cin, name );

if (name.length() == 0) break;

fam.push_back(name);

}

n = fam.size();

}

// ------------------------------------------------------------------------

void FamilyT:: print( ostream& out ) {

int n = fam.size();

cout <<"\n The " <<fName <<" family has " <<n <<" members.\n";

for (string s : fam) cout <<’\t’ <<s <<’\n’;

}

// ------------------------------------------------------------------------

void FamilyT:: realize( istream& in ) {| string name;

in >> n >> ws;

if (!in.good()) {

if (in.eof()) return;

else fatal( "Family size is corrupted." );

}

getline( in, fName);

for (int k=0; k<n; ++k) {

getline( in, name );

if (!in.good()) fatal( "Family name is missing." );

fam.push_back( name );

}

}

// ------------------------------------------------------------------------

void FamilyT:: serialize( ostream& out ) {

out << fam.size() <<" " <<fName <<endl;

for (string s : fam) out <<s <<’\n’;

}

Figure 17.7. The FamilyT functions.
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Notes on Figures 17.6 and 17.7: The FamilyT class.

First box: Data members.
• The number of people in the family is needed to be able to read the database back in after writing it to a

file.

• This is a prototype implementation – in a more developed implementation there would be data members
to store a family’s contact information.

• The vector of strings in this prototype would become a vector of PeopleT in a more developed version, so
that a variety of personal information could be stored.

Second box: the constructor.
• A constructor without parameters is needed because main() FamilyT variables. This constructor performs

a default initialization, setting the name to an empty string and the vector to an empty vector.

Third box of Figure 17.6 and first box of Figure 17.7: Interactive input.
• This function reads the data for one family from the keyboard and stores it in the implied parameter (this).

• The calls on cout << show that effort and thought have gone into communicating with the user.

• An input prompt, >, tells the user that input is expected. A short prompt like this is all you need. Long,
wordy prompts repeated every time around a loop cause visual clutter and are not helpful.

• Inner boxes: We call getline() twice to read strings that might have embedded spaces. The output file
was planned so that reading these strings would be easy: they are the last thing on each line.

• getline() reads and stores characters up to the end of the line. It removes the newline character from the
stream and discards it. A newline is not stored in the string.

• If the user types RETURN instead of a name, the length of the string that is read will be 0. This is an easy
way to end an input loop.

Third box of Figure 17.6 and second box of Figure 17.7: Interactive output.
• This function formats the data for humans to read. The serialize() function formats it for the computer

to read on the next run. These formats are significantly different. The screen output for a family has a
heading consisting of the family name and number of members.

• A for-each loop is used to print out the contents of the fam vector. Read this line as “for each family (call
it s) in fam, display s on cout”.

• Use the for-each loop in preference to a for loop or a loop with iterators whenever you need to process all
of the data stored in a vector.

Fourth box of Figure 17.6 and third box of Figure 17.7: File input.
• This function reads the data for one family from the input stream and stores it in the implied parameter

(this).

• You simply cannot use a “while not end of file” loop to do this job because the data structure is variable
length in three dimensions.

• The first item to be read for each family is the number of family members. The end-of-file flag will not
go on in the stream until an attempt has been made to read this number for a family that does not exist.
This code distinguishes between the normal end of file and an error caused by damage to the contents of
the input file. Corrupted data will terminate the run. EOF will cause a return to the caller.
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Figure 17.8. Heat conduction in a semi-infinite slab.

• An input prompt, >, tells the user that input is expected. A short prompt like this is all you need. Long,
wordy prompts repeated every time around a loop cause visual clutter and are not helpful.

• Inner box : The first getline() reads the family name. The second one (in the loop) reads an individual
name. The stream could be not good after either read, but it is adequate to test just once because the two
calls are so close together and nothing will happen to the stream state after the first error.

• An effort was made to provide a meaningful error comment, but a variety of errors could cause a failure
here and no error comment will be right for all of them.

• As always, if control gets past the input and error checks, we have good data and it is stored in the vector.

Fourth box of Figure 17.6 and fourth box of Figure 17.7: File output.
• To “serialize” a data structure means to write it to backup storage. This serialize() function is very

much like the print() function, but simpler because the file output format is simpler than the interactive
output format.

17.4 Using Vectors: A Simulation

The technique we use in the next example, a simulation, involves two pointers, old and new, that switch back
and forth between pointing at two vectors, first referring to one, then to the other. This lets us represent an
indefinite series of arrays, where the array values in new at each time step are derived from the ones in old.
There is no need to allocate a long series of separate arrays or constantly move the data values from one array
to another; we just swap pointers (or the addresses in them).

17.4.1 Transient Heat Conduction in a Semi-Infinite Slab

Problems that involve changes over time in a property of a solid or fluid often can be solved by analytical
techniques when the geometry, boundary conditions, and material properties are simple. This is the preferred
method, because a valid result can be determined at any continuous point inside the material at any time.
However, when an analytical solution is not possible, numerical techniques can give an approximate solution
at discrete points inside the material at specific times.

Transient heat conduction in a solid slab forms a class of problems suitable for numerical approximation.
A slab, as shown in Figure 17.8, is divided by imaginary boundaries into equal-sized regions called cells. For
each cell, the temperature is determined at a discrete point called its node. An energy equation is used to derive
a formula for the temperature at the cell’s node, for each cell at each time step, in terms of the temperature
at each of the surrounding nodes on the previous time step. This finite-difference equation (a form of the
heat conduction equation) for each cell can be modeled by a computer program.

For the specific example in Figure 17.8, the slab’s initial uniform temperature is 150◦C. It has a thermal
diffusivity of 6 · 10−7 m2/s. Suddenly, at time t = 0, it is exposed to a cooling liquid so that the surface is
instantly cooled to 20◦C, where it remains throughout the process.
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We want to determine the temperature at various depths below the surface of the slab as time passes.
As mentioned, this process can be represented by a partial differential equation. The numerical approach to
solving it assumes that the slab can be split into cells and that each cell has the same uniform temperature
throughout as at its node, which is at the midpoint of the cell. The nodes are labeled 0, 1, 2, 3, . . . beginning
at the surface and are spaced 0.006 meter apart. The set of finite-difference equations used to compute the
temperature T at nodes 1, 2, 3 . . . is

T t+1
m =

1

2

(
T t
m−1 + T t

m+1

)
for m = 1, 2, 3, . . . and t = 0, 1, 2, 3, . . .

where m denotes the node and t is the number of elapsed time steps, each corresponding to a 30-second interval.
That is, t = 0 at time 0, t = 1 after 30 seconds, t = 2 after 60 seconds, and so on.

At time 0 in the example, the cooling source at 20◦C is applied at the edge of the slab, which initially
is at a uniform temperature of 150◦C. Therefore, the temperatures of the first four nodes at time 0 become
T 0

0 = 20, T 0
1 = 150, T 0

2 = 150, T 0
3 = 150. At the next time step (30 seconds later), t = 1 and we can compute

the nodal temperatures as

T 1
0 = 20

T 1
1 =

1

2

(
T 0

0 + T 0
2

)
=

1

2
(20 + 150) = 85 at a depth of 0.006 m

T 1
2 =

1

2

(
T 0

1 + T 0
3

)
=

1

2
(150 + 150) = 150 at a depth of 0.012 m

T 1
3 =

1

2

(
T 0

2 + T 0
4

)
=

1

2
(150 + 150) = 150 at a depth of 0.018 m

As time passes, the cooling effect penetrates deeper into the slab. The next time step corresponds to 60 seconds;
at that time, the nodal temperatures are

T 2
0 = 20

T 2
1 =

1

2

(
T 1

0 + T 1
2

)
=

1

2
(20 + 150) = 85

T 2
2 =

1

2

(
T 1

1 + T 1
3

)
=

1

2
(85 + 150) = 117.5

T 2
3 =

1

2

(
T 1

2 + T 1
4

)
=

1

2
(150 + 150) = 150

After 90 seconds, node 3 will begin to cool. Eventually, if the cooling source remains constant, the cooling
effect will reach the end of the slab, and the entire slab will approach a steady-state temperature of 20◦C.

17.4.2 Simulating the Cooling Process

Vectors and iterators are used to implement this process. A call chart for this application is shown in Figure 17.9.
The program is given in Figures ?? through 17.14.

Notes on Figures ??: A heat flow simulation.

Main is simply the boss. This is what a main program should look like if there are no files involved – all
the details of the object model and the process are hidden in the class.
• Include the header file for the primary class.

• Instantiate that class.

• Call its functions to get the work done and the results printed.
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Figure 17.9. A call chart for the heat flow simulation.

Notes on Figures 17.11 and 17.14: The simulation class.

First box of Figure 17.11: simulation parameters.
• The first three variables are used to hold the simulation parameters entered by the user.

• All parts of the simulation depend on the depth at which the temperature is to be monitored. We use this
depth to calculate slot, the number of the node at the desired depth, which then controls vector growth
and looping.

• p counts the simulation steps. It is needed for output and to limit the length of the simulation in the event
that the user enters unrealistic parameters.

Second box of Figure 17.11: vectors and iterators.
• We need two vectors to model heat in the cells of a slab. The vector named old contains the information

for time step t, and next represents time step t + 1. Each value in next is calculated from two values in
old. This process cannot be done in one array – it requires two.

• An iterator is defined for next. It will be used for printing.

• p counts the simulation steps. It is needed for output and to limit the length of the simulation in the event
that the user enters unrealistic parameters.

Third box of Figure 17.11 and Figure 17.12: Constructor and destructor.
• Sometimes a main program handles all user interaction. In this program, however, the input will technical

data about the simulation, so it belongs in the Slab constructor, which is the expert on simulations.

This code calls the functions from Figures 17.11, through 17.14.

#include <iostream>

#include "slab.hpp"

int main( void ) {

cout <<"\nSimulation of Heat Conduction in a Slab\n";

CoolSlab s;

s.simCool();

s.results( cout );

}

Figure 17.10. A heat flow simulation.
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• The Slab constructor interacts with the user to input the parameters for the simulation. It uses those
parameters to initialize the data members and the two vectors.

• Because all parts of the simulation depend on the depth at which the temperature is to be monitored,
limits are defined for that depth and enforced by an input validation loop. If the depth value is large,
the number of iterations needed to reach the goal temperature also will be very high and may exceed the
predefined iteration limit, MAX_STEPS. If this happens, the simulation will be halted prior to reaching the
goal. Therefore, as a practical matter, we limit the observation depth to 0.25m and #define this constant
(DEPTH_LIMIT) at the top of the program. Obviously, negative values are rejected.

• Based on a valid depth, the slot number is calculated, according to the specification.

• The ceil() function from the C math library takes a double parameter and rounds it to the nearest greater
integer.

• Second box: Reasonable bounds for the other inputs depend on the real process being simulated and cannot,
in general, be established. So there are no validation loops for the three temperatures.

• Third box: After reading the temperatures, the two vectors can be initialized. To begin, we simply need
the first two slots initialized. One new value will be added to the end of each vector on each simulation
step. When these later elements are pushed into the vector, they will be initialized to the initTemp.

• Here is an example of the output produced by the constructor:

Simulation of Heat Conduction in a Slab

Enter depth to monitor (up to 0.25 meters): .055

#include <iostream>

#include <iomanip>

#include <vector>

#include <cmath>

using namespace std;

#define MAX_STEPS 1000

#define DEPTH_LIMIT .25

class CoolSlab {

private:

double initTemp, goalTemp; // Beginning and ending temperatures.

double surf; // Temperature at surface of slab.

double depth; // Depth at which to monitor temperature.

int slot; // Array subscript at given probe depth.

int p; // The actual number of simulation steps.

vector<double> old; // The initial conditions.

vector<double> next; // The next step of the simulation.

vector<double>::iterator nIt;

public:

CoolSlab();

~CoolSlab() = default;

void simCool();

void results( ostream& out );

void debug( ostream& out );

void print( ostream& out );

};

Figure 17.11. The Slab class.
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CoolSlab:: CoolSlab() {

do {

cout <<"Enter depth to monitor (up to " <<DEPTH_LIMIT <<" meters): ";

cin >> depth;

} while (depth<0 || depth > DEPTH_LIMIT);

slot = ceil( (depth-.003) / .006 );

cout <<"Enter initial temperature of the slab: ";

cin >>initTemp;

cout <<"Enter target temperature for depth " <<depth <<": ";

cin >>goalTemp;

cout <<"Enter temperature of cold outer surface: ";

cin >>surf;

// Initialize first two slots of both vectors to the initial conditions.

old.push_back( surf );

next.push_back( surf );

old.push_back( initTemp );

next.push_back( initTemp );

}

Figure 17.12. The Slab constructor and destructor.

Enter initial temperature of the slab: 100

Enter target temperature for depth 0.055: 85

Enter temperature of cold outer surface: 0

• The destructor: Although we are using dynamic allocation, it is encapsulated within the vector class, which
takes all responsibility for allocating and freeing the memory. The client class (Slab) does not need to free
anything. We emphasize this by explicitly defining a default do-nothing destructor.

Fourth box of Figure 17.11 and Figure 17.13: the simulation. The simCool() function will simulate
the heat flow process at successive time steps as the slab cools. It will stop when the selected node reaches
a specified temperature or when the number of steps reaches the limit (MAX_STEPS). On each iteration, the
new temperature at each node is computed, based on the temperatures of its neighboring nodes during the
preceding time step.
• First box: At each time step during cooling, the leading edge of coolness progresses on slot to the right.

Therefore, to begin each iteration, we extend the data in the vectors by one slot, initialized to the initial
temperature of the slab. Even though we add an element to the vector every time around the loop, the
vector only lengthens itself occasionally, when its available storage is full. This growth process is invisible
to the client program.

• Second box: Walk down the vectors using k to subscript both of them. Calculate the next value by averaging
the two old values to its left and right. This simple formula is a good model of what actually happens during
cooling!

• During development, it was necessary to see what was happening in the arrays. So we defined a debug
function to make that easy. Using a function removes the details of debugging from the flow of the main
logic.

• Third box: The end of the simulation. When the temperature at subscript slot is ≤ the goal temperature,
the simulation is finished. The part of the test that follows the && tests this and breaks out of the simulation
loop when it happens.

The first part of the test in this if statement acts as a guard for the second part, which is the termination
condition. However, in the early stages of the simulation, next[slot] may not exist yet, or it may exist but
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This function is called by the main program in Figure ?? to perform the steps of the simulation.

// --------------------------------------------------------------------------

void CoolSlab:: simCool() {

for (p=1; p<=MAX_STEPS; ++p) {

old.push_back( initTemp ); // Lengthen initialized parts by 1 slot.

next.push_back( initTemp ); // to prepare for next simulation step.

//Calculate the next set of conditions based on the old ones.

for (int k = 1; k <= p; ++k) {

next[k] = (old[k-1] + old[k+1]) / 2.0;

}

debug(cout);

if (slot < next.size() && next[slot] <= goalTemp ) break;

next.swap( old );

}

}

Figure 17.13. simCool(): doing the simulation.

not have any valid data pushed into it. We must avoid testing vector slots that do not exist or do not hold
valid data! Therefore, we compare slot to the next[size] before trying to access the data at next[slot].
If slot > next[size], the if statement fails and we stay in the simulation loop2.

• Fourth box: The swap. At the end of each time step, we are done forever with the values stored in old, and
next will become the basis for computing the next iteration. We also need a vector to hold the temperatures
we calculate on the next iteration. The solution is called swing buffering: swap the old and the next so
that the current next becomes the new old and the current old vector is reused for more calculations.

The vector class provides a function swap() that swaps the values of two vectors and does it efficiently, by
swapping pointers, not copying all the data.

• The iterations continue until the goal temperature is reached or the maximum number of steps is exceeded.
If the goal is attained, the program breaks out of the loop and returns to main(), which prints the final
temperature values.

Notes on Figures 17.14: Output functions for the simulation. We want two kinds of output: (1) a
brief format, appropriate for debugging, that will print the contents of a vector at one time step and (2) a full
version giving the results of the simulation including the final temperatures reached. The common part of the
two formats is printing the vector at the end of one time step. Thus, we define a print() function to do the
common part, and two other output functions to give the two views we need.
• The debug() function. For debugging, we want to see a sequence of iterations, each numbered consecutively.

So the debug() function prints the iteration number and a visual divider to make the output more readable.
Here is a sample output; you can see the size of the vector increasing.

1. ------------------------------
[ 0]= 0.000 [ 1]= 50.000 [ 2]=100.000

2. ------------------------------
[ 0]= 0.000 [ 1]= 50.000 [ 2]= 75.000 [ 3]=100.000

3. ------------------------------
[ 0]= 0.000 [ 1]= 37.500 [ 2]= 75.000 [ 3]= 87.500 [ 4]=100.000

2Remember that logical operators are evaluated left to right using lazy evaluation.
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The results() function is called from main() in Figure ??; debug() is called from simCool() in Fig-
ure 17.13. Both of these functions delegate the common parts of the job to print().

// --------------------------------------------------------------------------

void CoolSlab:: debug( ostream& out ){

cout <<\n’ <<setw(3) <<p <<". ------------------------------\n";

print( cout );

cout <<endl;

}

// --------------------------------------------------------------------------

void CoolSlab:: results( ostream& out ){

cout << "\nTemperature of "<<next[slot] <<" reached at node "<<slot

<<"\n\tin "<<p <<" seconds (= " <<fixed <<setprecision(2)

<<p/60.0 <<" minutes or " <<p/3600.0 <<" hours).\n"

<<"\nFinal nodal temperatures after " <<p <<" steps:\n";

print( cout );

cout <<"\n\n";

}

// --------------------------------------------------------------------------

void CoolSlab:: print( ostream& out ){

int k = 0;

out << fixed << setprecision(3);

for (double d : next) {

out <<" [" <<setw(2) <<k <<"]=" <<setw(7) << d;

if (++k % 5 == 0) out <<"\n"; // Newline after every five items. }

}

}

Figure 17.14. Print(), results(), and debug().

• The results() function. At the end of execution we want to see summary information and the final results
of the simulation. We print the summary information and call print() to print the rest. This sample
output corresponds to the parameters given earlier:

Temperature of 84.614 reached at node 9

in 39 seconds (= 0.65 minutes or 0.01 hours).

Final nodal temperatures after 39 steps:

[ 0]= 0.000 [ 1]= 12.537 [ 2]= 25.074 [ 3]= 36.417 [ 4]= 47.760

[ 5]= 57.041 [ 6]= 66.322 [ 7]= 73.181 [ 8]= 80.041 [ 9]= 84.614

[10]= 89.187 [11]= 91.931 [12]= 94.675 [13]= 96.152 [14]= 97.630

[15]= 98.341 [16]= 99.052 [17]= 99.357 [18]= 99.662 [19]= 99.778

[20]= 99.893 [21]= 99.932 [22]= 99.971 [23]= 99.982 [24]= 99.993

[25]= 99.996 [26]= 99.999 [27]= 99.999 [28]=100.000 [29]=100.000

[30]=100.000 [31]=100.000 [32]=100.000 [33]=100.000 [34]=100.000

[35]=100.000 [36]=100.000 [37]=100.000 [38]=100.000 [39]=100.000

[40]=100.000

Note that slots 28 – 40 all print as 100.000 degrees. This is an artifact of the print formatting (three places
of precision). The number in slot 40 is actually 100.000. The numbers in slots 28 – 39 are all between
99.999 and 100, but appear as 100.000 when they are rounded to three decimal places.

• The print() function, outer box. Formatted output, aligned in columns, is important for readability. We
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are printing double values and we would like them rounded to three decimal places. Sso we write <<fixed
<<setprecision(3). These manipulators stay set until explicitly changed, so we write them once, outside
the loop.

The loop is a for-each loop that defines d as the name of the current element. We write << d. This code is
equivalent to writing an iterator expression:
for (nIt = next.begin(); nIt != next.end(); ++nIt)

The width of an ouput field must be set separately for every field written out. Therefore, calls on setw()
are written inside the loop, not before it.

• The print() function, inner box. If we printed the temperatures one per line, it would consume too many
lines. So we use modular arithmetic to print five values per line in formatted fields. If the array subscript
mod 5 equals 4, we know that we have printed five values on this line, so we print a newline character and
enough spaces to indent the beginning of the next line.

17.5 What You Should Remember

17.5.1 Major Concepts

Arrays and vectors of strings. An earlier chapter introduced the ragged array of strings, which was
initialized by string literals in that chapter. The data structure is even more versatile when implemented with
C++ strings, which are dynamically allocated, because each string can contain data of any length.

17.5.2 Programming Style

Use the proper arguments. If you are writing a function to process a row of a matrix, pass as the argument
a row of the matrix. Do not send the entire matrix as the parameter along with a row index to be used by the
function in accessing the data. Write your functions to pass the appropriate amount of data, no more.

Use type cast. The void* pointer returned by malloc() and calloc() normally is stored in a pointer variable.
While explicitly performing a type cast is not necessary, doing so can be a helpful form of documentation. Prior
to the ANSI C standard, the explicit cast was necessary, and many programmers continue to use it out of habit.

Use free() properly. It is a good practice to recycle memory at the first possible time. Sometimes it is
possible to reuse a memory block for different purposes before giving it back. This can improve program
performance because the memory manager need not be involved as often.

Check for allocation failure. It is proper to check the pointer value returned by the allocation functions
to make sure it is not NULL. If no memory is available, program termination is a logical course of action.

Use realloc() properly. Do not use realloc() too often, because it can reduce the performance of a
program if data are copied frequently. Therefore, choose a size that is appropriately large but not too large. A
common rule of thumb is to double the current allocation size. A final call to realloc() can be made to return
excess capacity to the system when the dynamic data structure is complete and all data have been entered.

Use the proper data structure. It is important to choose which form of 2D structure you will use. Should
it be defined at compile time or dynamically? Should it be a 2D matrix, an array of arrays, or an array of
pointers to arrays? If the size is not known at compile time, dynamic memory is chosen. If the processing of
rows is significant, one of the array structures is better suited. It is best to use a 2D matrix when the size can
be defined at compile time and all the elements are treated equally.

Use a setup function. Use a setup function to organize data initialization and memory allocation statements.
This improves code legibility and localizes much of the user interaction in one function.

Use one buffer for string input. It is a common practice to have one large buffer for string input, since the
lengths of such input vary greatly. Each data item is read, then measured (using strlen()). An appropriate
amount of memory is allocated dynamically for the input, then the input is copied into the new memory block
and attached to some data structure. This frees the single long buffer for reuse.
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17.5.3 Sticky Points and Common Errors

Dynamic memory allocation is a powerful technique but is prone to a variety of errors that cause programs
to crash. The first four errors, below, all relate to overuse or underuse or misuse of the free() function. In
avoiding one of these errors, it is important not to fall into another!

Misuse of free(). The two most common mistakes involving the use of free() are attempting to recycle a
storage area that was not dynamically allocated and attempting to free a memory block that already has been
recycled. E ventually, each of these is likely to result in an attempt to free storage that is part of some active
object. The visible result may be garbage output or a sudden program termination. The cause may be very
difficult to track down because it is not caused by the most recently executed part of the program. Further,
the time and manner of crash will probably be different each time the program is run with different data.

Memory leaks. A memory leak occurs when the last pointer to a dynamic memory area is lost; the area was
allocated but not freed, and remains a drain on the memory management system until the program terminates.
If this happens repeatedly, and if the program runs for hours or days without terminating, system performance
will be degraded. Thus, it is important to learn to free memory when it is no longer needed.

Using a dangling pointer. After a memory block has been freed, it never should be accessed again. When
space is deallocated, it is logically “dead” but physically still there. If more than one variable is set to point at
the area, a common error is to continue using the memory block. Once reassigned to a different portion of the
program, the competing use eventually will corrupt the data.

Using realloc(). The dangling pointer problem also arises with regard to realloc(). If a new memory
block is assigned, pointers into the old memory block become obsolete. Care must be taken to save the new
memory address and use it to reset other pointers to elements within the data block.

Uninitialized pointers. It is easy to forget that every pointer needs a referent before it can be used. A
pointer with no referent is like a pocket with a hole in the bottom; it looks normal from the outside but is not
functional. A common error is to declare a pointer but forget to store in it the address of either a variable or
a dynamically allocated memory block. This frequently results in a program crashing.

Remembering array sizes. Whenever an array is used, the actual number of data items in it must be
remembered. Functions that process arrays must have two parameters, the array and the count. The count
commonly is forgotten. Logically, these two items always should be grouped. In the next chapter, we use a
structure that contains these two members so that we can pass the structure to functions as a single entity.

Null character. When allocating a memory block for an input string, remember to include space for the null
character at the end.

17.5.4 New and Revisited Vocabulary

These are the most important terms and concepts discussed in this chapter.
vector<Type>
push_back()
size()
capacity()
subscript
swap

front()
back()
begin()
end()
find()
sort()

vector<Type>::iterator
++ on an iterator
* on an iterator
rename() for a file
cin.ignore(1)
cin >>ws

17.6 Exercises

17.6.1 Self-Test Exercises

1. A basic step in many sorting programs is swapping two items in the same array. Write a function that
has three parameters, an array of strings and two integer indexes. Within the function, compare the
strings at the two specified positions and, if the first comes after the second in alphabetical order, swap
the string pointers.
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2. What standard header files must be included to use the following C++ features:

(a) A vector

(b) A string

(c) sort() on a vector

(d) ignore(1)

17.6.2 Using Pencil and Paper

1. What standard header files must be included to use the following C/C++ features:

(a) new and delete

(b) The ceil() function

(c) A C++ string

2. In the heat flow program (Figure ??), we begin the simulation with an empty vector with size()= 0.
Assume the initial capacity()= 16. Then we added values to the vector and it doubled every time the
capacity was used up. Assume that we were monitoring node 9 and the simulation ran for 100 steps.

(a) How many times did we double the array?

(b) What was the final capacity of the array?

(c) Altogether, how many double values were copied during the growing process?

3. Given these declarations, explain what (if anything) is wrong with the following allocation and dealloca-
tion commands:

double* p, *q;
int arr[5];

(a) p = new(double);

(b) q = double[10];

(c) delete q;

(d) delete[] arr;

(e) q = new double[10];

(f) p = &q[2]; delete[] p;

17.6.3 Using the Computer

1. Generating test data. Write a program that uses srand() and rand() to calculate a series of 1000 random
floating point numbers. Write these to a file named “randfloats.in”.

2. Sorting a file of numbers. Modify the program from Figure 16.19 in three ways:

• Change it from interactive input and output to file input and output.

• Sort a file of numbers instead of a set of objects.

• Delete the two lines that prompt for and read the number of items to be sorted. Use a vectpr so that
all of the numbers in the file can be stored in it.

Debug and test your program on a short file that contains ten numbers. Be sure that all ten inputs
occur in the output file, in order. Then test your program on the long data file generated in the previous
exercise.

3. Simulation of heat conduction.

Given the semi-infinite slab in Figure 17.8, determine the temperatures at nodes 1 through 30 inside the
slab after time periods of 5, 10, 15, 20, 25, and 30 minutes have passed. Start with the functions in
Figures ?? through 17.14 and modify them to print the results every 5 minutes and terminate after half
an hour. Note that 30 minutes corresponds to p = 60.
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4. A dictionary.

Make a dictionary data structure by reading in the contents of a user-specified text file one word at a
time. Use C++ strings and store them in a vector. Sort these strings by using vector::sort. Print out the
entries in your dictionary in alphabetical order. Do not display a word more than once. Instead, display
a count of how many times each word appeared in the file.

5. A better dictionary.

Modify the program from the previous exercise. Do not display a word more than once. Instead, display
a count of how many times each word appeared in the file.

6. String math.

Write a program to read any two integers as character strings (with no limit on the number of decimal
digits). Hint: Read a number into a string that will expand when necessary. Add the two numbers digit
by digit, using a third string to store the digits of the result. Print the input numbers and their sum.
Hint: To convert an ASCII digit to a form that can be meaningfully added, subtract ’0’. To convert a
number 0 . . . 9 to an ASCII digit, add ’0’.

7. Easier said than done.

Read in the contents of a file of real numbers for which the file length is not known ahead of time and
could be large. Write the numbers to a new file in reverse order. Abort the program if the file is so long
that the data cannot be held in the computer’s memory.

8. Sparse matrix.

Many applications involve using a matrix of numbers in which most entries are 0. We say that such a
matrix is sparse. Assume that we are writing a program that uses a sparse 100 by 100 matrix of doubles
that is only 1% full. Thus, instead of 10,000 entries, there are only approximately 100 nonzero entries.
However, the actual fullness varies, and there might be more than 100 nonzero entries. One representation
of a sparse matrix is to store each nonzero entry as a structure of three members: the row subscript, the
column subscript, and the value itself; that is, the value 20.15 in matrix[15][71] would be represented
as the triple { 15, 71, 20.15 }. ,

(a) Define a class named triple to implement the structure for one element of the sparse matrix.

(b) Declare a class Matrix with a data member that is a vector. Use the vector to store all the triples
in the matrix.

(c) Write a function, getMat() in the Matrix clasa. Write a sentinel loop that will read data sets (a pair
of subscripts and a matrix value) from the keyboard until a negative subscript is entered. Create
Triple objects and push them into the vector.

(d) Write a function, showMat(), that prints the matrix as a table containing three neat columns (two
subscripts and a value).

(e) Write a main program that tests these functions. Testing programs on huge amounts of data is
impractical. During development, use only a few Triples. Call getMat() and showMat() to read and
print the values of the matrix. You will need more than one data set too test this program.

9. Partially sorting the matrix.

Start with the matrix program in the previous problem. Add to it a function, sortMat(), that sorts the
array elements in increasing order by the first subscript. If two elements have the same first subscript,
sort them in increasing order by their second subscripts. If both subscripts are equal, display an error
comment. To perform the sort, adapt the sorting program in Chapter 16, printing the matrix before and
after sorting.
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Chapter 18

Array Data Structures

Two-dimensional arrays commonly are used in applied physics, engineering, and mathematics to hold numerical
data and represent two-dimensional (2D) physical objects. In this chapter, we explore several different array
data structures, including the matrix, arrays of arrays, arrays of pointers to arrays, and arrays of strings. We
explore applications of these compound arrays, the type definitions used to facilitate their construction, and
two-dimensional array processing. We consider multi-dimensional arrays briefly.

18.1 Concepts

18.1.1 Declarations and Memory Layout

Figure 18.1 shows a two-dimensional array, sometimes called a matrix, used to implement a 4-by-4 multiplica-
tion table. We declare such an array by writing an identifier followed by two integers in square brackets. The
first (leftmost) number is the row dimension; the second is the column dimension. Visually, rows are horizontal
cross sections of the matrix and columns are vertical cross sections.

We initialize a two-dimensional array with a set of values enclosed in nested curly brackets; each pair of
inner brackets encloses the values for one row. The result can be viewed, conceptually, as a rectangular matrix,
but physically, it is laid out in memory as a flat data structure, sequentially by row. Figure 18.2 shows two views
of a 3-by-4 array of characters: The two-dimensional conceptual view and the linear physical view. Technically,
we say it is stored in row-major order. All the slots in a given row will be adjacent in memory; the slots in
a given column will be separated. This can have practical importance when dealing with large matrices: Row
operations always will be efficient; column operations may not be as efficient because adjacent elements of the
same column might be stored in different memory segments.

We refer to a single slot of a matrix using double subscripts: the row subscript first, followed by the
column subscript. Each subscript must have its own set of square brackets. For example, to refer to the first
and last slots of the matrix in Figure 18.1, we would write mult_table[0][0] and mult_table[3][3].1

1Experienced programmers who are new to C must take care. They might be tempted to write multTable[j,k], which is
correct in FORTRAN. This means something obscure in C, and it will compile without errors. However, it does not mean the
same thing as multTable[j][k]. (The comma will be interpreted as a comma operator, which is beyond the scope of this text.)

[0] [1] [3][2]
[0]

3 6 9 12
4 8 12 16

1 2 3 4
2 4 6 8[1]

[2]
[3]

multTableshort multTable[4][4] = { {1, 2,  3,  4 },    
  {2, 4,  6,  8 }, 
  {3, 6,  9, 12},  
  {4, 8, 12,16}
} ;

Figure 18.1. A two-dimensional array and initializer.

563
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The conceptual view of a 3-by-4 array of characters is shown on the left; the subscripts of each cell are written
in the corner of the cell. Note that subscripts are used to refer to individual cells but are not actually stored
in the cell. The actual storage layout of this array is shown on the right with the subscripts under each cell.

 0,0  0,1   0,2   0,3  1,0 1,1   1,2   1,3

actual layout of array cells in memory: 0,0  0,1  0,2  0,3
   a    b    c    d

 0  1  2  3

1

0

2

conceptual view:

 2,0  2,1   2,2   2,3
 a  b  c  d  e  f  g  h  j  k  m  n 1,21,1 1,0  1,3

   e    f    g    h
 2,0  2,1  2,2  2,3
    j    k   m    n

Figure 18.2. Layout of an array in memory.

18.1.2 Using typedef for Two-Dimensional Arrays

A programmer may create and use arrays, strings, and multidimensional arrays without defining any new type
names. We never actually need to use a typedef, because it just creates an abbreviation or synonym for a
type description. However, typedef often should be used with array types in place of the basic syntax, because
typedef helps simplify the code and clarify thinking. More important, it often enables a programmer to work
at a higher conceptual level and have less involvement with the actual implementation of a data structure.
There are two conceptually different kinds of two-dimensional arrays, and the appropriate type definitions are
quite different for the two varieties, although they are initialized and stored identically.

18.1.3 Ragged Arrays

Another 2-D array data structure is the ragged array: an array (dynamic or declared) that points to C-strings
(dynamic or constant). A ragged array is a natural data structure for use with a menu display. It is also
the data structure used by C and C++ systems to pass command-line arguments to a main function. (This
application will be covered in Chapter 20.)

In this section we introduce menu(), a function that is part of the tools library. It uses a ragged array to
represent the menu selections. This array is diagrammed as part of the next demo program, Figure 18.5.

Notes on Figure 18.4: The menu function from tools.

First box: Declarations in tools.hpp.
• C++ makes it easy to use C++ strings, but there are often incompatibilities with non-constant C strings.

When working with type char*, we often find ourselves adding const to the type. So we introduced a type
name, ccstring, for constant-c-string, to make it more convenient to use the simple C-strings for simple
applications.

• The menu function shown below is one of two in the tools library. The other is menus where the selection
code is a character, not a digit.

• Parameters to menu() are a title, the number of possible choices, and a ragged array of item descriptions
to display.

typedef double matrix ;[2]

new type name
base type dimensions

[2]
typedef matrixvelocity ;[10]
typedef double velocity ;[3]

new type name
base type dimension

Figure 18.3. Using typedef for 2D arrays.
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These declarations are in tools.hpp.

typedef const char* ccstring;

int menu( ccstring title, int n, ccstring menu[] );

This code is in tools.cpp.

// Display a menu then read and validate a numeric menu choice. Handle errors.

int

menu( ccstring title, int n, ccstring menu[] ) {

int choice;

for(;;) {

cout <<’\n’ <<title <<’\n’;

for( int k=0; k<n; ++k ) cout <<"\t " <<k <<". " << menu[k] <<endl;

cout <<" Enter number of desired item: ";

cin >> choice;

if (!cin.good()) {

cin.clear(); // Reset stream state to good.

cin.ignore(1); // Clean garbage out of input buffer.

choice = -1; // Set invalid choice to prevent loop exit.

}

if ( choice >= 0 && choice < n) break;

cout << " Illegal choice or input error; try again. \n";

}

return choice;

}

Figure 18.4. A menu function.

Second box: Displaying the menu.
• The menu is an array with n menu selections. An ordinary for loop is used to display the selections from

slot 0 to < n, so the menu will appear with selections numbered from 0 to n− 1. The program using this
function must expect to get a 0-based subscript as the return value.

• The prompt for the menu choice makes clear that a numeric answer is expected.

Third and fourth boxes: Reading a valid choice.
• Reading the choice is easy. Deciding whether it is valid is not.

• The user could input a number that is too small or too large, or he could input a non-digit. We need to
test for all three kinds of errors and produce an error comment if there is any kind of problem.

• If a letter is entered, it will cause the >> operation to fail. The fail flag in the stream will be set. At that
point, nothing more can be done with the stream until the flag is cleared. Thus, to handle errors properly,
the first thing to do is check the stream state and fix it if necessary.

• To prevent an infinite loop of the same error again and again, it is necessary to clear the offending character
out of the stream. ignore(1) does this.

• Finally, to be sure that the error comment is printed, we set the choice to an invalid number.

• When control reaches the fourth box, the variable choice has a number in it and we can test whether that
number is in the right range. If so, we break out of the validation loop. If not, the error comment is printed.
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18.1.4 A Matrix

In one kind of 2D array, the data are a homogeneous, two-dimensional collection. Columns and rows have
equal importance, and each data element has as close a relationship to its column neighbors as to its row
neighbors. Programs that process this data structure typically have no functions to process a single row or
column. Instead, they might process single elements, groups of contiguous elements, or the entire matrix. For
example, consider an image-processing program in which each element of a matrix represents one pixel in a
digital image. A pixel, which is short for “picture element,” is one dot in a rectangular grid of dots that, taken
together, form a picture. That pixel has an equally strong relationship to its vertical and horizontal neighbors.
Functions operate on entire images or on a rectangular subset of the elements, called a processing window.
Rows and columns are equally important.

The general form of the typedef declaration for this kind of data structure is given on the left in Figure 18.3;
note that the dimensions, not the type name, are written last. An example of its use for image processing is
given in Section 18.3.

Using a matrix. The next program example illustrates the use of a 2D array for a practical purpose. Many
road atlases have a table of travel times from each major city to other major cities, such as that in Figure 18.5.
To use such a table, you find the row that represents the starting city and the column that represents the
destination. The number in that row and that column is the time that it should take to drive from the first
city to the second. We implement a miniature version of this matrix and use it to calculate the total driving
time for a two-day trip, where you start in city 1, stay overnight in city 2, and end up in city 3. The program
is in Figure 18.5.

Notes on Figure 18.5. Travel time for a two-day trip.

At the top: Data diagrams.
• The names of the cities covered by the table are defined as a ragged array in the second box.

• The table of travel times is a square matrix with one row and one column for each city. The value in each
slot will be the number of minutes needed to drive from the row-index city to the column-index city.

• The integers row and col will be used in nested for loops to read the travel times from a file.

First box: the environment.
• This program uses the menu() function from the tools library.

• The number of towns is a constant used throughout the code. Such constants should always be defined at
the top, not buried in the code.

• The file “minutes.in” contains the data shown in the diagram on the right.

Second box: the matrix.
• The names of the cities covered by the table are defined as a ragged array (diagram at upper left) that will

be used as a menu. The menu will be displayed three times to permit the user to select the source city
(city1), layover city (city2), and destination city (city3). These cities will be used as subscripts for the
travel-time matrix.

• Here we declare and allocate the matrix in the diagram at the upper right. We initialize it in the third box.

Third box: reading the input file.
• The nested for loops used here are a typical control structure for processing a matrix.

• Note that we use meaningful names (instead of i and j) for the row and column indices. This makes the
code substantially easier to understand.

• We keep this example simple by omitting normal error checking. We assume that the data in the file are
not damaged and that the file contains the correct number of data values. In a realistic application, error
detection would be necessary.



18.1. CONCEPTS 567

These are the cities and the matrix of city-to-city travel times used in the travel-time program.
towns

[0]

[1]

[2]

[3]

[4]

Albany\0

Boston\0

Buffalo\0

Hartford\0

New York\0

1

0

2

3

4
 0  1  2  3  4

0    194   330   145    193

Boston

Albany

Buffalo

Hartford

New York

 Alb Bos Buf Hfd  NY

145    115    475        0   150

 194      0     524   115    265

 193   265    506    150       0

 330   524       0    475    506

timetable

#include "tools.hpp"

#define NTOWNS 5

#define INFILE "minutes.in"

int main( void )

{

ccstring towns[NTOWNS] = { "Albany","Boston","Buffalo","Hartford","New York" };

int timetable[NTOWNS] [NTOWNS];

int city1, city2, city3; // Cities along route of trip.

int time;

cout <<"\n Travel Time \n";

ifstream minutes( INFILE ); // Data for travel-time matrix

if (!minutes.is_open()) fatal( " Cannot open " INFILE " for reading.");

for (int row = 0; row < NTOWNS; ++row) // Read travel-time matrix.

for (int col = 0; col < NTOWNS; ++col) {

minutes >>timetable[row][col];

}

city1 = menu( " Where will your trip start?", NTOWNS, towns );

city2 = menu( " Where will you stay overnight?", NTOWNS, towns );

city3 = menu( " What is your destination?", NTOWNS, towns );

time = timetable[city1][city2] + timetable[city2][city3];

cout <<"\n Travel time from "<<towns[city1] <<" to "<<towns[city2]

<<" to "<<towns[city3] <<"\n\t will be "<<time <<" minutes.\n\n";

return 0;

}

Figure 18.5. Travel time for a two-day trip.
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Fourthbox: choosing three cities.
• These three calls on menu() permit the user to select three cities from the towns list. The menu function

lets the use select a prompt, the number of menu items, and an array of strings that describe the choices.

• The return value from menu() is the subscript for the chosen city in the towns array. The city numbers will
be used to access both the list of cities and the matrix of travel times.

Fifth box: calculating and printing the travel time.
• To access a time from the table we give two subscripts; the number of the source city (the row) and the

number of the destination city (the column).

• The total time is the sum of the times on each of the two days. Sample output follows. Normal operation
is shown in the left column, error handling on the right:

Travel Time

Where will your trip start?
0. Albany
1. Boston
2. Buffalo
3. Hartford
4. New York
Enter number of desired item: 0

Where will you stay overnight?
0. Albany
1. Boston
2. Buffalo
3. Hartford
4. New York
Enter number of desired item: 1

What is your destination?
0. Albany
1. Boston
2. Buffalo
3. Hartford
4. New York
Enter number of desired item: 4

Travel time from Albany to Boston
to New York will be 459 minutes.

Travel Time

Where will your trip start?
0. Albany
1. Boston
2. Buffalo
3. Hartford
4. New York
Enter number of desired item: 6
Illegal choice or input error; try again.

Where will your trip start?
0. Albany
1. Boston
2. Buffalo
3. Hartford
4. New York
Enter number of desired item: -1
Illegal choice or input error; try again.

Where will your trip start?
0. Albany
1. Boston
2. Buffalo
3. Hartford
4. New York
Enter number of desired item: w
Illegal choice or input error; try again.

18.1.5 An Array of Arrays

In the other kind of 2D array, an array of arrays, the data are a collection of rows, where each row has an
independent meaning. The data elements in each row relate to each other but not to the corresponding elements
of nearby rows. Programs that process this data structure typically have functions that process a single row.
The general form of the typedef declaration for this data structure is given on the right in Figure 18.3.

For example, consider a program that makes weather predictions. One of its data structures might be an
array of winds measured by weather stations in a series of locations. Each wind is represented by an array of
three double values, which give the magnitude and direction in Cartesian coordinates (x, y, z). In Figure 18.6,
we use typedef to give the name velocity to this kind of array. The variable wind is an array of velocities,
representing the winds in several locations. The first coordinate of each wind is related to the second and
third; taken together, they specify one physical object. However, the first coordinate of one wind has little
relationship to the first coordinate of the next wind. You would expect various functions in this program to
have parameters of type velocity, as does the function speed() in Figure 18.7.
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typedef double velocity[3];// Type velocity is an array of 3 doubles.

double speed( velocity v );// Given velocity, calculate wind speed.

velocity calm = {0, 0, 0};// No wind.

velocity wind[5]; // The winds for 5 towns.

Figure 18.6. Declaring an array of arrays.

Using an array of arrays. The program in Figure 18.7 implements a sample wind array representing five
locations. Altogether, it contains 15 double values, five locations with three coordinates each. In this example,
wind[0] is the entire velocity array for Bradley Field and wind[3][0] is the x coordinate of the velocity at
Sikorsky Airport.

Weather stations at five locations phone in their instrument readings daily to a central station running this
program. When a weather station reports its data, the data are recorded in the wind table for that day. The
program accepts a series of readings, then prints a table that summarizes the data and the wind speeds at the
locations that have reported in so far.

Notes on Figure 18.7. Calculating wind speed.

First box: the type declaration. We declare a type to represent the velocity of one wind. We use this type
to build a two-dimensional array (several winds with three components each) and to pass individual winds to
the speed() function.

Second box: the calculation functions.
• We define a 1-line function for squaring a number because it will make our formulas more readable.

• One reason to use typedef is that a typedef name makes it easier and clearer to write correct function
headers. The speed() function operates on velocity arrays: the use of the typedef name makes that clear.

Third box: the data structure.
• Three objects are declared here as parallel arrays. Together, they form a masked table of wind velocities

for several weather locations, whose names are listed in a form that can be passed to menu().

• The array of names has one extra item on the end to make it simple to end menu processing and finish the
program.

• The mask array is initialized to false values (0) to indicate that, initially, no stations have called in their
data. Recall that if an initializer is given that is too short for the array, all remaining array locations will
be initialized to 0.

Fourth box: entering the data.
• The name and mask arrays are parallel to the wind array. Once a city is chosen, that city number is used

to subscript all three. When the wind information for that city is entered, the corresponding mask is set to
true. If the same city reported a second set of data, it simply would replace the first.

• Even though wind is declared as an array of arrays, not a matrix, a single velocity component is accessed
using two subscripts.

• For simplicity, error checking is omitted here. In a realistic application, the numbers entered would be
tested for being reasonable and an error recovery strategy would be implemented to recover from accidental
input of nonnumeric data.

Fifth box: calculating one wind speed.
• The argument to the speed() function is a single wind velocity vector, not the whole array of winds,

because that calculation involves only one velocity. By passing only the relevant row of the wind array, we
simplify the code for speed(). Inside the function, we focus attention on that single wind and can access
the individual velocity components using only one subscript.
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Sixth box and Figure 18.8: printing the wind speed table.
• Sample output follows, with dashed lines replacing repetitions of the menu:

Wind Speed

0. Bradley
1. Bridgeport
2. Hamden MS
3. Sikorsky
4. Tweed
5. --finish--
Enter number of desired item: 3

This program creates a table of wind velocities at several weather stations, calculates the wind speeds, and
prints a report. It calls the function in Figure 18.8.

#include "tools.hpp"

#include <cmath>

#define N 5

typedef double velocity[3];

void printTable( ccstring names[], bool mask[], velocity w[] );

double sqr( double x ) { return x * x; }

double speed( velocity v ){ return sqrt(sqr(v[0]) + sqr(v[1]) + sqr(v[2])); }

int main( void )

{

int city;

double windspeed;

velocity wind[N];

bool mask[N] = { false }; // Initialize all masks to false.

ccstring names[N+1] = { "Bradley", "Bridgeport", "Hamden MS",

"Sikorsky", "Tweed", "--finish--" };

cout <<"\n Wind Speed\n" );

for (;;) {

city = menu( " Station reporting data:", N + 1, names );

if (city == N) break;// User selected "quit"

cout <<" Enter 3 wind components for " <<names[city] <<": ";

cin >>wind[city][0] >>wind[city][1] >>wind[city][2];

mask[city] = true;

windspeed = speed( wind[city] );

cout <<"\t Wind speed is " <<windspeed <<".\n";

printf( "\t Wind speed is %g.\n", windspeed );

}

printTable( names, mask, wind );

return 0;

}

Figure 18.7. Calculating wind speed.
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This function is called from Figure 18.7.

void

printTable( ccstring names[], bool mask[], velocity w[] )

{

int k;

cout <<"\n Wind Speeds at Reporting Weather Stations\n";

for (k = 0; k < N; ++k) {

if (!mask[k]) continue;

cout <<" " <<left <<setw(15) <<names[k] <<right;

cout <<fixed <<setprecision(2) <<"(" <<setw(7) <<w[k][0]

<<setw(7) <<w[k][1] <<setw(7) <<w[k][2] <<" ) speed: "

<<setw(7) <<speed( w[k] ) <<"\n";

}

}

Figure 18.8. Printing the wind speed table.

Enter 3 wind components for Sikorsky: 1.30 2.10 -1.10
Wind speed is 2.7037.

-------------------------------
Enter number of desired item: 4
Enter 3 wind components for Tweed: 1.50 2.00 0.00
Wind speed is 2.5.

-------------------------------
Enter number of desired item: 0
Enter 3 wind components for Bradley: 0.73 1.60 -2.10
Wind speed is 2.73914.

-------------------------------
Enter number of desired item: 5

Wind Speeds at Reporting Weather Stations
Bradley ( 0.73 1.60 -2.10 ) speed: 2.74
Sikorsky ( 1.30 2.10 -1.10 ) speed: 2.70
Tweed ( 1.50 2.00 0.00 ) speed: 2.50

• The parameters to the print_table() function are the three parallel arrays that make up the wind table.
We use the names array to print the locations and the mask array to avoid printing “garbage” values for
weather stations that have not reported in.

18.1.6 Dynamic Matrix: An Array of Pointers

Dynamic allocation of memory is not limited to one-dimensional arrays. Since 2D arrays are stored in contiguous
memory, they also can be allocated as a single large area, a dynamic 2D array. However, accessing a particular
element using the normal, two-subscript notation is not possible. (A function to perform this operation is
considered in an exercise on image processing.) Alternatively, a 2D object can be represented as an array of
pointers to arrays, using dynamic allocation repeatedly to create each part of the structure.
The result is a dynamic matrix data structure in which the rows can be efficiently manipulated and swapped,
as illustrated in Section18.4. Elements of this matrix can be accessed using the matrix name and two subscripts,
as if the entire matrix were allocated contiguously. This is ideal for applications where entire rows of the matrix
are treated as units. For example, in Gaussian elimination, each row represents an equation, and entire equations
are swapped as the solution progresses.
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M [0]

M[0]

M[1]
M[2]

[1] [2] [3] [4]

Figure 18.9. An array of dynamic arrays.

18.1.7 Multidimensional Arrays

Scientists and engineers use multidimensional arrays to model physical processes with multiple parameters.
As in the two-dimensional case, a distinction should be made between multidimensional objects and arrays of
matrices or matrices of arrays. C supports all these multidimensional data structures. Usage should be the
guiding factor in deciding which to implement.

When using arrays of matrices or matrices of arrays, the rules for type compatibility of array parameters
can become confusing. It is especially helpful to use typedef to define names for the subtypes, such as rows,
and use those names to declare function parameters. The manipulation of uniform multidimensional structures
can be more straightforward.

Three-dimensional arrays. The dimensions of a three-dimensional (3D) array usually are called planes,
rows, and columns. The layout in memory is such that everything in plane 0 is stored first, followed by
plane 1, and so forth. Within a plane, the slots are stored in the same order as for a two-dimensional matrix.
Figure 18.10 shows a diagram of a 3D array with its subscripts.

When declaring a 3D array or a type name for a 3D type, each dimension must have its own square brackets,
as shown in Figure 18.10. A 3D object may be referenced with zero, one, two, or three subscripts, depending
on whether we need the entire object, one plane, one row of one plane, or a single element. For example,
the middle plane in Figure 18.10 is three_d[1]. This plane is a valid two-dimensional array and could be an
argument to a function that processes 2-by-4 matrices. Three-dimensional arrays are referenced analogously
to matrices. For example, the last row of the last plane is three_d[2][1] and the last slot in that row is
three_d[2][1][3]. A 3D function parameter is declared using a typedef name or with three sets of square
brackets. Of these, the leftmost may be empty, but the other two must give fixed dimensions.

A typedef for a 3D array would extend the form for two dimensions, with the additional dimension, in
square brackets, at the end. Multidimensional arrays may be initialized through nested loops or by properly
structured initializers; a 3D initializer would use sets of brackets nested three levels deep.

18.2 Application: Transformation of 2D Point Coordinates

An interesting application of two-dimensional arrays is the production of graphic images on the screen, often
animated images. To move “objects” around on the screen, it may be necessary to rotate or translate them
from their current position. This requires transforming the coordinates of the points constituting the object.
In this section, we show a program that reads a set of point coordinates representing an object from a file and
produces a new, transformed set of points. The code is written to transform a 2D image. However, by changing
a #define, the same code will work with 3D images.

0,0,0 0,0,1
1,1,3

0,1,30,1,20,1,1

0,0,30,0,2

0,1,0

2,1,3

2,0,0
1,0,0

2,0,1 2,0,2 2,0,3
1,0,1 1,0,2 1,0,3

threeD

Figure 18.10. A three-dimensional array.
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Problem: Write a program that reads in a set of points representing an object and produces another set of
points based on a transformation (rotation and translation) of the original.

Input: (1) The name of a data file containing point coordinates, one point per line, each line containing
the coordinates of one point, separated by a space. For a 2D drawing, there will be two coordinates, x and
y, per point. For a 3D drawing, there will be also be a z coordinate.

(2) The transformation will be entered in the form of a counterclockwise (ccw) rotation angle, θ, and
numbers that are the translational changes in each of the 2 or 3 dimensions. To avoid confusion, the rest of
this discussion is in the context of 2D drawings.

The diagram shows a rotation angle of 15 degrees and translation of (10, 6).

tx

ty

(0,0)
q

(0,0) x

y

x

y

Step 1: rotation Step 2: translation

original position:
after rotation:
after translation:

Constant: π.
Formula: The transformation usually is represented in symbolic matrix form as

pnew = R pold + T

where pnew and pold are given by (x, y) coordinate pairs, R is a 2-by-2 rotation matrix for an object rotating
counterclockwise (left) or clockwise (right) through angle θ:

Rccw =

[
cos θ − sin θ
sin θ cos θ

]
or Rcw =

[
cos θ sin θ
− sin θ cos θ

]
and T is a translation given by another (x, y) pair. Expanded, the matrix formula for counterclockwise
rotation becomes two equations:

pnewx
= poldx

· cos θ − poldy
· sin θ + Tx

pnewy
= poldx

· sin θ + poldy
· cos θ + Ty

The sin() and cos() functions are in the standard math library, which is included by tools.hpp.
Output: The original point coordinates are echoed to the screen in a table, and next to them are the

new point coordinates that have resulted from the transformation. Display two decimal places.
Limitations: Since we are using vectors to store the points, there is no limitation on the number of

points in a drawing.

Figure 18.11. Problem specifications: 2D or 3D point transformation.
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This program is specified in Figure 18.11. It calls functions can be found in Figures 18.13 through 18.15.

#include "tools.hpp" // File: crown.cpp

#include "drawing.hpp"

int main( void )

{

cout <<"Welcome to the " <<DIM <<"D drawing transformation program\n";

Drawing dOld; // Input the points of the drawing.

Transform trans;

Drawing dNew( dOld, trans );

dOld.displayPoints( dNew ); // print result table

return 0;

}

Figure 18.12. 2D point transformation—main program.

A two-dimensional transformation is composed of two parts: a rotation and a translation. First, the object
is rotated counterclockwise about the origin by an angle θ. Then it is translated. This is a straight-line
motion described by offsets in position along each of two orthogonal axes (usually the x and y axes). Given
theta and the two offsets, an appropriate equation can be written for calculating the transformed coordinates
of a point based on its original location. This situation is depicted in Figure 18.11 along with the specifications
for the 2D transformation. The main program is listed in Figure 18.12, and the supporting functions are shown
in Figures 18.13 through ??.

Classes are defined for a Drawing, a Point, and a Transformation. The first has only one data member: a
vector. We define a class in order to have a place to put the relevant functions. The data members of the other
two classes are arrays of doubles. We need to wrap these arrays inside classes to provide a place for functions
and to make it possible to put the Points into a vector. The base type of a vector can be a primitive type or a
class type, but it cannot be an array.

Notes on Figure 18.12: 2D point transformation—main program.

First box: the environment.
• We need the C math library, <cmath>, which is included by tools.hpp.

• The file drawing.hpp contains the class declarations for Drawing, Point, and Transform.

Second box: Constructing the classes.
• The Drawing constructor asks the user for a file that contains a drawing and reads it into memory. Errors

during opening and reading are handled.

• The Transform constructor reads the rotation amount and translation amount from the keyboard and
computes the transformation matrix.

Third box: Using the transformation.
• A second Drawing constructor initializes a drawing by transforming an existing drawing.

• Having computed the new drawing, both old and new are displayed, side by side, for comparison.

• This program does not write the new drawing to a file, but that might be useful.

Notes on Figure 18.13: Three class declarations.

First box: Data members of Point.
• Some real-lift objects can be represented either by a structure or an array. In a previous chapter, we used a

structure to represent a point in 2-space. Here we are using an array of doubles instead. There are several
reasons:
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– The processing done during a transformation is the same for both x and y components of a point.

– The code for that processing is easier to write and briefer using nested loops than using individual
statements for each component.

– This code is written in such a way that it can be used for a 3D drawing as well as a 2D drawing. You
can’t do that if you must write the component name (x or y or z) in the code instead of the component
number (0. . . 2).

Second box: Function members of Point.
• All of the Point functions are defined here, in the class declaration because they are all very brief. All three

fit on one line.

#include "tools.hpp" // File: drawing.hpp

#define DIM 2 // For 2-dimensional drawings.

#define PI 3.1415927

//------------------------------------------------------------------

class Point {

private:

double pt[2];

public:

Point() = default;

Point(double x, double y){ pt[0]= x; pt[1]= y; }

double& operator[]( int k ){ return pt[k]; }

void print(){ cout <<" ( " <<pt[0] <<", " <<pt[1] <<" )\n"; }

};

//------------------------------------------------------------------

class Transform {

private:

double rotation[DIM][DIM];

Point translation;

public:

Transform();

void transformPoint( Point oldP, Point& newP );

};

//------------------------------------------------------------------

class Drawing {

private:

vector<Point> pts; // A drawing has many points

public:

Drawing();

Drawing( Drawing& oldD, Transform& trans );

void displayPoints( Drawing& dNew );

void getDrawing();

};

Figure 18.13. Three Class Declarations
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• We need the default constructor to declare Point variables, such as the one in the Transform class.

• The constructor with parameters is needed to create a Point from the coordinates we calculate, prior to
pushing the point into a vector that represents a new Drawing.

• The definition of operator[] is needed to enable the programmer to write code that looks like double
subscripting on an array. The Point class delegates the subscript operation to its underlying array. The
subscript operator returns a reference to a double so that the result of subscript can be used to store a
double value.

• The print function is very ordinary. It was necessary during debugging, although it is not used anywhere
in the finished application.

Third box: Data members of Transform
This program was originally written in C, with all the data members and functions thrown into one file.
Translating it to a reasonable OO design was a challenge. The key came in realizing that Transformation
needed to be a class on its own. It is the first example in this book of a process class. All other classes have
been data or controller or container classes (like vector).
• A process class contains data members and functions needed to carry out a process. Instances of data classes

are sent to it as parameters and returned by its functions.

• To perform a transformation, we need a 2-by-2 matrix of doubles for the rotation and an array of two
doubles for the translation. These members define the transformation and really should not be part of any
other class or of main().

Fourth box and Figure ??: the Transform functions.
We imagine that this class could be part of a large graphical drawing package such as the one used to produce
the drawings in this book. The prototypes
• The Transform constructor must get the data to define the transform. In this case, the data comes from

the keyboard but it could come from a file or (more likely) from a GUI interface. The actual input data is
used to compute the transformation matrix.

• There is only one function, and it carries out the process for which the class was designed. It applies the
transformation to a point and returns another point. The algorithms come from linear algebra, where a
vector is an array of numbers and a matrix is a rectangular array of numbers. Vectors are often used to
represent points in 2-space or 3-space. Do not confuse this terminology with the C++ meaning of vector,
which is a container class capable of storing an array of numbers.

• The transformation process starts by computing an algorithm called dot product, once for each dimension.
The dot product of vectors a and b is:

a · b =

DIM−1∑
k=0

ak × bk

This is used twice to calculate the product of the rotation matrix and the old point, where row0 and row1

are the two rows of the translation matrix, considered as vectors.

newP =

[
row0 · oldP
row1 · oldP

]
• In Figure ??, the fifth box carries out the matrix operation. The outer loop calculates the two components

of the new point. The inner loop does the dot product to calculate one new coordinate. Double subscripting
is used to access the elements of the rotation matrix.

• The sixth box does the simpler operation of translating the figure, that is moving it up or down and right
or left by adding or subtracting a shift amount from each coordinate.

Fifth box of Figure 18.13: Data members of Drawing

• This class is simply a wrapper for a vector of Points. We need a class instead of simply using a vector
because we need a place to put the related functions.
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Sixth box of Figure 18.13 and Figure 18.15: Functions in the Drawing class.

• There are two constructors. One is used to initialize the old Drawing from a file, the other initializes a new
Drawing by transforming the old one.

• The code for handling the input stream is like all the other examples except for one feature: the Drawing
class (not main()) prompts the user for the name of a file. This is a somewhat arbitrary decision. In this
case, by opening and closing the file within the constructor, we avoid having a stream member of the class.

• The file handling follows the usual pattern of checking for all kinds of errors and handling errors by calling
fatal. In this case, there is no reasonable way to recover from a missing or corrupted file, and little effort is
required from the user to restart the program.

• For each line in the input file, two double values are read and used to construct a Point, which is then
pushed into the vector. The final line of output was useful during debugging to prove that the vector was

These functions are called from Figure 18.12. The constructor inputs a rotation angle and a translation
vector from which the 2D transformation is constructed, assuming a ccw rotation of the object. The function
transformPoint() applies this transformation to a single passed point and returns new coordinates.

Transform:: Transform(){

double theta; // rotation angle

for (;;) {

cout <<"Please enter counterclockwise rotation angle, in degrees: ";

cin >>theta;

if (theta >= 0 && theta <= 360) break;

cout <<"Error: Angle must be in the range 0 - 360 degrees\n";

}

theta = PI * theta / 180.0; // convert angle to radians for math

rotation[0][0] = cos( theta ); // compute rotation matrix elements

rotation[0][1] = -sin( theta );

rotation[1][0] = sin( theta );

rotation[1][1] = cos( theta );

cout <<"Please enter the translation amount ( X, Y ): ";

cin >>translation[0] >>translation[1];

}

// ---------------------------------------------------------------------

Point Transform:: transformPoint( Point oldP ) {

Point newP; int r, c; // loop counters

for (r = 0; r < DIM; ++r) {

newP[r] = 0; // rotate by calculating the dot product

for (c=0; c<DIM; ++c) newP[r] += rotation[r][c] * oldP[c];

}

newP[0] += translation[0]; // add translation vector to point

newP[1] += translation[1];

//oldP.print(); newP.print(); // debugging outputs

return newP;

}

Figure 18.14. Functions for the Transform class.
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being filled properly.

• The second constructor does all the work of the program, it transforms the points of the first drawing and
pushes new points into the second drawing. As usual, the details of the transformation are hidden in the
Transform class.

• The displayPoints() function is unusual because it deals simultaneously with two Drawings: the original
is displayed on the left and the tranformation on the right.

• This function illustrates an important fact about privacy in C++2: the parts of the implied parameter (the
old point) and the parts of the explicit parameter (the new point) are both visible to this function. There
is no need to use getter functions to access the private vector of either one.

• This code is also interesting because it uses double subscripts. There is a lot of design and a lot of machinery
behind this simple-looking clause: dNew.pts[k][1]. In this expression, the first subscript is interpreted by
the vector class, the second one by the Point class.

Results of transforming a point set. The program was run on a data set defining the crownlike object
originally shown in Figure 18.11. The object was rotated ccw by 15◦ and moved 6 units in the x direction and
10 units in the y direction. This would move the crown a little to the right and somewhat more upward. The
output from the program follows. It is left to the reader to connect the dots.

Welcome to the 2D drawing transformation program
Please enter name of file containing object points: crown.in

The drawing has 7 points
Please enter counterclockwise rotation angle, in degrees: 13
Please enter the translation amount ( X, Y ): 2 6

Transformation of coordinates

Pt Old X Old Y New X New Y
1 2.00 8.00 2.15 14.24
2 6.00 7.00 6.27 14.17
3 10.00 9.00 9.72 17.02
4 14.00 7.00 14.07 15.97
5 18.00 8.00 17.74 17.84
6 16.00 2.00 17.14 11.55
7 4.00 2.00 5.45 8.85

18.3 Application: Image Processing

This example introduces several new programming techniques that are useful in a variety of applications:

1. Binary files.

2. Closing and reopening a file for a different use.

3. Reading and writing a huge file in one operation, using low-level I/O.

4. Allocating a dynamic array for a 2D image, and processing it using a subscript function to convert logical
two-dimensional subscripts to physical one-dimensional subscripts.

5. The concepts of deep copy and shallow copy.

6. Skipping whitespace and comments in a file, as part of parsing an image header.

18.3.1 Digital images.

One task for which we use computers is processing digital images, for example, cropping them or restoring
corrupted pictures. Consider the “snow” you see on the screen of a TV set with a poor antenna. Removing the
snow, thereby producing a clearer picture, makes other image processing tasks easier. This image restoration
can be accomplished using many different techniques, both simple and complex, with varying levels of success.
The program we develop here performs a simple technique known as image smoothing . Snow is removed by
introducing an overall blurring effect.

2This is unlike Java. In Java, one object cannot access the private parts of another object, even if they belong to the same
class
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These functions are called from Figure 18.12.

// ---------------------------------------------------------------------

// Make a new drawing by reading points from an input file.

Drawing:: Drawing() {

string fname; // name of data file

double x, y;

cout <<"Please enter name of file containing object points: ";

getline( cin, fname );

ifstream fin( fname );

if (!fin.is_open()) fatal( "Cannot open %s for input.", fname.data() );

// Read data points until end of file or error occurs.

for (int k = 0; ; k++ ) {

fin >>x >>y;

if (!fin.good()) {

if (fin.eof()) break; // End of file -- leave loop.

else fatal( " Error reading file %s\n", fname.c_str() );

}

pts.push_back( Point(x, y) );

}

fin.close();

cout <<" The drawing has " <<pts.size() <<" points\n";

}

// ---------------------------------------------------------------------

// Make a new drawing by rotating and translating the pts of an old one.

Drawing:: Drawing( Drawing& oldD, Transform& trans ) {

Point newP;

for (Point p : oldD.pts) {

newP = trans.transformPoint( p );

pts.push_back( newP );

}

}

// ---------------------------------------------------------------------

void Drawing:: displayPoints( Drawing& dNew ) {

cout <<"\n Transformation of coordinates\n" <<endl;

cout <<"Pt Old X Old Y New X New Y\n";

for (int k = 0; k < pts.size(); k++) { // put both points on one line

cout <<fixed <<setprecision(2)

<<setw(2) <<k+1 <<setw(7) <<pts[k][0] <<setw(7) <<pts[k][1]

<<setw(10) <<dNew.pts[k][0] <<setw(7) <<dNew.pts[k][1] <<endl;

}

}

Figure 18.15. Functions for the Drawing class.
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Inside the computer, a picture must be stored in a discrete form. The format of a digital image typically
is a header, containing information about the nature and size of the picture, followed by a grid of numbers,
called pixels, where each number corresponds to the amount of light captured at that location by a camera.
These numbers are typically scaled to a range of 0 . . . 255, where 0 corresponds to black, 255 is white, and the
levels in between are shades of gray. This scaling is done so that each pixel can be stored in memory using
only a single byte, a great memory savings when a typical image grid could be a square of size 1000-by-1000
numbers.

Smoothing eliminates extreme pixel values. Various situations (a dirty camera lens, dust inside the
camera) can introduce speckles, called “snow” into a photograph. Usually we throw such damaged images
away, but sometimes we prefer to rescue what we can of the photo.

The idea behind smoothing is that, in general, most pixel values are similar to those of their neighbors
and the image intensity changes gradually across the picture. If one of the pixels in the image is corrupted,
then its value probably has become quite a bit different than the values of the pixels surrounding it. Therefore,
perhaps, a better value for the pixel would be based on its neighbor’s values. The simplest kind of smoothing
calculation is to replace every pixel value by the average pixel value in a small square window centered about
the pixel’s location. If a pixel is corrupted, this average should be much closer to the true value than the
original value. If it is not corrupted, the true value will be changed slightly. The resulting image typically does
not include the extremely erroneous pixel values, but some blurring of the picture does occur, especially for
larger calculation windows.

Specifications for an image smoothing program are given in Figure 18.16. The various type declarations
and functions that compose the program’s implementation are shown in Figures ??–??. The results of the
smoothing operation are in Figure 18.25. The fread() and fwrite() functions are used in this application to
read and write binary data files.

18.3.2 Smoothing an image.

Notes on Figure 18.17: Main program for image smoothing.

First box: definition two global functions.
• This main program is much like all earlier main programs: it sets up the environment, gets information

from the user, opens a stream, instantiates the Pgm class, and calls the Pgm functions.

• It is different in two significant ways. First, the user interaction is extensive and has been moved out of
main into a function. The prototype is here and the call is in the second box. The code is in Figure 18.18

• Second, a sophisticated technique is used by main to verify that the file name supplied by the user will not
cause an unintentional file deletion. The function header is given here and the call is in the second box.
The technique will be explained in the notes on Figure 18.18

• These two functions are written as global functions because they belong to main(), not to a class. They are
declared to be static functions so that they stay inside the main module and are not visible to any other
part of the program.

All information passed between the functions and main() must be passed through parameters. Note the
ampersands in the first function prototype: they signify that the function will use these parameters to
return information to main(). In the second function, the information is going from main() to the function,
so no & is needed.

Second box: User inputs. main() is responsible for getting two file names and a mask size from the user.
Two of these inputs will be validated.

Third box: Opening the output file.
• A basic principle of program design is: acquire all necessary resources before doing anything irreversible or

heavily wasteful. A corollary is: open your output file before doing extensive processing or asking a human
being to invest time in the application.

• In this case, we want to be sure that an output file is available before beginning to input and process a
potentially large input file. If we cannot open the output file, we abort now.
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Problem scope: Write a program that will read in a digital image stored in P5 format and produce a new
image in the same format by smoothing the pixel values of the original image.

Input: (1) The name of a data file that contains a digital image. (2) The name of a data file into which
the new digital image will be stored. (3) The size of a processing window centered about each pixel, defining
the neighborhood of values to be used in the averaging calculation.

The processing window follow:

x

y (0,0)

pixel(r,c)

window size = 
3

(127,127)

Constants: The file format code is “P5”.
Formula: The average value of a processing window is the sum of the pixel values in the window divided

by the number of pixels in the region. This formula does not hold for pixels around the border of the image,
for which the window does not fit completely in the image. In such cases, the dimensions of the window
must be cropped to confine the window within the bounds of the image.

Output: A new image is to be generated, with the same file header as the original image, but modified
pixel values. Each new pixel value is the average value of the pixels in the window of the old image that is
centered at the corresponding location.

Limitations: The input file must have the proper amount of data in it. The processing window size
should be an odd number in the range 3 . . . 11.

Figure 18.16. Problem specifications: Image smoothing.

Fourth box: Creating the Pgm objects.
• The object named p is the original photo that we wish to smooth, and q is the smoothed photo that we will

calculate.

• The first function called here is the primary constructor for the Pgm class. It will initialize p by reading a
photograph from the file whose name is stored in inname The constructor reads in a brief header telling the
dimensions and grayscale of the picture, then it allocates a dynamic array of the correct size and reads all
the pixels into it.

• Before we can calculate the smoothed image, we must create a .pgm data structure and allocate memory for
the pixels. The second function called here is a copy constructor. It initializes q by copying the non-dynamic
parts of p. By doing so we make q the same size and grayscale as the original photo, but we do not copy
the pixels. Then this copy constructor allocates a new array to hold the pixels that we will compute.

Fifth box: Doing the work. At this point, we have read in the original and prepared memory for the
smoothed version. We can go ahead with the smoothing, then write out the result.

Sixth box: cleanup. Good programming style dictates that we free everything we allocate, as soon as we are
done using it, so the file should be closed. We do this even when termination will be immediate.

Notes on Figure 18.18: Getting parameters for the smoothing.
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This program is specified in Figure 18.16. It uses the parts in Figures 18.18 through 18.24.

#include "tools.hpp"

#include "pgm.hpp" // File: smooth.cpp

static void getParameters( string& inname, string& outname, int& maskSize );

static void checkOkToOpen( string outname );

int main( void )

{

cout <<"This program smoothes a greyscale image\n";

string inname;

string outname;

int maskSize;

getParameters( inname, outname, maskSize );

checkOkToOpen( outname ); // abort if not ok.

ofstream outFile( outname );

if (!outFile.is_open()) fatal( "Cannot open %s for output", outname.data());

Pgm p( inname );

Pgm q( p );

q.smooth( p, maskSize );

q.write( outname, outFile );

outFile.close();

return 0;

}

   main 
Fig 18.17

new[ ]

Specs 
Fig18.16

getParameters
Fig 18.18

average
Fig 18.24 delete[]

checkOkToOpen
Fig 18.19

constructor
Fig 18.21

copy const.
Fig 18.21

smooth
Fig 18.24

nextField
Fig 18.22

Pgm:: Fig 18.20

[ ]
Fig 18.20

destructor
Fig 18.20

sub
Fig 18.20

printHead
Fig 18.23

write
Fig 18.23

Figure 18.17. Image smoothing—main program.
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void getParameters( string& inname, string& outname, int& maskSize )

{

cout <<"Please enter name of image file to open: ";

getline( cin, inname );

if (!cin.good()) fatal( "Error reading input file name" );

cout <<"Please enter name of file for result image: ";

getline( cin, outname );

if (!cin.good()) fatal( "Error reading output file name" );

cout <<"Enter size of square smoothing mask: ";

cin >>maskSize; // should be 3, 5, 7, 9 or 11

if (!cin.good()) fatal( "Error reading size of mask." );

if (maskSize % 2 == 0)

fatal( "Error: mask size must be an odd number.\n" );

if (maskSize < 3 || maskSize > 11)

fatal( "Error: mask size must be in range 3 - 11.\n" );

}

Figure 18.18. Getting parameters for the smoothing.

First box: the parameters. All three parameters are passed by reference (&), so the parameter names will
be the addresses of main’s variables. (The call is in Box two of the main program. ) In the boxes below,
input is read into the parameter variables, which actually stores the input in main’s variables. When the
getParameters() function returns, that input will be known to main().

Second box: the file names. To run this program, we need an input file and an output file. This code is
the minimal amount of work to make an appropriate interface. The program would work if the first test were
skipped, but the user-interface would be worse. If there is an error reading the first file name, a program should
not ask the user to enter the second hame.

Third box: the smoothing mask. Here, we want only one simple number, but need to deal with three ways
that the input could fail.

• The read operation will fail if the user enters a non-numeric character.

• The mask value could be out of the range permitted by the program.

• The value could be even, which is not allowed.

void checkOkToOpen( string outname ) {

ifstream testFile( outname );

if (! testFile.is_open()) return;

char ch;

testFile.close();

cout <<"File " <<outname <<" exists. Do you want to overwrite it? [y/N] ";

cin >> ch;

if (tolower(ch) != ’y’) fatal("Aborted");

}

Figure 18.19. Prevent accidental overwriting of existing file.
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In any of these cases, we call fatal and expect the user to run the program again. Very little effort has been
wasted.

Notes on Figure 18.19: Prevent accidental overwriting of existing file.

First box: testing whether the file exists.
• Suppose you wish to open a file named “x.pgm” for output. If a file by the same name already exists in the

current active directory, writing ofstream myOut("x.pgm") will delete the existing file. Sometimes that is
OK. Often it would be an unintended problem.

• Some applications actually ask the user whether he wishes to overwrite an existing file, and this is considered
good practice. So we want to find out whether the output file already exists, and we want to do it in a way
that works for any operating system.

• We do this by trying to open that output file name as an input file. If that effort fails, we are happy: the
file does not exist. So we return from this function.

Second box: the file exists – now what?
• Close that input file! We do not really want it.

• But we have discovered a potential problem and need to ask the user what to do next. If he does want to
overwrite the file, we are happy and just return.

• But if the user says that he does not want to overwrite the file, we call fatal() and abort.

Notes on Figure 18.21: the Pgm class.

First box: the typedef for pixels. We use a typedef to provide a short, meaningful name for a long,
nonspecific type. We are using chars because the pixels are each one byte, and unsigned because a pixel value
is in the range 0. . . 255.

Second box: declaration of a window type.
• The smoothing process will compute the new pixel value by averaging the pixel values in a square area

surrounding each pixel of the image. We need this type to define the position of that averaging window as
we move it across the image.

• We do not need to define a type for this purpose; we could use an array of four integers. The reason for
declaring a type name and part names is to make the code easier to read and understand.

• This type is a struct, not a class, for simplicity and because there are no functions associated with it. It is
a helper-type for the Pgm class. All of its members are public.

Third box: data members. The list of data members includes all required fields of the Pgm format plus
one member for internal use.
• A Pgm file in P5 format has these fields, separated by whitespace:

– The characters “P5” must come first. We reserve a 3-char array for this code to allow space for a null
terminator. All three slots are initialized to null, and the first two will be changed by the constructor.
The null in the third slot allows us to print the 2-character code as a string.

– The width and height of the image, in pixels, come next.

– The gray scale value tells us how many different pixel values are allowed in the photo. Normally, this
is 255, but it could be a more restricted number.

– At least one whitespace (probably a newline) must follow the maxGray.

– After that are the pixels of the image.

• There should be length × width pixels. If there are too many or too few, it is an error. This number is
computed here and stored in a data member because it is used by several of the functions in this class.

• Comments are allowed anywhere in the header and are likely to come after the “P5”. A comment starts
with a # character and ends at the next newline.
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Fourth box: private functions.
• These two functions are private because they are not intended for use outside the Pgm class.

• These functions are both const functions: in a function prototype, the keyword const just before the semi-
colon declares that the function does not modify the data members of the class.

• The nextField() function is called several times from the Pgm constructor to help parse the header of the
Pgm file.

• The average() function is called from smooth to perform the calculation on which smoothing is based.

Fifth box of Figure 18.20: constructors and a destructor. Here we give an overview of the three
methods. See Figure 18.21 for more detail.
• The primary constructor for this class opens the image file, reads in the header, allocates dynamic memory,

and then reads in the pixels. Errors due to incomplete files and inconsistent files are handled.

• The second constructor is a copy constructor3 that defines how to initialize a new class instance by copying
an existing one. Every class automatically has a copy constructor that copies all the bits of the original

3A constructor whose parameter is type const classname& is always a copy constructor.

#pragma once // File: pgm.hpp

#include "tools.hpp"

typedef unsigned char pixel;

// A rectangular window, given by its upper left and lower right corners

struct Window { int left, top, right, bot; };

class Pgm {

private:

char filetype[3] = {’\0’}; // 2 characters designate the file format.

int width;

int height;

int maxGray;

int len; // length of pixel array = width * height

pixel* image ;

void nextField( istream& s ) const;

pixel average( Window w ) const;

public:

Pgm( string inname );

Pgm( const Pgm& oldP);

∼Pgm() { delete image; }

pixel& operator[]( int k ){ return image[k]; }

int sub( int row, int col ) const { return row * width + col; }

void smooth( const Pgm& p, int maskSize );

void printHead( ostream& out ) const;

void write( string outname, ofstream& outFile );

};

Figure 18.20. The Pgm class.
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object into the new one. However, this default definition can be changed, and that is what we are doing
here.

• The class destructor is the third line. We need an explicit destructor in this class because the constructor
uses dynamic memory. It allocated a new pixel array named image, and we delete that array here.

Sixth box: subscript functions. These two functions are both inline. When an inline is called, the entire
body of the function is written in the caller’s code in place of the function call. For one-line functions, this
increases efficiency.
• The first line defines how to do a subscript operation on a Pgm object. The function body delegates that

subscript operation to the image inside the Pgm object. It returns the address (&) of the selected array slot,
which can then be used on either side of an assignment statement.

• The syntax that you see in this function declaration is used only to define new methods for subscript. Calls
on subscript use the familiar syntax for subscripting. For example, the last line of the smooth function calls
operator[].

• The second function, sub translates a logical 2D subscript to a physical 1D subscript. This is necessary
because dynamically allocated arrays are all 1D arrays. The programming student should learn this com-
putation and recognize it when it appears.

Seventh box: smoothing and output.
• The smooth function performs the main task of this application. It is in Figure 18.24.

• The write() function outputs the completed, smoothed image to the previously-opened output file. It is
in Figure 18.23.

• The printHead() function is called while writing the modified image to a file. It was written as a separate
function because it was also very useful to monitor the program’s actions during debugging.

Notes on Figure 18.21: The primary Pgm constructor. This is an unusually complex function for
reading the contents of a file because a Pgm file is written partly as a text file and primarily as a binary file.
On an OS platform that distinguishes between text and binary modes, the file must be opened, closed, opened
again, and closed again. Both the open operation and the read operation could generate errors that must be
checked. So a seemingly simple job takes a whole page of code.

First box: reading the file header.
• The Pgm header is written in text mode. It must start with the 2-letter code “P5”. Reading these chars

one at a time, as chars, seems to be the easiest and safest way to do the input. The 3rd slot in the char
array has previously been initialized to a ‘\0’ so that we can print out the code as a string.

• Next, we expect to find three integers. They might be separated by a single whitespace character, but there
could also be several spaces or an entire comment to skip. This is enough complexity to write a function to
skip over this irrelevant material. See Figure 18.22. We alternate reading a number and skipping whitespace.

• Finally, we read the single required whitespace char at the end.

Second box: checking for and handling errors. Note: if any kind of error happens while reading a file,
nothing in the file itself or in the stream will change until the stream error flags are cleared.
• It is not necessary to check for errors after every read operation because any error, anywhere in the header,

makes the file invalid. We can attempt to read the whole header, and check at the end to be sure the stream
is still “good”.

• The two if statements in this box check for all error that might have happened while reading this file
header. Anything bad causes immediate termination.

Third box: calculation and output. When we get here, we have finished reading the part of the file that
is written in text mode. Only the binary portion follows.
• We need to change mode from a text file to a binary file. To do that, we must close the file and reopen it

using ios::in | ios::binary.
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Pgm:: Pgm( string inname ) { // Initialize a pgm object from a file.

int n, ch;

// Open file the first time to read in text mode.

ifstream pgFile( inname );

if (!pgFile.is_open()) fatal( "Cannot open input file %s\n", inname.data() );

// Scan and parse file header ---------------------------------------------

pgFile >> filetype[0] >> filetype[1]; // Get file type

nextField( pgFile ); // skip to start of width field

pgFile >> width;

nextField( pgFile ); // skip to start of height field

pgFile >> height;

nextField( pgFile ); // skip to start of maxgray field

pgFile >> maxGray;

ch = pgFile.get(); / Required whitespace character preceding pixels.

if (!pgFile.good() || !isspace(ch) || strcmp( "P5", filetype) != 0)

fatal( " %s is not a PGM file.", inname.data() );

if (maxGray<1 || maxGray > 255) // Check range of maxgray

fatal( "MaxGray must be between 1 and 255" );

// Remember current position in the file for seeking back to it later.

streampos filePos = pgFile.tellg();

if (filePos<0) fatal("Can’t get file pointer after reading header");

pgFile.close();

pgFile.open(inname, ios::in | ios::binary); // Reopen file in binary

pgFile.seekg(filePos); // Restore file pointer.

if (!pgFile.good()) fatal("Can’t restore file pointer");

image = new pixel[len]; // Allocate storage for pixel data.

pgFile.read( (char*)image, len ); // Get pixel data.

if (!pgFile.good()) fatal("Incomplete pgm file ’%s’", inname.data());

// Check for eof ---------------------------------------------------------

pgFile.get();

if (!pgFile.eof()) fatal("File ’%s’ contains unread data", inname.data());

pgFile.close();

}

// -------------------------------------------------------------------------

// Copies an existing Pgm image into this Pgm object.

Pgm:: Pgm( const Pgm& old ) {

this = old; // Shallow copy.

image = new pixel[ len ]; // Allocate new pixel array

}

Figure 18.21. The Pgm constructors.
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// Skip past inter-field whitespace and comments in pgm header. ---------------

void Pgm:: nextField( istream& s ) {

char c;

string junk;

for(;;) {

s >> c;

if (s.eof()) return;

if (c != ’#’) break;

getline( s, junk );

}

s.unget();

}

Figure 18.22. Parsing and printing the header.

• But after reopening, we need to get back to exactly the current position in the file. So before closing,we
need to find out and remember where we are. That is what tellg() does: it tells us the current position
of the file pointer, returned as a value of type streampos. Of course, we check for errors. That is tedious
but important.

• After executing tellg(), close(), then open() and seekg(), we are back at the end of the file header and
ready to read in binary.

Fourth box: allocation.
• To prepare for reading the pixels, we allocate an array long enough to hold length * width pixels.

• The function read() is a low-level input operation that will read a specified number of bytes into a given
array. Unfortunately, it has methods for reading and writing type char, but no methods for type unsigned
chars. We “work around” this limitation by casting the image array pointer to type char* for the read
operation, and again for the writ operation later. This works without problems.

• If an eof occurs during the read operation, there are not enough pixels in the file to satisfy the read request.
This could mean that the Pgm header is corrupted or that the end of the file has been removed. In either
case, there is no point in going on, so we abort.

Notes on Figure 18.21, last box: The Pgm copy constructor. Every class has a copy constructor,
defined by default. It copies the bits from one object to another. However, if the first object has dynamic
allocation attached, only the pointer is copied, not the entire information. The result is a recipe for trouble:
two objects end up pointing at the same dynamic allocation.

The Pgm copy constructor.
• In main, we allocate two Pgm objects, p and q. p is initialized by the primary Pgm constructor reading an

image from a file. q is created to hold the modified image. The modified image should be the same size and
shape as the original, so the header information for q is the same as for p. However, the two objects must
end up pointing at different pixel arrays.

• The first line of this method copies the entire old object into the new one, including the image pointer. The
second line computes the total size of the dynamic area.

• The second line allocates new memory and stores it in the new image. q is now a complete Pgm object,
independent of p, and ready to use to store the modified pixels.

Notes on Figure 18.22. Parsing the header. The function nextField() is a private helper function for
the Pgm constructor. Its purpose is to skip comments and whitespace embedded in the Pgm header. The use
of unget() is new to this text.
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// Print the pgm header. -------------------------------------------------------

void Pgm:: printHead( ostream& out ) const {

out << filetype << "\n"

<< width << " " << height << "\n" << maxGray << endl;

}

// Print the entire Pgm image. -------------------------------------------------

void Pgm:: write( string fileName, ofstream& pgmFile ) {

printHead( pgmFile ); // Write .pgm header data

pgmFile.close();

pgmFile.open( fileName, ios::out | ios::app | ios::binary );

pgmFile.write((char*)image, len); // Write pixel data.

if (!pgmFile.good()) fatal("Error writing pgm file ’%s’", fileName.data());

pgmFile.close();

}

Figure 18.23. Writing the Pgm file.

First box: the skipping loop.
• There is no simpler way to eliminate whitespace and comments than to read the file one byte at a time and

test each byte. Remember that the operator >> skips leading whitespace, which is part of the goal in this
application.

• In a Pgm file, comments extend from the # to the next newline character. We read the header, one character
at a time, checking for the #. When we find it, we skip the rest of the comment line.

• A non-whitespace character that is not a # causes us to leave the loop. At that point, we have read the first
digit of one of the three numbers that describe the image. We have gone too far!

Second box: Put it back! This is a common situation, and C++ provides a function to handle it. The call
on s.unget() moves the stream cursor back one character, effectively putting the most recent character read
back into the stream. Now the stream cursor is positioned properly to read the next number. Note: you can
only “unget” one character.

Notes on Figure 18.23: Writing the Pgm file. This is considerably simpler than reading a Pgm file.

First box: Writing the header. This code is straightforward. It is simpler than reading the header because
no parsing is necessary. We supply spaces and newlines where they are needed.

Second box: Writing the entire image file. We need to reverse the process of reading the file. However,
again, there are no unknowns and the code is much much simpler.
• The output file was opened in text mode in the Pgm constructor. After printing the header, we need to

close the stream and reopen it in binary mode.

• When we reopen the output file in binary mode, we also specify append mode: the pixels will be written
at the end of the header information that is already in the file.

• write() is a low-level output command that writes a specified number of bytes to a file. As with read(),
we need to cast the pixel array from type unsigned char* to type char* before write can use it. This works
without problems.

Notes on Figure 18.24. The smoothing calculation. The smoothing calculation computes each pixel
of the new image by averaging the values of its neighbors in the old image.
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First box (outer): Processing one pixel.
• The smoothing process involves nested loops, where the inner loop processes all the columns in one row of

the image and the outer loop processes all the rows of the image. The nested loop structure in this function
follows the typical form for processing a 2D array.

• Each pixel must be processed independently of the others. It is necessary to save the results of processing
each pixel into a new image; otherwise, the processing of successive pixels would incorporate both old and
new pixel values, which would give a distorted result.

First inner box: determining window bounds.
• The processing window is computed separately for each pixel. It is centered about the pixel in question and

extends maskSize/2 pixels in each direction from that center. Integer division by 2 makes sure that integer
limits are generated.

• Around the borders of the image, portions of the window may extend past the image boundary. Since there
are no pixels in these areas to use, the window bounds must be restricted to stop at the actual edges of the
image. For example, if the proposed processing window would have a negative subscript on the left side, it
is set to 0 instead.

Second inner box: calculating the new pixel value.

void Pgm:: smooth( const Pgm& oldP, int maskSize )

{

const int offset = maskSize/2; // offset from center to edge of window

for (int r = 0; r < width; r++)

for (int c = 0; c < height; c++) {

Window mask; // boundary limits of processing mask

mask.left = max( 0, c-offset );

mask.top = max( 0, r-offset );

mask.right = min( c+offset, width-1 );

mask.bot = min( r+offset, height-1 );

// compute and store new pixel value --------------------------------

image[ sub(r, c) ] = oldP.average( mask );

}

}

// ------------------------------------------------------------------------

// Compute average value of pixels in bounded window of image.

//

pixel Pgm:: average( Window mask ) const

{

int sum = 0, count = 0; // sum and pixel-count for average

for (int r = mask.top; r <= mask.bot; r++)

for (int c = mask.left; c <= mask.right; c++) {

sum += image[ sub(r, c) ];

count++;

}

return sum / count;

}

Figure 18.24. Smoothing.
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Figure 18.25. Results of image smoothing program.

• The original image and the bounds of the processing window are passed to the average() function to do
the actual calculation. By putting the calculation in a separate function, we keep the process of cycling
through all the pixels separate from the process of calculating the value of one pixel. We also avoid writing
a nest of for loops that is four levels deep. Both of these goals are worthy design goals.

• The single line of code in this box calls three of the functions we have defined. First, the average() function
is called to compute the new pixel value. Then the row and column numbers of the current pixel sent to
sub() and converted to a 1-D subscript. Finally, that subscript is used by operator[] to access image, the
dynamic pixel array.

Last box: the double loop in the average() function.
• This is a straightforward summing loop to add up the pixel values in a square area. The Window object

contains the beginning and ending subscripts for the rows (outer loop) and for the columns (inner loop).

• When the loop ends, all n2 values have been summed. The last line computes and returns the average.

Results of smoothing an image. The program was run on a sample image. The results are shown in
Figure 18.25. The original image on the left was corrupted by a small amount of “snow.” A window size of 3
was chosen for processing, which produced the image on the right. As can be seen, the extreme white values
have been removed, but the image has been blurred. Other image restoration techniques, which are more
complex, can remove the corrupted values without the blurring.

18.4 Application: Gaussian Elimination

Gaussian elimination is an algorithm for solving a system of m linear equations in m unknowns, as shown
next. The goal is to find values for the variables a, b, . . . ,m that simultaneously satisfy all the equations

c1,1a+ c1,2b+ · · ·+ c1,mm = X1

c2,1a+ c2,2b+ · · ·+ c2,mm = X2

...

cm,1a+ cm,2b+ · · ·+ cm,mm = Xm
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We can use an M by M + 1 matrix to contain the coefficients of the variables in the M equations, one row
for each equation, one column for each unknown, and a final column for the constant term. To find the set of
variable values that satisfy the system, we apply to the coefficient matrix a series of arithmetic operations that
are valid for systems of equations. These operations include

• Swapping. Since the order of the equations in the matrix is arbitrary, we can exchange the positions of
any two equations without changing the system. (But we cannot swap two columns because each column
position is associated with a particular variable.)

• Scaling. Both sides of an equation may be divided or multiplied by the same number. That is, if we
divide or multiply all of the coefficients and the constant term of an equation by a single number, the
meaning of the equation remains unchanged.

• Subtraction. We can subtract one equation E1 in the system from another, E2, and replace E2 by the
result, without changing the constraints on the variable values that satisfy the system.

An algorithm that uses these operations, Gaussian elimination, can be used to compute the variable values
that solve the system of equations.

We implement this algorithm by writing a function to perform each of the preceding operations, and a
function, solve(), that uses them appropriately. The algorithm solves the system of equations in stages. At
stage k, we select one equation, place it on line k of the matrix, then scale it by dividing all of the row’s entries
by its own kth coefficient. This process leaves a value of 1 in the kth column of the kth row of the matrix.
The new kth equation then is used by the scaling and subtraction functions to reset the kth coefficient of every
other equation to 0 while simultaneously adjusting the other coefficients. After M such elimination steps, the
matrix (except for the last column) has a single element with the value 1 in each row and in each column. This
corresponds to a set of equations of the following form, in which the last column of the matrix contains the
solution to the system of equations:

1 · a = X ′1

1 · b = X ′2

. . .

1 ·m = X ′m

18.4.1 An Implementation of Gauss’s Algorithm

To solve a particular system of equations using this code, the user must first create a data file, gauss.in, that
contains the data. The number of equations must be on the first line. Following that must be the coefficients
of the equations, one equation per line. The constant term of each equation is the last entry on a line. The file
we use in the example looks like this:

4

1 2 2 1 10

3 -1 0 5 -4

2 2 3 0 15

0 .5 0 -1 7 -9

The corresponding output, before solving the equations i:

Linear Equations to Solve:

------------------------------------------------------------

1.000 * a + 2.000 * b + 2.000 * c + 1.000 * d = 10.000

3.000 * a + -1.000 * b + 0.000 * c + 5.000 * d = -4.000

2.000 * a + 2.000 * b + 3.000 * c + 0.000 * d = 15.000

0.000 * a + 0.500 * b + -1.000 * c + 7.000 * d = -9.000

------------------------------------------------------------
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Use Gaussian elimination to solve m equations in m unknowns.

#include "gauss.hpp"

int main ( void )

{

Gauss matrix; // Array of equation pointers.

matrix.print( cout, "\nLinear Equations to Solve:");

bool solvable = matrix.solve();

matrix.print( cout, "\n Equations after Elimination" );

if (!solvable) fatal(" Equations inconsistent or not independent.\n");

matrix.answers( cout );

return 0;

}

Figure 18.26. Solving a system of linear equations.

Notes on Figure 18.26. Solving a system of linear equations. This is a typical OO main program.
It instantiates matrix, an object of class Gauss, and displays the system of equations that will be solved. Then
main() uses matrix to call functions that solve the system of equations and to print out the final solution. This
is the right way to build a program: keep main() simple. The other functions, in the classes, do all the work.

The call chart in Figure 18.27 shows the structure of the Gaussian elimination program; the main program
is in Figure 18.26, the classes in Figures 18.28 and 18.29, and the functions in Figures 18.30 through 18.36. A
call chart is given in Figure 18.27; most standard system functions have been omitted from the chart.

Notes on Figure 18.28: The data structure.
• The Gaussian Elimination algorithm is based on operations on entire equations, where each equation is

represented by one row of a matrix. Although we could use a two-dimensional array to hold the equation’s
coefficients, this data structure does not reflect the nature of the problem well: the program really is working
with an array of equations, not a two-dimensional array of numbers.

• We wish to use dynamic allocation so we can solve a system of equations with any reasonable number of
unknowns. A matrix that represents a system of n equations will have n rows and n + 1 columns. Each
column except the last represents one unknown. The last column represents the constant term in the

findPivot 
Fig 18.34

swapNonzeroRows      
Fig 18.34

solve      
Fig 18.33

main       
Fig 18.26

constructor 
Fig 18.30

print       
Fig 18.31

answers       
Fig 18.31

[ ]         
Fig 18.33

Gauss:: Fig 18.29 

constructor 
Fig 18.30

vector:: 

push_back

wipe        
Fig 18.36

scale        
Fig 18.35

print         
Fig 18.32 [ ]

vector:: 

Equation:: Fig 18.28 

Figure 18.27. A call chart for Gaussian elimination.
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This class is used by the Gauss class in Figure 18.29 to model one equation.

#pragma once

#include "tools.hpp" // File: equation.hpp

class Equation {

private:

vector<double> coeff;

public:

Equation( istream& eqIn, int nEq );

void print( ostream& out );

double& operator[]( int k ){ return coeff[k]; }

void scale( int col );

void wipe( Equation& piv, int pivRow );

};

Figure 18.28. The Equation class declarations.

equation.

• When the number of variables increases, both the number of rows and the number of columns increase. To
allow any reasonable number of variables, we define the class Equation as an vector of double values and
the class Gauss as a vector of equations. For the data file given earlier, the data structure will eventually
have dynamically allocated parts that are related as shown in the diagram below. The question marks
represent the data member in vector that tracks the actual length of the dynamic allocation. We simply
do not know that length, and do not need to know.

mat

1.02.01.0 2.0 10.0

5.0-1.03.0 0.0 -4.0

0.02.02.0 3.0 15.0

[1] [2] [3][0] [4]

7.00.50.0 -1.0 -9.0

mat[0]
mat[1]
mat[2]
mat[3]

4 ?

5 ?
5 ?
5 ?
5 ?

Notes on Figure 18.28. The Equation class.

First box: the data member. he only data member of Equation is a vector. The class was created as a
place to define functions that implement the row-operations of the elimination method.

Second box: the usual suspects.
There is nothing unusual here. These first two methods are what we expect to see in every class. The constructor
prototype tells us that the coefficients for one equation will be read from an open stream. The definition of the
subscript operator is expected: the outside world needs a way to access data stored in the coefficient vector.
The operator definition is inline, the other two definitions are in Figure ??.

Third box: the mathematics.
The last two functions implement the row-operations that are part of the Gaussian Elimination algorithm. The
Equation parameter is passed by reference (&) because it will be modified within the wipe() function. The
definitions are in Figure 18.34.

Notes on Figure 18.29. The Gauss class.
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This class is used by main() to model a system of equations.

#pragma once // File: guass.hpp

#include "equation.hpp"

#define EPS .0001 // Comparison tolerance for zero test.

class Gauss {

private:

vector< Equation > mat;

int nEq;

public:

Gauss();

∼Gauss() = default;

void print( ostream& out, ccstring message );

void answers( ostream& out );

bool solve(); // k is the column subscript

int findPivot( int k );

bool swapNonzeroRow( int k );

};

Figure 18.29. The Gauss class declaration.

First box: the constant. We need a comparison tolerance in certain portions of the algorithm to test
whether coefficients equal (or nearly equal) zero. The find_pivot() function uses this constant to identify
which equations have a nonzero coefficient in the current column. The tolerance is needed to avoid floating-
point overflow caused by division by 0 or a nearly 0 value. The constant EPS is defined here, rather than in the
function that uses it, to make it easy to find and change if the user requires more or less precision.

Second box: the data members.
• This program is able to handle a system of equations with any reasonable number of equations, neq. Since

we do not know at compile time how many equations there will be, we use a vector to store them.

• The variable neq is the first thing read from the input file and determines how many lines of data (one
equation per line) will be read. This number is used throughout the Gauss class. It is not necessary to
store it as a class member because the same number will be stored inside the vector. However, the code is
easier to write, read, and debug with this number stored in a convenient place.

Third box: the constructor and destructor.
• The class constructor is defined in Figure 18.30 and will be discussed in the notes for that Figure.

• It is not necessary to define a destructor for this class because all the dynamic allocation is hidden inside
the vectors, which manage it. If a class does not have a definition for a destructor, C++ will provide a
do-nothing destructor for the class. However, it is considered good style to define a destructor even if it
does nothing. The phrase = default declares that the destructor should do nothing.

Fourth box: output. These function are defined in Figure 18.31.
• The answers() function is used once at the very end of the program to print the solution.

• The print() function is used just after the input phase is finished and just before the answers are printed.
During debugging, it was used after every stage of the solution and was essential to track and correct the
progress of the algorithm.
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The Gauss constructor is called from main() in Figure 18.26; it opens the input file, reads equation data
from it, and calls the Equation constructor.

Gauss:: Gauss() {

// Open input file and read number of equations. ---------------------

ifstream eqInput( "gauss.in" );

if (! eqInput.is_open()) fatal ( " Cannot open gauss.in" );

eqInput >>nEq;

// Read in all the equations. -----------------------------------------

for (int k = 0; k < nEq; ++k) // Read and install an equation.

mat.push_back( Equation( eqInput, nEq ));

eqInput.close();

}

// --------------------------------------------------------------------------

Equation:: Equation( istream& eqIn, int nEq ) {

double temp;

// Read coefficients for one equation. ---------------------------------

for (int col=0; col<=nEq; ++col) {

eqIn >> temp;

coeff.push_back( temp );

}

if (!eqIn.good()) fatal( " Read error or unexpected eof." );

}

Figure 18.30. Constructing the model.

Fifth box: the mathematics.
These function are defined in Figure 18.33. They will be discussed in the notes that follow that Figure.

Notes on Figure 18.29. Constructing the model.

First box: the input stream. The Gauss constructor opens and closes the input stream.
• The first line of the file determines how many other lines will be read.

• For each input line (one equation), Gauss calls the Equation constructor and passes it a reference to the open
stream. The number of equations must also be a parameter because that determines how many coefficients
will be read for this equation.

• When the Equation constructor returns, the result is immediately pushed into the vector of Equations.

Second box: the input loop. This loop reads all the coefficients and the constant term for one equation.
As each number is read, it is pushed into the vector of coefficients.

Third box: answers.
• Whether we are printing the equations or the answers, formatting the output is important. Here we specify

fixed point with three decimal places, right justified in 8 columns. (Right justification is the default.)

• The second line of the output statement uses a character-code “trick”. We want to print variable names a,
b, c, d, etc. But we do not know how many letters we will need. So we calculate the ASCII code to print
by adding the row number to the ASCII character ’a’. This produces as much of the alphabet as needed.
It is easy, fast, and portable to any system where the alphabet is given consecutive character codes.
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These functions are called from main() in Figure 18.26 and used in various other places to provide debugging
output.

// Print the matrix, formatted so that each row is an equation.

void Gauss:: print( ostream& out, ccstring message ) {

out << message <<endl;

out << " ------------------------------------------------------------\n";

for (int row=0; row<nEq; ++row) { // Print all equations.

mat[row].print( out );

}

out << " ------------------------------------------------------------\n";

}

// --------------------------------------------------------------------------

// Print each variable with its value (from last column of matrix).

void Gauss:: answers( ostream& out ) {

for (int row=0; row < nEq; ++row) {

out <<fixed <<setprecision(3) <<setw(8)

<<" " <<(char)(’a’+row) <<" = " <<mat[row][nEq] <<"\n";

}

out << endl;

}

Figure 18.31. Output functions for the Gauss class.

Third box: error handling. Throughout this application, we are careful to do responsible error detection
and print appropriate error comments. If any one of the equations in the system is unreadable, there is no way
to solve the system and termination is appropriate.

To be OK, the neq expected coefficients and the constant term must all be present. If any one is missing
or causes a read error, we can detect the problem with a single test at the end of the read loop.

Notes on Figure 18.31: Output functions for the Gauss class.

First box: the print function’s message. The Gauss::print() function was used during debugging to
display the model after every row or column operation. To make sense of the display, it was important to know
which operation had just been done. This problem was easily solved by including a message as a parameter to
print; the messages (shown below) give the name of the function that just finished its work.

Second box: the outer print loop.
• A page full of columns of number is hard to read. We improve the situation a lot by printing a line of dashes

above and below the system of equations, so that the many steps of the solution are clearly separated. The
output below shows the first quarter of the solution process and the final answers. (The rest has been
omitted for brevity.)

• The loop in Gauss::print() is repeated once for each equation in the system. It delegates the actual printing
of the equation to the expert: Equation::print(). That method contains a loop to print all the coefficients.

Linear Equations to Solve
------------------------------------------------------------
1.000 * a + 2.000 * b + 2.000 * c + 1.000 * d + 10.000
3.000 * a + -1.000 * b + 0.000 * c + 5.000 * d + -4.000
2.000 * a + 2.000 * b + 3.000 * c + 0.000 * d + 15.000
0.000 * a + 0.500 * b + -1.000 * c + 7.000 * d + -9.000
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This function is called by Gauss::print() in Figure 18.31. It prints one row of the matrix formatted so that
it looks like an equation.

// ----------------------------------------------------------------------------

void Equation:: print( ostream& out ) {

int nEq = coeff.size()-1; // The vector has n coefficients and 1 constant.

char op= ’+’; // To print this between terms in output equation.

for (int col=0; col < nEq; ++col ) {

if (col == nEq) op = ’=’;

out << fixed << setprecision(3) << setw(8)

<< coeff[col] <<" * " <<(char)(’a’+col) <<" " << op <<" ";

}

out << setw(8) << coeff[nEq] <<"\n";

}

Figure 18.32. Output for the Equation class.

------------------------------------------------------------
Starting solve loop at pivRow 0
After swap.
------------------------------------------------------------
3.000 * a + -1.000 * b + 0.000 * c + 5.000 * d + -4.000
1.000 * a + 2.000 * b + 2.000 * c + 1.000 * d + 10.000
2.000 * a + 2.000 * b + 3.000 * c + 0.000 * d + 15.000
0.000 * a + 0.500 * b + -1.000 * c + 7.000 * d + -9.000

------------------------------------------------------------
After scale.
------------------------------------------------------------
1.000 * a + -0.333 * b + 0.000 * c + 1.667 * d + -1.333
1.000 * a + 2.000 * b + 2.000 * c + 1.000 * d + 10.000
2.000 * a + 2.000 * b + 3.000 * c + 0.000 * d + 15.000
0.000 * a + 0.500 * b + -1.000 * c + 7.000 * d + -9.000

------------------------------------------------------------
After wiping all rows.
------------------------------------------------------------
1.000 * a + -0.333 * b + 0.000 * c + 1.667 * d + -1.333
0.000 * a + 2.333 * b + 2.000 * c + -0.667 * d + 11.333
0.000 * a + 2.667 * b + 3.000 * c + -3.333 * d + 17.667
0.000 * a + 0.500 * b + -1.000 * c + 7.000 * d + -9.000

------------------------------------------------------------
Starting solve loop at pivRow 1
. . .
------------------------------------------------------------

a = 1.000
b = 2.000
c = 3.000
d = -1.000

Notes on Figure 18.32: Output functions for the Equation class. The Equation::print() function
prints one equation, with variable names and ∗, + and = signs.

Outer box: the loop.
• The formatting is the same here as in Gauss::print().
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This function performs the Gaussian elimination algorithm. It uses row operations to reduce the first
M columns of the matrix to an identity matrix. At that point, the last column contains the solution
to the problem. This function is called from Figure 18.26. It uses the functions in Figures 18.34 through 18.36.

bool Gauss:: solve() {

for (int pivRow = 0; pivRow< nEq; ++pivRow) {

cout <<"Starting solve loop at pivRow " <<pivRow <<"\n";

if (! swapNonzeroRow( pivRow )) // Do all rows have 0 in this column?

return false;

mat[pivRow].scale( pivRow ); // Make a 1 in mat[k][k].

print( cout, "After scale." ); // For debugging.

// Use the 1 in mat[k][k] to zero out the rest of column k.

for (int row=0; row<nEq; ++row)

if (pivRow != row) mat[row].wipe( mat[pivRow], pivRow);

print( cout, "After wiping all rows." );

}

return true;

}

Figure 18.33. The solve() function.

• In a system of n equations, there are n unknowns. Each equation in the system starts with n coefficients,
one for each unknown, and ends with a constant term. We want to print a + sign between every pair of
coefficients and a = before the constant term. The char variable op is initially set to ’+’ and changed to
’+’ at the end of the loop.

• Currently, when a term is negative, the program prints both a + and a - sign in front of it. For even fancier
output, we could test the sign of each coefficient and print either a + sign or a - sign, but not both.

Inner box: the variable names.
The actual variable names are computed here, as they were in Gauss::print().

Notes on Figure 18.33: The elimination algorithm. The main loop of this function is executed once
for each equation in the system. Its purpose is to manipulate the matrix so that, eventually, it has ones on the
main diagonal (elements with the same row and column subscripts) and zeros elsewhere. To do this it calls
three functions (in the three boxes).

Outer box: To solve or not to solve, that is the question. Each time around this loop one equation is
selected from the set of remaining equations. It is called the pivot equation and is swapped into the first row
of the matrix that has not already been processed.

First inner box and Figure 18.34: Finding the next pivot row. Remember that swapping the order
of two equations in a system does not change the solution to that system. Here we swap rows and do row
operations.
• On pass k, the swapNonzeroRow() function has two purposes:

(a) To find the equation with the largest non-zero coefficient in column k and row >= k.
(b) To swap that equation with whatever is in row k.
(c) To return false if all remaining equations have 0’s in column k. The false is then returned to solve()
to indicate that the system of equations has no solution.

• The first task is to select an equation, called the pivot equation, for the next phase of the process. On pass
k, we look at all of the equations in rows k and greater. We select the equation with the largest coefficient
in column k because this maximizes computational accuracy.
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The swapNonzeroRow() function is called from solve() in Figure 18.33.

bool Gauss:: swapNonzeroRow( int k ) {

int row = findPivot( k );

// Coefficient k of pivot equation must be non-zero. ------------------------

if ( fabs( mat[row][k] ) < EPS ) return false;

swap( mat[row], mat[k] );

print( cout, "After swap." ); // For debugging.

return true;

}

// --------------------------------------------------------------------------------

// Find the equation with the largest coefficient in column k.

int Gauss:: findPivot( int k ) {

double coefficient = fabs( mat[k][k] ); // Largest value so far.

int big = k; // Index of current coefficient.

for (int row = k+1; row<nEq; ++row) {

if (fabs( mat[row][k] ) > coefficient) {

coefficient = fabs( mat[row][k] ); // A bigger coefficient.

big = row; // Remember where it was found.

}

}

return big; // Line number of equation with biggest coefficient.

}

Figure 18.34. Finding the next pivot row.

• swapNonzeroRow() delegates to the findPivot() function the job of finding the coefficient in column k that
is farthest from zero.

• All comparisons must be made using the absolute value of the coefficient. fabs() is the C-standard function
for computing the absolute value of a floating point number (type double or float).

• findPivot() calculates the maximum value in column k and returns the subscript of the row it is in. That
row is swapped with the current row and becomes the next pivot equation.

• If the largest coefficient in column k in the remaining equations is zero or very close to zero, dividing by
it will cause floating point overflow. If this happens, the problem cannot be solved by this method, either
because it contains inconsistent formulas, or because one of the equations is a linear combination of some
of the others. So swapNonzeroRow() checks for this and returns an error code.

• If one of the equations is a linear combination of some of the others, there are not enough constraints to
determine a unique solution. If the equations are inconsistent, there are too many constraints and they
cannot be simultaneously satisfied.

• The constant EPS defines what we mean by “too close to zero”. The output below shows the beginning and
end of the output from running the program on an unsolvable system of equations.

Linear Equations to Solve
------------------------------------------------------------

1.000 * a + 2.000 * b + 2.000 * c + 1.000 * d + 10.000
3.000 * a + -1.000 * b + 0.000 * c + 5.000 * d + -4.000
2.000 * a + 2.000 * b + 3.000 * c + 0.000 * d + 15.000
2.000 * a + 2.000 * b + 3.000 * c + 0.000 * d + 14.000

------------------------------------------------------------
Starting solve loop at pivRow 0
. . .
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This function is called from Figure 18.33.

// Scale kth equation in matrix to have 1 in kth place

// Assumes places 1..k-1 are already zero.

// ----------------------------------------------------------------------------

void Equation:: scale( int col ) {

double factor = coeff[col]; // scale factor

for (int k=col; k <= coeff.size(); ++k)

coeff[k] /= factor;

}

Figure 18.35. Equation::scale().

Equations after Elimination
------------------------------------------------------------
1.000 * a + 0.000 * b + 0.000 * c + 2.600 * d + -1.600
0.000 * a + 1.000 * b + 0.000 * c + 2.800 * d + -0.800
0.000 * a + 0.000 * b + 1.000 * c + -3.600 * d + 6.600
0.000 * a + 0.000 * b + 0.000 * c + 0.000 * d + -1.000

------------------------------------------------------------
Equations inconsistent or not independent.

Second inner box of Figure 18.33 and Figure 18.35: Scale an equation. Remember: Dividing every
term of an equation by the same number does not change the solution of the equation.
• We divide all terms of the equation in row k by the value in column k. This leaves a value of 1 in
matrix[k][k].

• The loop starts at column k because all prior columns in row k are zero .

Third inner box of Figure 18.33 and Figure 18.36: Wipe an equation. After scaling row k, there
is a 1 in matrix[k][k].
• The next step is to use that 1 to wipe out all the coefficients below it in column k.

• Take c, the coefficient in column k of row m. Multiply the entire pivot equation by c, then subtract the
result from the equation in row m. This row operation does not change the solution to the system.

• Repeat this process for every equation in the matrix except the pivot equation. Now there are 0’s in column
k in every row except the pivot row.

18.5 What You Should Remember

18.5.1 Major Concepts

• The nature of control structures follows the form of the data being processed. Using 1D arrays requires
a single loop control structure. Using 2D arrays requires nesting one loop within another to process all
data elements. This effect continues as the data complexity increases.

This function is called from Figure 18.33.

// Clear coefficient k1 of equation k2 by subtracting mat[k2][k1] * equation k1

// from equation k2. Assumes that mat[k1][k1] == 1.

// ----------------------------------------------------------------------------

void Equation:: wipe( Equation& piv, int pCol ) {

double factor = coeff[pCol];

for(int col=pCol; col<=coeff.size(); ++col) {

coeff[col] -= factor * piv[col];

}

}

Figure 18.36. Equation::wipe().
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• A typedef name stands for the entire type description, including all the asterisks and array dimensions.
In the basic syntax, this information is scattered throughout a variable declaration, with variable names
written in the middle. This makes C declarations hard to read and easy to misunderstand. When you
use a typedef name, all the type information goes at the beginning of the line and all the variable names
come at the end.

• A table of data can be represented conceptually in two different manners. An array of arrays implies a
unity of the elements in each of the rows in the table, whereas a matrix implies that each element in the
table is independent of the others.

• Whether declared as an array of arrays or a matrix, the data elements are still stored sequentially
in memory in row-major order. This layout can be exploited when filling or removing data from the
structure, as in reading and writing data from files using read() and write().

• The C language allows for arrays of many dimensions, although in practice using more than three or four
dimensions is unusual.

• Example applications of 2D arrays include matrix arithmetic and image processing. Matrix arithmetic
uses both 1D vectors and 2D matrices in various calculations. Image processing programs use 2D arrays
of various sizes and typically store the data in binary files.

Two kinds of matrix. C++ supports two distinctly different dynamic implementations of a matrix.
In one implementation, all of the memory is contiguous and allocated by a single call on new. In the
other, the matrix is represented as an array of pointers or a vector of vectors, each pointing at an array
of data elements. Here, new is called several times, once for the dynamic array of pointers and once for
each of the dynamic arrays of elements.

The dynamic 2D array. A dynamic 2D array is useful for applications such as image processing, in
which data sets of varying sizes will be processed. The size is generally known at the beginning of run
time and a properly sized block of storage can be allocated then. Unfortunately, the programmer has to
write a function to do the address calculations for converting the conceptual 2D subscripts to a physical
1D subscript before accessing a particular element. This calculation is examined in the exercises.

The dynamic matrix data structure. A dynamic matrix can be an array of pointers to arrays. Like
static two-dimensional arrays, elements are accessed by using two subscripts. The first subscript selects
a row from the array of pointers, the second selects a column from that row. This data structure is
appropriate if rows of the matrix must be interchanged.

A matrix made of vectors. A dynamic matrix can also be a vector of vectors because the vector class
supports the subscript operator.

Gaussian elimination. Gaussian elimination is a well-known method for solving systems of simulta-
neous linear equations in several unknowns. The algorithm is easily implemented using a dynamic matrix
data structure and a set of functions that perform row operations on the equations.

18.5.2 Programming Style

• Avoid deeply nested control structures. If the nesting level is greater than three, the logic can be very
difficult to follow. It is better to break up the code by defining a new function that performs the actions
of the inner loops on the particular data items selected by the outer loops.

• The processing of data in a 2D array typically is done using two for loops. Other loop combinations can
be used, but the double for loop has become almost standard.

• The programmer must take care when using nested loops to make sure that the outer and inner loops
each process the appropriate dimension of a 2D array. It helps a great deal to use meaningful identifiers
for the subscripts, such as row and col, rather than the simpler j and k.

• In a set of nested loops, the number of times the innermost loop body is executed is the product of the
number of times each loop is repeated. It is important to make the innermost statements efficient, since
they will occur many times.
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• Use #define appropriately. As with 1D arrays, defining the array dimensions as constants at the top of
a class makes later modification simple.

• Using typedef to name the parts of nested array types makes the code correspond to your concepts. This
makes it easier to write, compile, and debug a program, because it allows you to declare parameters with
the correct types and enables the compiler to help you write the appropriate number of subscripts on
array references and arguments.

• Any legal C identifier may be used as the type name in a typedef. Some caution should be used, however,
to avoid names that sound like variables or keywords. Types are classes of objects, so the type name
should be appropriate for the general properties of the class.

• Usually a choice must be made as to whether to use an array of arrays or a matrix. If each of the data
elements is independent of the others, then the matrix is the appropriate structure. If the data in a single
row have a meaning as a group, then it is correct to use the array of arrays. When data in a column also
have a meaning, either structure can be used.

• Continuing the preceding reasoning, always pass the proper parameter. When using a function to process
a multidimensional array, pass only the part of the array that is needed, if possible. When a function
works on all elements of the array or on an entire column, the parameter should be the entire array.
However, if a function processes only one row, simply pass the single row, not the whole matrix. And if
a function processes a single array element, pass just that element.

18.5.3 Sticky Points and Common Errors

• When using nested loops, it is fairly common to write a statement at the wrong nesting level. The action
then will happen either too often or not often enough. Use curly brackets where necessary to make sure
statements are in the correct loop.

• As always, all subscripts, even in a multidimensional array, start at 0, not 1.

• The programmer must be careful always to use subscripts within the bounds of the array. When using
a 2D array, it is possible for a column subscript to be too large and still have the referenced element
be within the memory area of the array. This is a serious error and usually harder to find than simply
referencing outside the array’s memory.

• Always beware of using subscripts in the wrong order. This may cause you to access outside the array’s
memory, or it might not. Using meaningful subscript names reduces the frequency of these errors.

• It also is important to use the proper number of subscripts. Because legally you can reference a single
row in a matrix, most such references are not deemed incorrect by the compiler and may generate only a
warning. However, rather than get the data item you desire, you will be using a memory address in your
calculations.

• Use correct C++ syntax: a[row][col] rather than the syntax common in other languages: a[row, col].

18.5.4 New and Revisited Vocabulary

These are the most important terms, concepts, keywords, and C library functions discussed in this chapter:
array typedef vector of vectors digital image
dimension double subscripts pixel
vector column smoothing
matrix row processing window
2D and 3D initializers row-major order 2D transformation
multidimensional array binary file mode plane
array of arrays read() translate
array of strings write() rotate
dynamic 2D array binary data system of equations
dynamic array of arrays nested loop Gaussian elimination
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18.6 Exercises

18.6.1 Self-Test Exercises

1. Assume that mat is an N by N matrix of floats. Declare two pointers, begin and end, and initialize
them to the first and last slots of mat. Declare a third pointer, off, and initialize it as an off-board
pointer.

2. Given the declarations and code below, show the output of the loops.

#define Z 3
char square[Z][Z];
char* p;
char* start = &square[0][0];
char* end = &square[Z-1][Z-1];

for (p = end; p >= start; p -= 2) *p = ’1’;
for (p = start; p < end; ++p) {

++p;
*p = ’0’;

}

for (p = start; p <= end; ++p) cout <<*p <<" ";
cout <<endl;

3. Assume your program contains this code:

short int box[5][4];
int j, k;

for (k = 1; k <= 3; k++)
for (j = 1; j <= 3; j++)

box[j][k] = 2*j-k;

(a) Draw a flowchart of this code.

(b) Make a diagram of the array named box showing the array slots and subscripts. In the diagram,
write the values that would be stored by the for loops. If no value is stored in a slot, write a
question mark there.

(c) What are the subscripts of the slot in box in which the value 5 is stored?

(d) What is sizeof box?

(e) Which array slot will have the lower memory address, box[1][2] or box[2][1]? Why?

(f) What happens if you execute this line: box[5][4] = 10;?

4. Diagram the array created by the following declarations. In the drawing, identify the slot numbers and
show the values stored in those slots by the loops that follow. Also, write a new declaration statement
that has an initializer to set the contents of the array to that produced by these loops.

#define Y 4
#define Z 3
int a, b;
float lumber[Z][Y];

for (a = 0; a < Z; ++a)
for (b = 0; b < Y; b++) {

if (b > a) lumber[a][b] = 0;
else if (b == a) lumber[a][b] = 2.5;
else lumber[a][b] = (a + b) / 2.0;

}
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5. Write a function, findMin(), that has one parameter, data, that is a 10-by-10 matrix of floats. The
function should scan the elements of the matrix to determine the element with the minimum value,
keeping track of its position in the matrix. Return the value itself through the normal return mechanism
and its row and column subscripts through pointer parameters.

6. Trace the execution of the following code using a table like this one:

m

k

Output

Show the initial values of the loop variables. For each trip through a loop, show how these values change
and what is displayed on the screen. In the table, draw a vertical line between items that correspond to
each trip through the inner loop.

int k, m;
int data[4][3] = { {1,2,3}, {2,4,6}, {3,6,9}, {4,8,12} };

for (k = 0; k < 4; ++k) {
for (m = k; m < 3; ++m)

if (k != 1) cout <<" " <<data[m][k] ;
else cout <<" " <<data[k][m] ;

cout << ’\n’ ;
}

7. Trace the execution of the following loop, showing the output produced. Use the array data and initial
values declared in the previous exercise. Be careful to show the output formatting accurately.

for (k = 0; k < 3; ++k) {
for (m = 0; m < 3; ++m) {

if ((k+m) % 2 == 0) cout <<data[m][k];
else cout <<" ";

}
cout <<’\n’;

}

8. Happy Hacker wrote and printed the following code fragment in the middle of the night, when some of
the keys on his keyboard did not work. The next day, he looked at it and saw that it was not quite right:
All of the curly brackets were missing, there was no indentation, there were too many semicolons, and
the loops were a little messed up. The code is supposed to print a neat matrix with three columns and
seven lines. In addition, the column and row numbers are supposed to be printed along the top and left
sides of the matrix. Please fix the code for Happy.

#define Z 3
#define W 7
int k, m;

cout <<" " ;
for (k = 0; k < Z; ++k);
cout <<setw(2) << k;
cout <<"\n --------------\n" );
for (m = 0; m < Y; ++m;
cout <<setw(4) <<m;
for (k = 0; k < W; ++k;
cout <<setw(2) <<mat[m][k];
cout <<’\n’;
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18.6.2 Using Pencil and Paper

1. The pair of loops that follow initialize the contents of a 2D array, data. Draw a picture of this array,
labeling the subscripts and showing the contents of the slots after the loops are done.

int j, k;
int data[4][3];

for (k = 0; k < 4; k++)
for (j = 0; j < 3; j++ )

data[k][j] = j * k + 1;

2. Trace the following loop and show the output exactly as it would appear on your screen:

#define Z 3
int a, b;
char square[Z][Z+1] = { "cat", "ode", "dog" };

for (a = 0; a < Z; ++a) {
cout << a;
for (b = 0; b < Z; b++) {

if (a == 0) cout <<setw(2) <<square[a][b];
else cout <<setw(2) <<square[b][a-1];

}
cout <<’\n’;

}

3. Write a function, countZeroRows(), with one matrix parameter. It should count and return the number
of rows in the matrix that have all zero values. Assume the matrix is a square array of size N -by-N
integers, where N ≥ 1 and is defined as a global constant.

4. Given the declarations and code that follow, show the output of the loops:

int k, m;
int data[4][3] = { {1,2,3}, {2,4,6}, {3,6,9}, {4,8,12} };

for (k = 0; k < 4; ++k) {
for (m = 0; m < 3; ++m) {

if ((k*m)%2==0) cout <<setw(2) <<data[k][m];
else cout <<" ";

}
cout << ’\n’ ;

}

5. Given the declarations and code that follow, trace the code and show the output of the loops:

#define Z 3
char square[Z][Z+1] = { "---", "---", "---" };
int r, c;

for (r = 2; r >= 0; --r) square[r][r] = ’0’;
for (r = 0; r < 3; ++r) square[r][(r + 1)%Z] = ’1’;
for (r = 0; r < 3; ++r) {

for (c = 0; c < 3; ++c) cout <<square[r][c];
cout <<"\n";

}

6. For each item that follows, write two C++ statements that perform the task described. Write the first
using subscripts, the second using pointers and dereference. Explain which is clearer and easier to use
and why. Use these declarations:
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const int rows = 5, cols = 3;
int k, m;
float A[cols];
float M[rows][cols];
float* N = new float[(rows * cols ];
float* p, * end;

(a) Make p refer to the first slot of A.

(b) Write a for loop to set all elements of A to one.

(c) Double the number in M[4][2] and store it back in M[4][2].

(d) Set end as an off-board pointer for M.

(e) Make p refer to the first float in N.

18.6.3 Using the Computer

1. Changing a figure.

Extend the crown program (point transformation) to permit the user to add a point to the figure between
any two existing points or delete any point in the figure after it is originally constructed. Provide a menu
so that the user can do several point transformations. When “quit” is selected, write out the new data
set.

2. Sales Bonuses. A company with three stores, A, B, and C, has collected the total dollar amount of sales
for each store for each month of the year. These numbers are stored in a file, sales.in, that has the
information for January, then February, and so on. Within each month, the sales amount for store A is
first, then store B, then store C.

Write a function, readFile(), that will read in the data from the sales file and store the amounts in a
matrix where each row represents a store and each column represents a month.

The company pays each store a $1,000 bonus if its sales exceed $30,000 in any particular month. Next,
write a function, bonus(), that has one parameter, a matrix of float values. It returns an integer to the
caller. In this function, search through the sales matrix, starting at the first month for the first store.
Test each value in the matrix to see if the sales amount qualifies for a bonus. If it does, print the store
name and month corresponding to the row and column, as well as the sales amount. Count and return
the number of bonuses given. If no amount qualifies for a bonus, return 0.

Finally, write a main program that first reads in all the data, then prints the sales amounts and total
sales for each store in a neat table, with all of store A’s sales first, followed by those of store B, and finally
those of store C. Last, call the bonus() function to determine the bonuses for the year. Print the total
sales amount, the number of bonuses awarded, and the total amount of bonus money that the company
will give out.

3. Array averages.

An instructor teaches courseof all sizes, and needs to compute grade averages. He typically gives between
5 and 10 quizzes each term.

(a) Define two classes: Course and Student. A Course will be a represented by a float (the overall quiz
average), the number of quizzes for the term, and a vector of Students.

A Student has a name, a vector of scores, and anaverage) , where each score is an integer between
0 and 200. The Student constructor should accept one parameter, the number of quizzes. It must
read the name and quiz scores for one student, compute the average, and store use the data to
initialize a new Student.

The Course constructor should open an input file and, call the Student constructor to read students,
and store all the Students in a vector.

(b) Write a main program that will compute and print the grade averages. Call the Course constructor
and the computeAverage() function described below. Finally, print each student’s name, quiz grades,
and quiz average in a neat table, followed by the overall average of all students on all quizzes.
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(c) The function Student::computeAverage() should compute the grade average for one student and
store it in the current Student.

(d) The function Course::computeAverage() should compute the grade average for the entire class and
store it in the Course object.

4. Matrix transpose.

(a) Define a class Matrix. Its data members should be the number of rows, R, number of columns, C,
and two-dimensional R× C array of doubles.

(b) Define SIZE as a constant. The Matrix constructor should take R, C, and a file name as parameters
and read in an R× C matrix of numbers from the specified file.

(c) In the Matrix class, write a function, print(), to print out a matrix in neat rows and columns.
Assume that C is small enough that an entire row will fit on one printed line.

(d) In the Matrix class, write a function, transpose(), to perform a matrix transpose operation, as
follows:

i. If R 6= C, abort and print an error comment. You can only transpose square matrices.
ii. To transpose a matrix, swap all pairs of diagonally opposite elements; that is, swap the value

in M [I][J ] with the value in M [J ][I] for all pairs of I < SIZE and J < SIZE The transposed
matrix will replace the original matrix in the same memory locations.

iii. Try to accomplish the operation with a minimal number of swaps. Warning: This cannot be
done by the usual double loop that executes the body I × J times.

When the operation is over, the original matrix should have been overwritten by its transpose.
Elements with the same row and column subscripts will not change. As an example, the 3-by-3
matrix on the left is transposed into the matrix on the right:1 2 3

4 5 6
7 8 9

 →

1 4 7
2 5 8
3 6 9


(e) Write a main program to instantiate your Matrix class and test your functions. Print the matrix

before and after you transpose it.

5. Matrix multiplication.

(a) Define a class Matrix as in parts (a) through (c) of the previous problem. Add two more methods
to this class:

• A constructor with two integer parameters M and N (no file name). Allocate but do not
initialize space for a 2D M ×N array of doubles (the answer).

• A function, multiply(), to perform a matrix multiplication operation, as follows:

i. There will be two matrix parameters, A and B of the sizes just mentioned. The implied
parameter will be C, the result matrix.

ii. The result elements of C are defined as:

Cij =

P−1∑
k=0

AikBkj

where i is in the range 0 . . .M − 1 and j is in the range 0 . . . N − 1. This essentially is the
dot product operation shown earlier in the chapter. An example calculation would be[

1 2 3
4 5 6

]
×

4 7
5 8
6 9

 →
[
32 50
77 122

]
(b) This problem will work with three matrices of sizes M × P , P × N , and M × N . Write a main

program that will instantiate matrices A and B from user-specified files using #defined constants
M , P , and N . Create matrix C for the results. Perform matrix multiplication on them, write the
results to a file. Display the input matrices on the screen, then display the result matrix.
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6. Bingo.

In the game Bingo, a playing card has five columns of numbers with the headings B, I, N, G, and O.
There are five numbers in each column, arranged randomly, except that all numbers in the B column are
between 1 and 15, all numbers in the I column are between 16 and 30, N has 31–45, G has 46–60, and
O has 61–75. The word FREE is in the middle slot in the N column instead of a number. Your job is to
create and print a Bingo card containing random entries in the proper ranges. Define a type, card, to be
a 5-by-5 array of integers. Generate 25 random numbers and use them to initialize a card, C, as follows:

(a) Declare an array of length 15 named ar. Repeat the next step five times, with x = 0, . . . , 4.

(b) Store the number (1 + 15 × x) in ar[0], then fill the remaining 14 slots with the next 14 integers.
Repeat the next step five times, once for each of the five rows on the Bingo card.

(c) Randomly select a number, r, between 1 and 15. If the number in ar[r] is not 0, copy it into column
x of the current row of the Bingo card and store 0 in ar[r] to indicate that the number already has
been used. If ar[r] already is 0, generate another r and keep trying until you find a nonzero item.
This trial-and-error method works adequately because the number of nonzero numbers left in the
array always is much larger than the number of zero items. You would have to be very unlucky to
hit several used items one after another.

(d) When all 25 random numbers have been filled in, store a code that means FREE in the slot in
the middle of the card. Print the resulting Bingo card as follows, with spaces between the num-
bers on each row. You may use lines of minus signs for the horizontal bars and omit the vertical bars

B I N G O

3 17 32 49 68

12 23 38 47 61

11 18 FREE 60 70

2 29 36 50 72

9 22 41 57 64

7. Crowded items.

Define R and C as global constants of reasonable size. Define a class, matrix, with R rows and C columns
of type unsigned char elements.

• In the Matrix class, write a function, findCrowdedElements(), with amatrix parameter for output.
The implied parameter will be the input to this process.

The values in the input matrix will be either 1 or 0, representing true and false. The function will
set each value of the output matrix to 1 or 0 according to whether the corresponding element in the
input matrix is “crowded.”

• Crowded is defined thus: First, an element’s value must be true for it to be crowded. Second, there
are potentially four meaningful neighbors of the test element (up, down, left, right):

 T  ? ?

 ?

 ?

– If three or more of the current element’s four neighbors have a value of true, then the current
element is crowded.

– If the current element is on a border, but not in a corner, then only two neighbors have to be
true to be crowded.

– Corner elements need only one of their two neighbors to be true to be crowded.
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• Write a main program. Input a matrix of values from a file, compute the “crowded” matrix, and
write it out to another file. Assume the input file contains data for a matrix of the proper size. In
addition to saving the result in a file, display output similar to that above, using ‘F’ and ‘T’.

8. Bar graph.

A professor likes to get a visual summary of class averages before assigning grades. Her class averages
are stored in a file, avg.in. You are to read the data in this file and from it make a bar graph, as follows:

(a) Your graph should have 21 lines of information, which are printed with double spacing.

(b) Down the left margin will be a list of 5-point score ranges: 0 . . . 4, 5 . . . 9, up to 100 . . . 104. Following
this, on each line, should be a single digit (defined later) for each student whose average falls within
that range. There may be scores over 100 because this professor sometimes curves the grades.

(c) Any negative scores should be treated as if they were 0. Any scores over 104 should be handled as
if they were 104.

Represent this graph as a matrix of characters with 21 rows and 35 columns initialized to 0 (null charac-
ters). You may assume that the number of scores put into any single row will not exceed 35. Also, have
an array of integer counters corresponding to the rows. As each average is read, determine which row, r,
it belongs in by using integer division. Also, isolate the last digit, d, of each score; that is, for 98, d = 8
and for 103, d = 3. To record the score, convert digit d to the ASCII code for the digit by adding it to
’0’. Store the resulting character in the next available column of row r and update the counter for row
r. When the end of the file is reached, print the matrix on the screen using a two-column field width for
each score, and a blank line between each row.

9. Local maxima in a 2D array. Assume that you have a data file, max.in, containing 1-byte integers in
binary format. The file has 50 numbers, representing a matrix of values that has five rows containing 10
numbers each. The numbers are stored in a row-major order. Write a program that will do the following:

(a) Read the data values into a 2D array on which further processing can be performed.

(b) Call the localMax() function described next and print the values of both the input and output
matrices.

(c) Write a function, localMax(), that takes two 2D arrays of integers as parameters. The first param-
eter is the input matrix; the second is an output matrix. Set the value at a particular location in
the output matrix to 1 if the corresponding input value is a “local maximum”; that is, the value
is larger than the four neighboring values to its left, right, above, and below. Set the output value
to 0 if the corresponding position cannot be labeled as a local maximum. Matrix positions on a
corner or an edge will have only two or three neighboring points, which must have lesser values for
the given location to be a maximum. As an example, the input matrix on the left would generate
the matrix on the right:
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10. Local maxima and minima.

In solving this problem, refer to the smoothing program in Figure 18.17 and generate a new program to
do the following:

(a) Open and read a user-specified ASCII file that contains a 10 × 10 matrix of integer values in the
range 0–9 and store them in a 2D array.

(b) Then generate a corresponding 10×10 array of character values, each of which is determined by the
following:

i. Generate a ’+’ if the value in the original array is a local maximum, where local maximum is
defined as the highest value in a 3× 3 area centered on that position in the matrix. For values
on the border, examine only the portion of this area containing actual values.

ii. Generate a ’-’ if the value in the original array is a local minimum, where local minimum is
defined as the lowest value in the same 3× 3.

iii. Generate a ’*’ if the value in the original array is a saddle point, where saddle point is defined
as a value higher than the neighboring values in the same column but lower than the neighboring
values in the same row. Saddle points cannot occur on a border.

iv. Finally, if the value is not classified as any of the preceding three, simply convert the integer
value of 0–9 into a character ’0’–’9’ by adding the number to the character value ’0’.

v. As an example, using a 5× 5 array,
0 2 3 2 4
6 5 6 0 3
7 4 1 2 3
5 8 7 4 8
1 2 9 3 2

 →


− 2 3 2 +
6 * + − 3
7 4 1 2 3
5 8 7 * +
− 2 + 3 −


(c) Display both the numeric matrix and the character matrix on the screen.

11. Computing the wind chill.

The wind-chill index is a measure of the increase in heat loss by convection from a body at a specific
temperature. Consider the wind-chill table below.

Actual Air Temperature (F)

−10 −5 0 5 10 15 20 25 30 35

5 5 5 5 5 4 4 4 3 3 2
10 24 22 22 20 19 18 17 16 14 13

Wind 15 35 35 33 30 28 26 26 24 19 19
Speed 20 42 41 40 37 34 32 29 29 27 23
(mph) 25 48 47 45 42 39 37 35 32 30 28

30 53 51 49 46 43 41 38 36 32 30
35 57 55 52 48 45 42 40 38 34 32
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In main(), instantiate Chill (below) then enter a query loop that will call a function, getChill(), to
perform the main process as many times as the user wishes. Print instructions and prompt the user to
enter real values for the actual temperature, t, and the wind speed, s.

Define a class Chill to contain this table and the related functions. The constructor must read the
wind-chill table from a text file, chill.in, and store it in a two-dimensional array (the column and row
headings are not in the data file).

The getChill() function should have the prototype void chill( double t, double s ), Within the
chill() function do the following:

(a) Validate s and t. Print an error comment and return if s is not in the range 2.5 ≤ s < 37.5 mph
or t is not in the range −12.5◦ ≤ t < 37.5◦ Fahrenheit. Use these values to look up the effective
temperature decrease in the wind chill table as follows.

(b) Calculate the row subscript. For any input wind speed, s, we want to use the closest speed that is in
the table. If s is a multiple of 5 mph, the table entry is exactly right. If not, we must calculate the
closest speed that is in the table. For example, if the speed is between 7.5 and 12.5 mph, we want
to use the row for 10 mph, which is row 1. To calculate the correct row number, subtract 2.5 from
s, giving a result less than 35.0. Divide this by 5.0 and store the result in an integer variable. Since
fractional parts are discarded when you store a float in an integer, the integer will be between 0
and 6 and usable as a valid row number.

(c) Calculate the column subscript. As for the wind speed, use the temperature in the table closest
to the input temperature, t. For example, if the temperature is between −2.5◦ and +2.5◦, use the
values for 0◦, which are in column 2. To calculate the correct column number, add 12.5 to t, giving
a positive number less than 50.0. Divide this by 5.0 and store the result in an integer variable. This
will give an integer between 0 and 9 that can be used as a valid column number.

(d) Use the computed row and column subscripts to access the wind chill table and read the decrease
in temperature. To compute the effective temperature, subtract this decreased amount from the
actual air temperature. Echo the inputs and print the effective temperature.

12. Matrix averages.
Write a program that will input a matrix of numbers and output the row and column averages. More
specifically,

(a) Read a file containing two integers on the first line: a number of rows and a number of columns.
Then allocate memory for a matrix of floats with those dimensions. Read the rest of the data from
the file, row by row, into the matrix.

(b) Allocate an array of floats whose length equals the number of rows and store the average of each
row in the corresponding array slot.

(c) Allocate another array with one slot per column and store the average of each column in the
corresponding array slot.

(d) Print the matrix in spreadsheet form, with row numbers on the left, row averages on the right,
column numbers on top, and column averages at the bottom.

Use arrays, not vectors.


