
3

Java™ Concurrency Utilities
in Practice

Brian Goetz
Sun Microsystem Inc.
Brian.Goetz@sun.com

Contributing authors: Doug Lea
 State University of New York, Oswego

 dl@cs.oswego.edu

Tim Peierls
BoxPop.biz
Tim@peierls.net

Joe Bowbeer
Java ME Specialist

Mobile App Consulting
jozart@alum.mit.edu

David Holmes
Senior Java Technologist

Sun Microsystems Australia
David.Holmes@sun.com

Acknowledgment: OOPSLA 2007 tutorial
by Joe Bowbeer and David Holmes

http://www.oopsla.org/oopsla2007/index.php?page=sub/&id=69

4

About these slides
• Java™ is a trademark of Sun Microsystems, Inc.

• Material presented is based on latest information
available for JavaTM Platform Standard Edition, as
implemented in JDK™ 6.0

• Code fragments elide
—Exception handling for simplicity
—Access modifiers unless relevant

• More extensive coverage of most topics can be found in
the book

– Java Concurrency in Practice, by Brian Goetz et al,
Addison-Wesley (JCiP)

• See also
– Concurrent Programming in Java, by Doug Lea,

Addison-Wesley (CPJ)

5

Review: Java Threading Model
• The Java virtual machine (JVM)

—Creates the initial thread which executes the main method
of the class passed to the JVM

—Creates internal JVM helper threads
 Garbage collection, finalization, signal dispatching …

• The code executed by the ‘main’ thread can create other
threads
—Either explicitly; or
—Implicitly via libraries:

 AWT/Swing, Applets
 Servlets, web services
 RMI
 image loading
 …

6

Review: Java Thread Creation
• Concurrency is introduced through objects of the class
Thread

— Provides a ‘handle’ to an underlying thread of control

• There is always a ‘current’ thread running: a
— Static method Thread.currentThread()

• The start() method
— Creates a new thread of control to execute the Thread object’s

run() method

• Two ways to provide a run() method:
— Subclass Thread and override run()
— Define a class that implements the Runnable interface and get

the Thread object to run it
 new Thread(aRunnable).start();

• Runnable defines the abstraction of work
• Thread defines the abstraction of a worker

7

Review: Thread Interaction
• void start()

— Creates a new thread of control to execute the run() method of the Thread
object

— Can only be invoked once per Thread object

• void join()
— Waits for a thread to terminate

— t1.join(); // blocks current thread until t1 terminates

• static void sleep(long ms)throws InterruptedException

— Blocks current thread for approximately at least the specified time

• static void yield()

— Allows the scheduler to select another thread to run

8

Review: Java Synchronization
• Every Java object has an associated lock acquired via:

— synchronized statements
– synchronized(foo){

 // execute code while holding foo’s lock
}

— synchronized methods
– public synchronized void op1(){

 // execute op1 while holding ‘this’ lock
}

• Only one thread can hold a lock at a time
— If the lock is unavailable the thread is blocked
— Locks are granted per-thread: reentrant or recursive locks

• Locking and unlocking are automatic
— Can’t forget to release a lock
— Locks are released when a block goes out of scope

 By normal means or when an exception is thrown

9

Review: Use of wait/notify
• Waiting for a condition to hold:

 synchronized (obj) { // obj protects the mutable
state
 while (!condition) {
 try { obj.wait(); }
 catch (InterruptedException ex) { ... }
 }
 // make use of condition while obj still locked
 }

• Changing a condition:
 synchronized (obj) { // obj protects the mutable
state
 condition = true;
 obj.notifyAll(); // or obj.notify()
 }

• Golden rule: Always test a condition in a loop
— Change of state may not be what you need
— Condition may have changed again

 No built-in protection from ‘barging’
— Spurious wakeups are permitted – and can occur

10

java.util.concurrent

• General purpose toolkit for developing concurrent
applications
—No more “reinventing the wheel”!

• Goals: “Something for Everyone!”
—Make some problems trivial to solve by everyone

 Develop thread-safe classes, such as servlets, built on
concurrent building blocks like ConcurrentHashMap

—Make some problems easier to solve by concurrent programmers
 Develop concurrent applications using thread pools, barriers,

latches, and blocking queues
—Make some problems possible to solve by concurrency experts

 Develop custom locking classes, lock-free algorithms

11

Overview of j.u.c
• Executors

— Executor

— ExecutorService

— ScheduledExecutorService

— Callable

— Future

— ScheduledFuture

— Delayed

— CompletionService

— ThreadPoolExecutor

— ScheduledThreadPoolExecutor

— AbstractExecutorService

— Executors

— FutureTask

— ExecutorCompletionService

• Queues
— BlockingQueue

— ConcurrentLinkedQueue

— LinkedBlockingQueue

— ArrayBlockingQueue

— SynchronousQueue

— PriorityBlockingQueue

— DelayQueue

• Concurrent Collections
— ConcurrentMap

— ConcurrentHashMap

— CopyOnWriteArray{List,Set}

• Synchronizers
— CountDownLatch

— Semaphore

— Exchanger

— CyclicBarrier

• Locks: java.util.concurrent.locks
— Lock

— Condition

— ReadWriteLock

— AbstractQueuedSynchronizer

— LockSupport

— ReentrantLock

— ReentrantReadWriteLock

• Atomics: java.util.concurrent.atomic
— Atomic[Type]

— Atomic[Type]Array

— Atomic[Type]FieldUpdater

— Atomic{Markable,Stampable}Reference

12

Key Functional Groups in j.u.c.

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

• Atomic variables
—The key to writing lock-free algorithms

13

The Executor Framework

• Framework for asynchronous task execution
• Standardize asynchronous invocation

—Framework to execute Runnable and Callable tasks
 Runnable: void run()
 Callable<V>: V call() throws Exception

• Separate submission from execution policy
—Use anExecutor.execute(aRunnable)
—Not new Thread(aRunnable).start()

• Cancellation and shutdown support
• Usually created via Executors factory class

—Configures flexible ThreadPoolExecutor
—Customize shutdown methods, before/after hooks, saturation

policies, queuing

14

Creating Executors

• Sample ExecutorService implementations from Executors
— newSingleThreadExecutor

 A pool of one, working from an unbounded queue
— newFixedThreadPool(int N)

 A fixed pool of N, working from an unbounded queue
— newCachedThreadPool

 A variable size pool that grows as needed and shrinks when idle
— newScheduledThreadPool(int N)

 Pool for executing tasks after a given delay, or periodically

15

Thread Pools

• Use a collection of worker threads, not just one
—Can limit maximum number and priorities of threads
—Dynamic worker thread management

 Sophisticated policy controls
—Often faster than thread-per-message for I/O bound

actions

16

ThreadPoolExecutor

• Sophisticated ExecutorService implementation with
numerous tuning parameters
—Core and maximum pool size

 Thread created on task submission until core size reached
 Additional tasks queued until queue is full
 Thread created if queue full until maximum size reached
 Note: unbounded queue means the pool won’t grow above core

size
—Keep-alive time

 Threads above the core size terminate if idle for more than the
keep-alive time

 In JDK 6 core threads can also terminate if idle
—Pre-starting of core threads, or else on demand

17

Working with ThreadPoolExecutor

• ThreadFactory used to create new threads
—Default: Executors.defaultThreadFactory

• Queuing strategies: must be a
BlockingQueue<Runnable>
—Direct hand-off via SynchronousQueue: zero capacity;

hands-off to waiting thread, else creates new one if allowed,
else task rejected

—Bounded queue: enforces resource constraints, when full
permits pool to grow to maximum, then tasks rejected

—Unbounded queue: potential for resource exhaustion but
otherwise never rejects tasks

• Queue is used internally
—Use remove or purge to clear out cancelled tasks
—You should not directly place tasks in the queue

 Might work, but you need to rely on internal details

• Subclass customization hooks: beforeExecute and
afterExecute

18

Futures

• Encapsulates waiting for the result of an asynchronous
computation launched in another thread
—The callback is encapsulated by the Future object

• Usage pattern
—Client initiates asynchronous computation via oneway message
—Client receives a “handle” to the result: a Future
—Client performs additional tasks prior to using result
—Client requests result from Future, blocking if necessary until

result is available
—Client uses result

• Assumes truly concurrent execution between client and task
—Otherwise no point performing an asynchronous computation

• Assumes client doesn’t need result immediately
—Otherwise it may as well perform the task directly

19

Future<V> Interface

• V get()
—Retrieves the result held in this Future object, blocking if

necessary until the result is available
—Timed version throws TimeoutException
—If cancelled then CancelledException thrown
—If computation fails throws ExecutionException

• boolean isDone()
—Queries if the computation has completed—whether successful,

cancelled or threw an exception

• boolean isCancelled()
—Returns true if the computation was cancelled before it

completed

20

Simple Future Example

• Asynchronous rendering in a graphics application
 interface Pic { byte[] getImage(); }

interface Renderer { Pic render(byte[] raw); }

class App { // sample usage
 void app(final byte[] raw) throws ... {
 final Renderer r = …;
 FutureTask<Pic> p = new FutureTask<Pic>(
 new Callable<Pic>() {
 Pic call() {
 return r.render(raw);
 }
 });
 new Thread(p).start();
 doSomethingElse();
 display(p.get()); // wait if not yet ready
 }
 // ...
}

21

Key Functional Groups in j.u.c.

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

• Atomic variables
—The key to writing lock-free algorithms

22

Concurrent Collections

23

Concurrent Collections

24

Iteration Semantics

25

Concurrent Collection Performance

26

ConcurrentMap

• Atomic get-and-maybe-set methods for maps

 interface ConcurrentMap<K,V> extends Map<K,V> {
 V putIfAbsent(K key, V value);
 V replace(K key, V value);
 boolean replace(K key, V oldValue, V newValue);
 boolean remove(K key, V value);
}

27

Key Functional Groups in j.u.c.

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

• Atomic variables
—The key to writing lock-free algorithms

28

Locks

29

Lock / ReentrantLock

 interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long timeout, TimeUnit unit)
 throws InterruptedException;
 void unlock();
 Condition newCondition();
}

• Additional flexibility
—Interruptible, try-lock, not block-structured, multiple conditions
—Advanced uses: e.g. Hand-over-hand or chained locking

• ReentrantLock: mutual-exclusion Lock implementation
—Same basic semantics as synchronized

 Reentrant, must hold lock before using condition, …
—Supports fair and non-fair behavior

 Fair lock granted to waiting threads ahead of new requests
—High performance under contention

30

Simple lock example

31

Key Functional Groups in j.u.c.

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

• Atomic variables
—The key to writing lock-free algorithms

32

Synchronizers

33

CountDownLatch

• A counter that releases waiting threads when it reaches zero

—Allows one or more threads to wait for one or more events

— Initial value of 1 gives a simple gate or latch

 CountDownLatch(int initialValue)

• await: wait (if needed) until the counter is zero

—Timeout version returns false on timeout

— Interruptible

• countDown: decrement the counter if > 0

• Query: getCount()

• Very simple but widely useful:

—Replaces error-prone constructions ensuring that a group of threads all wait for a
common signal

• Single-use tool: no reset

34

Semaphores

• Conceptually serve as permit holders
—Construct with an initial number of permits
— acquire: waits for permit to be available, then “takes” one
— release: “returns” a permit
—But no actual permits change hands

 The semaphore just maintains the current count
 No need to acquire a permit before you release it

• “fair” variant hands out permits in FIFO order

• Supports balking and timed versions of acquire

• Applications:
—Resource controllers
—Designs that otherwise encounter missed signals

 Semaphores ‘remember’ how often they were signalled

35

Bounded Blocking Concurrent List

• Concurrent list with fixed capacity
—Insertion blocks until space is available

• Tracking free space, or available items, can be done using a
Semaphore

• Demonstrates composition of data structures with library
synchronizers
—Much, much easier than modifying implementation of concurrent

list directly

36

Bounded Blocking Concurrent List

 public class BoundedBlockingList {
 final int capacity;
 final ConcurrentLinkedList list =
 new ConcurrentLinkedList();
 final Semaphore sem;

 public BoundedBlockingList(int capacity) {
 this.capacity = capacity;
 sem = new Semaphore(capacity);
 }
 public void addFirst(Object x) throws
 InterruptedException {
 sem.acquire();
 try { list.addFirst(x); }
 catch (Throwable t){ sem.release(); rethrow(t); }
 }
 public boolean remove(Object x) {
 if (list.remove(x)) {
 sem.release(); return true;
 }
 return false;
 }
 …
}

37

Key Functional Groups in j.u.c.

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

• Atomic variables
—The key to writing lock-free algorithms

38

Atomic Variables

• Holder classes for scalars, references and fields

— java.util.concurrent.atomic

• Support atomic operations
—Compare-and-set (CAS)

 boolean compareAndSet(T expected, T update)
 Atomically sets value to update if currently expected
 Returns true on successful update

—Get, set and arithmetic operations (where applicable)
 Increment, decrement operations

• Nine main classes:
—{ int, long, reference } X { value, field, array }
—E.g. AtomicInteger useful for counters, sequence numbers,

statistics gathering

39

AtomicInteger Example

40

Case Study: Memoizer

• Implement a class for memorizing function results

• Memo Function:
—A function that memorizes its previous results

 Optimization for recursive functions, etc.
—Invented by Prof. Donald Michie, Univ. of Edinburgh

• Goal: Implement Memoizer
—Function wrapper
—Provide concurrent access
—Compute each result at most once

• Tools:
— ConcurrentHashMap
— FutureTask

41

Memoizer: Generic Computation

• Generic computation
 interface Computable<A, V> {

 V compute(A arg) throws Exception;

 }

• Representative example
 class ComplexFunction

 implements Computable<String, BigInteger> {

 public BigInteger compute(String arg) {

 // after deep thought...

 return new BigInteger("2");

 }

 }

42

Memoizer: Usage

• Current use of ComplexFunction requires local caching of
result (or expensive re-compute)

– Computable<String, BigInteger> f =
– new ComplexFunction();
– BigInteger result = f.compute("1+1");
– // cache result for future use

• Memoizer encapsulates its own caching
– Computable<String, BigInteger> f =
– new ComplexFunction();
– f = new Memoizer<String, BigInteger>(f);
– BigInteger result = f.compute("1+1");
– // call f.compute whenever we need to

43

Synchronized Memoizer

• Safe but not concurrent

 class SyncMemoizer<A,V> implements Computable<A,V> {

 final Map<A, V> cache = new HashMap<A, V>();
 final Computable<A, V> func;

 SyncMemoizer(Computable<A, V> func) {
 this.func = func;
 }

 public synchronized V compute(A arg)throws
Exception{
 if (!cache.containsKey(arg))
 cache.put(arg, func.compute(arg));
 return cache.get(arg);
 }
}

44

Non-atomic Concurrent Memoizer

• Safe, concurrent (no sync) but computes may overlap
 class NonAtomicMemoizer<A,V> implements

Computable<A,V> {

 final Map<A, V> cache = new ConcurrentHashMap<A,
V>();
 final Computable<A, V> func;

 NonAtomicMemoizer(Computable<A, V> func) {
 this.func = func;
 }

 public V compute(A arg) throws Exception {
 if (!cache.containsKey(arg))
 cache.put(arg, func.compute(arg));
 return cache.get(arg);
 }
}

45

Concurrent Memoizer Using Future

• Safe, concurrent and exactly one compute per argument

 class ConcurrentMemoizer<A, V>
 implements Computable<A, V> {

 final ConcurrentMap<A, Future<V>> cache =
 new ConcurrentHashMap<A,
Future<V>>();

 final Computable<A, V> func;

 ConcurrentMemoizer(Computable<A, V> func) {
 this.func = func;
 }

 ...

46

Concurrent Memoizer Using Future (2)

 public V compute(final A arg) throws Exception{
 Future<V> f = cache.get(arg);
 if (f == null) {
 Callable<V> eval = new Callable<V>() {
 public V call() throws Exception {
 return func.compute(arg);
 }
 };
 FutureTask<V> ft = new FutureTask<V>(eval);
 f = cache.putIfAbsent(arg, ft);
 if (f == null) {
 f = ft;
 ft.run();
 }
 }
 return f.get();
}

47

Case Study: Concurrent Linked List

• Goal: Implement a concurrent linked-list
—Demonstrate “chained-locking”

• Tools:
— ReentrantLock

• Goal: Implement a “blocking bounded list”
—Demonstrate composition: data structure + synchronizer

• Tools:
— Semaphore

48

Concurrent Linked List – Locking
Strategy

• Design goal: fine-grained concurrent access

• Solution: lock-per-node

• Basic principle: all accesses traverse from the head in-order
—To access a node it must be locked
—To add a new node the node before must be locked
—To remove a node both the node and the node before must be

locked

• Hand-over-hand Locking:
—Lock n1, lock n2, unlock n1, lock n3, unlock n2, lock n4, …
—Order in which threads acquire the first lock is maintained

 No overtaking once traversal starts

• Full version would implement java.util.List

49

Concurrent Linked List #1

 public class ConcurrentLinkedList {

 /**
 * Holds one item in a singly-linked list.
 * It's convenient here to subclass ReentrantLock
 * rather than add one as a field.
 */
 private static class Node extends ReentrantLock {
 Object item;
 Node next;
 Node(Object item, Node next) {
 this.item = item;
 this.next = next;
 }
 }

 /**
 * Sentinel node. This node's next field points to
 * the first node in the list.
 */
 private final Node sentinel = new Node(null, null);

50

Concurrent Linked List #2

 public void addFirst(Object x) {
 Node p = sentinel;
 p.lock(); // acquire first lock
 try {
 p.next = new Node(x, p.next); // Attach new node
 } finally {
 p.unlock();
 }
 }

• Locking considerations
—What needs to be unlocked in the normal case?
—What needs to be unlocked if an exception occurs?

 Will the list still be in a consistent state?
 Note: can’t protect against asynchronous exceptions

—Simple in this case: only one lock held, only one failure mode

• Note: Lock.lock() could throw exception e.g. OutOfMemoryError

51

Concurrent Linked List #3
 public void addLast(Object x) {

 Node p = sentinel;
 p.lock(); // Acquire first lock
 try { // Find tail, using hand-over-hand
locking
 while (p.next != null) {
 // p is always locked here
 Node prevp = p;
 p.next.lock(); // Acquire next lock
 p = p.next;
 prevp.unlock(); // Release previous lock
 }
 // only p is still locked here
 p.next = new Node(x, null); // Attach new node
 } finally {
 p.unlock(); // Release final lock
 }
 }

• Again exception handling is easy to do – but harder to reason about!
• Note: NullPointerException and

IllegalMonitorStateException only possible if list code is broken

52

Concurrent Linked List #4

 public boolean contains(Object x) {
 Node p = sentinel;
 p.lock(); // Acquire first lock
 try { // Find item, using hand-over-hand
locking
 while (p.next != null) {
 // p is always locked here
 Node prevp = p;
 p.next.lock(); // Acquire next lock
 p = p.next;
 prevp.unlock(); // Release previous lock
 // found it?
 if (x == p.item || x != null && x.equals(p.item))
 return true;
 }
 // only p is still locked now
 return false;
 } finally {
 p.unlock(); // Release final lock
 }
 }

53

Concurrent Linked List #5

 public boolean remove(Object x) {
 Node p = sentinel;
 p.lock(); // Acquire first lock
 try { // Find item, using hand-over-hand locking
 while (p.next != null) {
 Node prevp = p;
 p.next.lock(); // Acquire next lock
 p = p.next;
 // can’t unlock prevp yet as removal of p
 // requires update of prevp.next
 try {
 if (x==p.item || x!=null && x.equals(p.item)) {
 prevp.next = p.next; // remove node p
 return true;
 }
 } finally {
 prevp.unlock(); // Release previous lock
 }
 }
 return false;
 } finally {
 p.unlock(); // Release final lock
 }
 }

