CS434/534: Topics in Network Systems

Topic 3: Scalable, Programmable (Software-Defined) Networking: BGP Analysis; 5GC Networking, Network LB

Nov. 9, 2021

Y. Richard Yang
Computer Science Department, Yale University
Email: yry@cs.yale.edu

http://zoo.cs.yale.edu/classes/cs434/
Admin

- Project 1 to be return by this week

- Final Project planning
 - Nov. 11: Initial teaming/potential topics
 - Nov. 18: Iteration of topics
 - Dec. 3: Checkpoint
 - Dec. 16: Due
Recap: Scaling Distributed Link State Networking

- **OSPF scaling**
 - Introduce in the graph a network node representing each multi-access network
 - Each network elects a designed router (DR) and a backup designed router (BDR)
 - Differentiate between neighboring relation (who can hear each other) and adjacency relationship (who synchronizes with each other)
 - Backbone-area hierarchical model: summary based abstraction

- **OSLRv2 scaling**
 - Flooding reduction: forwarding only by Flooding MPR
 - Topology reduction (reducing the number of links distributed): routers declare link state information for their routing MPR selectors, if any.
 - Equation-driven distributed protocol design
 \[
 N_1(n) = \{ x \in N_{1_rcv}(n) : n \in N_{1_rcv}(x) \} \\
 N_2(n) = \text{union}\{N_1(x): x \in N_1(n)\} \setminus N_1(n)
 \]
Recap: (OSPF) Link State Protocol Analysis

- Consider a single OSPF area (network)
 - After a link change, propagation is whole area
 - The nodes in the same area must use exactly the same algorithm when computing the paths

- Backbone+area hierarchy correctness and flexibility
 - The protocol ensures convergence, despite processing loops (area -> backbone -> area)
 - But, if the areas form a general topology, there can be routing loops
Recap: BGP Autonomous System, Path Vector Networking

- **Main goal:** flexibility/autonomy
 - allow flexible abstraction of networks: the abstracted networks can form **flexible inter-connection topology** (vs simple spoke-leaf OSPF)
 - allow individual networks autonomous control of both **internal routing and external routing** (e.g., the upstream who can use the network, and how the network chooses downstream)

- **BGP solution:**
 - flexible abstraction of networks into autonomous systems (AS)
 - Path vector based policy routing
 - BGP is the de facto networking routing protocol of the global Internet
Recap: BGP Data Structures and Workflow

Routing cache

Adj-RIB-In

1 3 0
1 0

select best path

Loc-RIB

export path to neighbors

Adj-RIB-Out

route selection policy: rank paths

export policy: which paths export to which neighbors

Yale

AT&T

Qwest

Internet2

1 3 0
1 0
BGP Example

- Ingress control: Control exports to determine (upstream) ingress
- Egress control: selects the preferred downstream
Demo: BGP Looking Glass for the Global Internet

- BGP routing:
 - BGP looking glass server (http://www.bgp4.as/looking-glasses),
 - e.g., CERN (http://lg.cern.ch/)

- Using one of the looking glass servers:
 http://www.bgp4.as/looking-glasses
Routing Table Size of BGP in Global Internet (number of globally advertised, aggregated entries)

Src: https://bgp.potaroo.net/as1221/bgp-active.html
Example: Data Center Networking (Design 1)

- OSPF based
 - OSPF to collect network state
 - Equal cost multipath (ECMP)
 - Compute shortest paths to each dest.
 - If two neighbors have the same cost to the dest, hash on flow address and equal split

Exercise: How many EC paths src -> dst1?
Exercise: How many EC paths src -> dst2?
Example: Data Center Networking Plane (Design 2; BGP)
Data Center Network Routing: BGP Benefits

- Simple protocol
- Simpler protocol design concepts
 - Less finite state machines, data structures
- Troubleshooting BGP is simpler
 - BGP RIB structure is simpler compared to link-state LSDB
 - Clear picture of what sent where (RIBIn, RIBOut)
- Event propagation is more constrained in BGP
 - E.g. link failures have limited propagation scope
 - More stability due to reduced event “flooding” domains
- BGP allows for per-hop traffic engineering
 - Use for unequal-cost Anycast load balancing solution
Outline

- Admin and recap
- Scalable, programmable (software-defined) networking
 - Overview and roadmap
 - Scaling networking from a switch to the whole Internet
 - Flooding + learning networking protocol
 - Scalable, distributed link state networking protocol (OSPF)
 - Scaling link state protocol in MANET (OLSRv2)
 - Autonomous system, path vector networking protocol (BGP)
 - BGP model, protocol and processing
 - BGP convergence analysis
BGP Convergence

- A decentralized policy routing system as BGP can be considered as a system to aggregate individual preferences, but aggregation may not be always successful.

 The BAD GADGET example:
 - 0 is the destination
 - the route selection policy of each AS is to prefer its counter clock-wise neighbor

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>210</td>
<td>20</td>
<td>320</td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>
```

- preferred
- less preferred
BGP Policy Analysis as Dependency Analysis

- **Observation:** BGP decisions have dependencies
 - The “closer” a node to the destination, the more “powerful” it may be

- **Note:** this captures egress routing (only on paths starting from itself) only
 - BGP handling ingress is not well understood and a good project
Complete Dependency: P-Graph

- Complete dependency can be captured by a structure called P-graph.
- Nodes in P-graph are feasible paths.
- Edges represent dependency priority (low to high):
 - A directed edge from path $N_1 P_1$ to P_1
 - Intuition: to let N_1 choose $N_1 P_1$, P_1 must be chosen and exported to N_1
 - A directed edge from a lower ranked path to a higher ranked path
 - Intuition: the higher ranked path should be considered first

Any observation on the P-graph?
P-Graph and BGP Convergence

- If the P-graph of the networks has no loop, then policy routing converges.
- Example: suppose we swap the order of 30 and 320

Intuition (general case): BGP converges despite asynchronous BGP protocol, if P-graph has no loop.

Exercise: What are the final paths?
Outline

- Admin and recap
- Scalable, programmable (software-defined) networking
 - Overview and roadmap
 - Scaling networking from a switch to the whole Internet
 - Flooding + learning networking protocol
 - Scalable, distributed link state networking protocol (OSPF)
 - Scaling link state protocol in MANET (OLSRv2)
 - Autonomous system, path vector networking protocol (BGP)
 - BGP model, protocol and processing
 - BGP convergence analysis
 - Dependency using P-graph
 - Dependency from economics
Internet Economy (The Invisible Hand Controlling Internet): Two Types of Business Relationship

Customer provider relationship
- a provider is an AS that connects the customer to the rest of the Internet
- customer pays the provider for the transit service
- e.g., Yale is a customer of AT&T and QWEST

Peer-to-peer relationship
- mutually agree to exchange traffic between their respective customers only
- there is no payment between peers
Route Selection Policies Driven by Economics

- Route selection (ranking) policy:
 - the typical route selection policy is to prefer customers over peers/providers to reach a destination, i.e., Customer > Peer/Provider (why?)
Export Policies Driven by Economics

case 1: routes learned from customer

Routes learned from a customer are sent to all other neighbors.

case 2: routes learned from provider

Routes learned from a provider are sent only to customers.

case 3: routes learned from peer

Routes learned from a peer are sent only to customers.
Example: Typical Export -> No-Valley Routing

Suppose P_1 and P_2 are providers of A; A is a provider of C
Typical Export Policies Route Patterns

- Assume a BGP path SABCD to destination AS D. Consider the business relationship between each pair:

![Diagram of route relationships]

- Three types of business relationships:
 - PC (provider-customer)
 - CP (customer-provider)
 - PP (peer-peer)
Invariant 1 of valid BGP routes (with labels representing business relationship)

Reasoning: only route learned from customer is sent to provider; thus after a PC, it is always PC to the destination
Invariant 2 of valid BGP routes (with labels representing business relationship)

Reasoning: routes learned from peer or provider are sent to only customers; thus all relationship before is CP.
Stability of BGP Policy Routing

- Suppose
 1. there is no loop formed by provider-customer relationship in the Internet
 2. each AS uses typical route selection policy: $C > E/P$
 3. each AS uses the typical export policies

- Then decentralized BGP policy routing converges (i.e., is stable).
Case 1: A Link is PC

Proof by contradiction. Assume a loop in P-graph. Consider a fixed link in the loop.
Case 2: Link is CP/PP
Outline

- Admin and recap
- Scalable, programmable (software-defined) networking
 - Overview and roadmap
 - Scaling networking from a switch to the whole Internet
 - Flooding + learning networking protocol
 - Scalable, distributed link state networking protocol (OSPF)
 - Scaling link state protocol in MANET (OLSRv2)
 - Autonomous system, path vector networking protocol (BGP)
 - BGP model, protocol and processing
 - BGP convergence analysis
 - Decentralized networking analysis
Theory framework

- Given individual preferences, define a framework (called constitution in social choice; protocol in network systems) to aggregate individual preferences:
 - A set of choices: a, b, c, ...
 - A set of voters 1, 2, ...
 - Each voter has a preference (ranking) of all choices, e.g.,
 » voter 1: a > b > c
 » voter 2: a > c > b
 » voter 3: a > c > b
 - A well-specified aggregation rule (protocol) computes an aggregation of ranking, e.g.,
 - Society (network): a > c > b
Example: Aggregation of Global Preference

- **Choices (for S→D route):**
 - SAD, SBD, SABD, SBAD

- **Voters:**
 - S, A, B, D

- **Each voter has a preference, e.g.,**
 - S: SAD > SBD > SABD > SBAD
 - A: SAD > SABD > SBD > SBAD
 - ...
Global Aggregation Framework/Protocol

- Axioms:
 - Transitivity
 - if $a > b$ & $b > c$, then $a > c$
 - Unanimity:
 - If all participants prefer a over b ($a > b$) => $a > b$
 - Independence of irrelevant alternatives (IIA)
 - Global ranking of a and b depends only on the relative ranking of a and b among all participants

- Result:
 - Arrow’s Theorem: Any constitution (protocol) that respects transitivity, unanimity and IIA must be a dictatorship.
Proofs of Arrow’s Theorem

- There are quite a few proofs, and the six-page paper linked on the Schedule page gives three simple proofs.

- Below, we give the key insight of the proof using approach 1.
The Extremal Lemma

- Let choice \(b \) be chosen arbitrarily. Assume that every voter puts \(b \) at the very top or the very bottom of his ranking. Then constitution protocol must as well (even if half voters put \(b \) at the top and half at the bottom)

- Proof: by contradiction.
 - Assume there exist \(a \) and \(c \) such that constitution protocol has \(a \geq b \); \(b \geq c \).
 - We can move \(c \) above \(a \) w/o changing \(a-b \) or \(b-c \) votes
Step 1: Existence of Pivotal Voter

- Let choice b be chosen arbitrarily. There exists a voter n* = n(b) who is extremely pivotal for b in the sense that by changing his vote at some profile, he can move b from the very bottom to the very top in the global ranking.

Proof:
- Consider an extreme profile where b is at the bottom of each voter.
- Consider voter from 1 to n, and we move b from bottom to top one-by-one.
- The first voter whose change causes b to move to the top is n*(b)
Step 2: $n^* = n(b)$ is dictator of any pair ac not involving b

Proof

- Consider a from ac pair. We show that if $a > n^* c$, then constitution protocol has $a > c$
- Let profile before n^* moves b to top as profile I
- Let profile after n^* moves b to top as profile II
- Construct profile III from II by letting n^* move a above b; all others can arrange ac as they want, but leave b in extreme position

<table>
<thead>
<tr>
<th>Profile</th>
<th>1</th>
<th>2</th>
<th>n*</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile I</td>
<td>b</td>
<td>b</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Constitution protocol: b bottom

<table>
<thead>
<tr>
<th>Profile</th>
<th>1</th>
<th>2</th>
<th>n*</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile II</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>b</td>
</tr>
</tbody>
</table>

Constitution protocol: b top

<table>
<thead>
<tr>
<th>Profile</th>
<th>1</th>
<th>2</th>
<th>n*</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile III</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>b</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>c</td>
<td>b</td>
</tr>
</tbody>
</table>

Constitution protocol:
- $a > b$ since ab same as I
- $b > c$ since bc same as II
Step 3: n^* is dictator for every pair ab

- Consider c not equal to a or b
- There exists $n(c)$ who is a dictator of any pair not involving c, such as the pair ab, i.e.,
 - For any profile, if $a >_{n(c)} b$, $a > b$ in constitution protocol
- $n(c)$ must be n^*
 - Assume not.
 - Consider Profile I and Profile II.
 - Since $n(c)$ is not n^*, $n(c)$ ranking of ab does not change in Profile I and Profile II.
 - When n^* changes ab ranking between Profile I and Profile II, the global ranking of ab changes.
 - Contradiction.
Summary: BGP Routing Architecture Design

- **Scalability:**
 - introduces the abstraction of AS to hide network details

- **Privacy:**
 - route carries only path vector, not internal network path

- **Autonomy**
 - Autonomous systems have flexibility to choose their own internal and (egress, and influence ingress) external routing
 - Policy dispute is a major potential issue in a decentralized setting but the Internet economy drives to stability so far
 - Other use of policy should consider stability
Outline

- Admin and recap
- Scalable, programmable (software-defined) networking
 - Overview and roadmap
 - Scaling networking from a switch to the whole Internet
 - Flooding + learning networking protocol
 - Scalable, distributed link state networking protocol (OSPF)
 - Scaling link state protocol in MANET (OLSRv2)
 - Autonomous system, path vector networking protocol (BGP)
 - Scaling from fixed networks to cellular networks (5G core networking)
Basic 5G Core Structure

Discussion: What key challenges do you see in 5G cellular routing (networking)?

Focus on:
- Roaming (UE location can change)
- QoS (beyond best effort data traffic)
- Scaling

UE: User Equipment gNB: next-generation NodeB
UPF: User Plane Function DN: Data Network, e.g., Internet
Outline

- Admin and recap
- Scalable, programmable (software-defined) networking
 - Overview and roadmap
 - Scaling networking from a switch to the whole Internet
 - Flooding + learning networking protocol
 - Scalable, distributed link state networking protocol (OSPF)
 - Scaling link state protocol in MANET (OLSRv2)
 - Autonomous system, path vector networking protocol (BGP)
 - Scaling from fixed networks to cellular networks (5G core networking)
 - User (data) plane (path)
Using of routing update to handle roaming (mobility) is not scalable in large-scale networks (why?)

Exercise: do you have any proposal?

5G basic idea:
- Shield UE mobility from all except ingress/egress nodes
- => routing using tunneling from ingress to egress
5GC Data Path Basic Idea: Downlink

Q: What does a UPF need to know to forward to UE?

Access Node (AN) Tunnel: tunnel at gNB, for UPF to forward downlink traffic to UE.

Identification: gNB IP+UE Tunnel Endpoint ID TEID_an
Q: What does a gNB need to know to forward to the right UPF?

Core Node (CN) Tunnel
(for gNB to forward uplink traffic to the right UPF):

Identification: UPF IP+UE Tunnel Endpoint ID TEID_cn
Exercise: What may a packet from gNB->UPF for UE to Internet (DN) look like?