
—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Data Mining

Desktop Survival Guide

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Togaware Series of
Open Source Desktop Survival Guides

This innovative series presents open source and freely available software
tools and techniques with a focus on the tasks they are built for, ranging
from working with the GNU/Linux operating system, through common
desktop productivity tools, to sophisticated data mining applications.
Each volume aims to be self contained, and slim, presenting the informa-
tion in an easy to follow format without overwhelming the reader with
details.

Series Titles
Data Mining with Rattle
R for the Data Miner
Text Mining with Rattle
Debian GNU/Linux
OpenMoko and the Neo 1973

ii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Data Mining

Desktop Survival Guide

Graham Williams

Togaware.com

iii

http://togaware.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

The procedures and applications presented in this book have been in-
cluded for their instructional value. They have been tested but are not
guaranteed for any particular purpose. Neither the publisher nor the
author offer any warranties or representations, nor do they accept any
liabilities with respect to the programs and applications.

The book, as you see it presently, is a work in progress, and different sec-
tions are progressed depending on feedback. Please send comments, sug-
gestions, updates, and criticisms to Graham.Williams@togaware.com.

I hope you find it useful!

Printed 18th January 2008

Copyright c© 2006-2007 by Graham Williams

ISBN 0-9757109-2-3

iv

Graham.Williams@togaware.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Where knowledge is power, data is the fuel and data mining
the engine room for delivering that knowledge.

v

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

vi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Dedication

vii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

viii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Contents

I Data Mining with Rattle 1

1 Introduction 3

1.1 Data Mining . 4

1.2 Types of Analysis . 4

1.3 Data Mining Applications 4

1.4 A Framework for Modelling 4

1.5 Agile Data Mining . 5

2 Rattle Data Miner 7

2.1 Installing GTK, R, and Rattle 8

2.1.1 Quick Start Install 9

2.1.2 Installation Details 10

2.2 The Initial Interface . 15

2.3 Interacting with Rattle . 16

2.4 Menus and Buttons . 18

2.4.1 Project Menu and Buttons 19

2.4.2 Edit Menu . 19

ix

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.4.3 Tools Menu and Toolbar 19

2.4.4 Settings . 20

2.4.5 Help . 20

2.5 Paradigms . 20

2.6 Interacting with Plots . 23

2.7 Summary . 24

3 Sourcing Data 25

3.1 Nomenclature . 25

3.2 Loading Data . 26

3.3 CSV Data . 27

3.4 ARFF Data . 32

3.5 ODBC Sourced Data . 35

3.6 R Data . 37

3.7 R Dataset . 37

3.8 Data Entry . 39

4 Selecting Data 41

4.1 Sampling Data . 41

4.2 Variable Roles . 43

4.3 Automatic Role Identification 44

4.4 Weights Calculator . 45

5 Exploring Data 47

5.1 Summarising Data . 48

x

— — — —

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.1.1 Summary . 49

5.1.2 Describe . 50

5.1.3 Basics . 51

5.1.4 Kurtosis . 52

5.1.5 Skewness . 54

5.1.6 Missing . 55

5.2 Exploring Distributions 57

5.2.1 Box Plot . 60

5.2.2 Histogram . 62

5.2.3 Cumulative Distribution Plot 64

5.2.4 Benford’s Law . 65

5.2.5 Bar Plot . 70

5.2.6 Dot Plot . 70

5.2.7 Mosaic Plot . 70

5.3 Sophisticated Exploration with GGobi 71

5.3.1 Scatterplot . 72

5.3.2 Data Viewer: Identifying Entities in Plots 75

5.3.3 Other Options . 76

5.3.4 Further GGobi Documentation 77

5.4 Correlation Analysis . 78

5.4.1 Hierarchical Correlation 82

5.4.2 Principal Components 82

5.5 Single Variable Overviews 82

xi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6 Transforming Data 83

6.1 Normalising Data . 85

6.1.1 Recenter . 85

6.1.2 Scale [0,1] . 88

6.1.3 Rank . 88

6.1.4 Median/MAD . 88

6.2 Impute . 88

6.2.1 Zero/Missing . 90

6.2.2 Mean/Median/Mode 90

6.2.3 Constant . 92

6.3 Remap . 92

6.3.1 Binning . 92

6.3.2 Indicator Variables 92

6.3.3 Join Categoricals 95

6.3.4 Math Transforms 95

6.4 Outliers . 95

6.5 Cleanup . 95

6.5.1 Delete Ignored . 97

6.5.2 Delete Selected . 97

6.5.3 Delete Missing . 97

6.5.4 Delete Entities with Missing 97

7 Building Classification Models 99

7.1 Building Models . 100

xii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.2 Risk Charts . 101

7.3 Decision Trees . 105

7.3.1 Tutorial Example 107

7.3.2 Formalities . 107

7.3.3 Tuning Parameters 107

7.4 Boosting . 109

7.4.1 Tutorial Example 110

7.4.2 Formalities . 111

7.4.3 Tuning Parameters 111

7.5 Random Forests . 111

7.5.1 Tutorial Example 113

7.5.2 Formalities . 118

7.5.3 Tuning Parameters 118

7.6 Support Vector Machine 119

7.7 Logistic Regression . 121

7.8 Bibliographic Notes . 123

8 Unsupervised Modelling 125

8.1 Cluster Analysis . 125

8.1.1 KMeans . 125

8.1.2 Export KMeans Clusters 125

8.1.3 Discriminant Coordinates Plot 126

8.1.4 Number of Clusters 126

8.2 Hierarchical Clusters . 128

xiii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

8.3 Association Rules . 129

8.3.1 Basket Analysis . 129

8.3.2 General Rules . 131

9 Evaluation 135

9.1 The Evaluate Tab . 136

9.2 Confusion Matrix . 138

9.2.1 Measures . 138

9.2.2 Graphical Measures 138

9.3 Lift . 139

9.4 ROC Curves . 140

9.5 Precision versus Recall . 140

9.6 Sensitivity versus Specificity 140

9.7 Scoring . 140

9.8 Calibration Curves . 141

10 Issues 143

10.1 Model Selection . 143

10.2 Overfitting . 144

10.3 Imbalanced Classification 144

10.3.1 Sampling . 145

10.3.2 Cost Based Learning 146

10.4 Model Deployment and Interoperability 146

10.4.1 SQL . 146

10.4.2 PMML . 147

xiv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

10.5 Bibliographic Notes . 147

11 Moving into R 149

11.1 The Current Rattle State 149

11.2 Data . 151

11.3 Samples . 151

11.4 Projects . 153

11.5 The Rattle Log . 153

11.6 Further Tuning Models . 154

12 Troubleshooting 157

12.1 Cairo: cairo pdf surface create could not be located . . . 157

12.2 A factor has new levels . 158

II R for the Data Miner 159

13 R: The Language 161

13.1 Obtaining and Installing R 164

13.1.1 Installing on Debian GNU/Linux 165

13.1.2 Installing on MS/Windows 165

13.1.3 Install MS/Windows Version Under GNU/Linux . 165

13.2 Interacting With R . 166

13.2.1 Basic Command Line 167

13.2.2 Emacs and ESS . 169

13.2.3 Windows, Icons, Mouse, Pointer—WIMP 170

xv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.3 Evaluation . 173

13.4 Help . 174

13.5 Assignment . 176

13.6 Libraries and Packages . 177

13.6.1 Searching for Objects 177

13.6.2 Package Management 178

13.6.3 Information About a Package 180

13.6.4 Testing Package Availability 181

13.6.5 Packages and Namespaces 182

13.7 Basic Programming in R 183

13.7.1 Folders and Files 183

13.7.2 Flow Control . 184

13.7.3 Functions . 184

13.7.4 Apply . 185

13.7.5 Methods . 185

13.7.6 Objects . 186

13.7.7 System . 187

13.7.8 Misc . 190

13.7.9 Internet . 190

13.8 Memory Management . 191

13.8.1 Memory Usage . 191

13.8.2 Garbage Collection 193

13.8.3 Errors . 194

13.9 Frivolous . 194

xvi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.9.1 Sudoku . 194

13.10Further Resources . 197

13.10.1 Using R . 197

13.10.2 Specific Purposes 197

14 Data 199

14.1 Data Types . 199

14.1.1 Numbers . 200

14.1.2 Strings . 201

14.1.3 Logical . 203

14.1.4 Dates and Times 203

14.1.5 Space . 205

14.2 Data Structures . 205

14.2.1 Vectors . 205

14.2.2 Arrays . 206

14.2.3 Lists . 207

14.2.4 Sets . 207

14.2.5 Matricies . 207

14.2.6 Data Frames . 208

14.2.7 General Manipulation 210

14.3 Loading Data . 215

14.3.1 Interactive Responses 215

14.3.2 Interactive Data Entry 215

14.3.3 Available Datasets 217

xvii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.3.4 CSV Data Used In The Book 218

14.4 Saving Data . 222

14.4.1 Formatted Output 224

14.4.2 Automatically Generate Filenames 224

14.5 Using SQLite . 225

14.6 ODBC Data . 226

14.6.1 Database Connection 226

14.6.2 Excel . 228

14.6.3 Access . 229

14.7 Clipboard Data . 229

14.8 Map Data . 230

14.9 Other Data Formats . 232

14.9.1 Fixed Width Data 232

14.9.2 Global Positioning System 233

14.10Documenting a Dataset 233

14.11Common Data Problems 233

15 Graphics in R 235

15.1 Basic Plot . 237

15.2 Controlling Axes . 239

15.3 Arrow Axes . 240

15.4 Legends and Points . 241

15.4.1 Colour . 243

15.5 Symbols . 244

xviii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.6 Multiple Plots . 245

15.7 Other Graphic Elements 246

15.8 Maths in Labels . 247

15.9 Making an Animation . 248

15.10Animated Mandelbrot . 249

15.11Adding a Logo to a Graphic 251

15.12Graphics Devices Setup 251

15.12.1 Screen Devices . 251

15.12.2 Multiple Devices 252

15.12.3 File Devices . 252

15.12.4 Multiple Plots . 254

15.12.5 Copy and Print Devices 255

15.13Graphics Parameters . 255

15.13.1 Plotting Region . 256

15.13.2 Locating Points on a Plot 256

15.13.3 Scientific Notation and Plots 256

16 Understanding Data 259

16.1 Single Variable Overviews 260

16.1.1 Textual Summaries 260

16.1.2 Multiple Line Plots 262

16.1.3 Separate Line Plots 264

16.1.4 Pie Chart . 265

16.1.5 Fan Plot . 267

xix

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1.6 Stem and Leaf Plots 267

16.1.7 Histogram . 270

16.1.8 Barplot . 272

16.1.9 Trellis Histogram 273

16.1.10 Histogram Uneven Distribution 274

16.1.11 Density Plot . 275

16.1.12 Basic Histogram 277

16.1.13 Basic Histogram with Density Curve 278

16.1.14 Practical Histogram 280

16.2 Multiple Variable Overviews 281

16.2.1 Pivot Tables . 281

16.2.2 Scatterplot . 284

16.2.3 Scatterplot with Marginal Histograms 286

16.2.4 Multi-Dimension Scatterplot 287

16.2.5 Correlation Plot 288

16.2.6 Colourful Correlations 291

16.2.7 Projection Pursuit 293

16.2.8 RADVIZ . 294

16.2.9 Parallel Coordinates 295

16.3 Measuring Data Distributions 296

16.3.1 Textual Summaries 296

16.3.2 Boxplot . 299

16.3.3 Violin Plot . 305

16.3.4 What Distribution 306

xx

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.3.5 Labelling Outliers 306

16.4 Miscellaneous Plots . 306

16.4.1 Line and Point Plots 306

16.4.2 Matrix Data . 308

16.4.3 Multiple Plots . 309

16.4.4 Aligned Plots . 310

16.4.5 Probability Scale 311

16.4.6 Network Plot . 312

16.4.7 Sunflower Plot . 314

16.4.8 Stairs Plot . 315

16.4.9 Graphing Means and Error Bars 316

16.4.10 Bar Charts With Segments 319

16.4.11 Bar Plot With Means 322

16.4.12 Multi-Line Title 323

16.4.13 Mathematics . 324

16.4.14 Plots for Normality 325

16.4.15 Basic Bar Chart 326

16.4.16 Bar Chart Displays 327

16.4.17 Multiple Dot Plots 329

16.4.18 Alternative Multiple Dot Plots 330

16.4.19 3D Plot . 331

16.4.20 Box and Whisker Plot 332

16.4.21 Box and Whisker Plot: With Means 333

16.4.22 Clustered Box Plot 334

xxi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4.23 Perspective Plots 335

16.4.24 Star Plot . 336

16.4.25 Residuals Plot . 337

16.5 Dates and Times . 338

16.5.1 Simple Time Series 339

16.5.2 Multiple Time Series 340

16.5.3 Plot Time Series 341

16.5.4 Plot Time Series with Axis Labels 342

16.5.5 Grouping Time Series for Box Plot 342

16.6 Using gGobi . 343

16.6.1 Quality Plots Using R 343

16.7 Textual Summaries . 345

16.7.1 Stem and Leaf Plots 347

16.7.2 Histogram . 349

16.7.3 Barplot . 350

16.7.4 Density Plot . 350

16.7.5 Basic Histogram 351

16.7.6 Basic Histogram with Density Curve 352

16.7.7 Practical Histogram 353

16.7.8 Correlation Plot 353

16.7.9 Colourful Correlations 356

16.8 Measuring Data Distributions 357

16.8.1 Textual Summaries 358

16.8.2 Boxplot . 361

xxii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.8.3 Box and Whisker Plot 363

16.8.4 Box and Whisker Plot: With Means 364

16.8.5 Clustered Box Plot 365

16.9 Further Resources . 366

16.10Map Displays . 367

16.11Further Resources . 368

17 Preparing Data 369

17.1 Data Selection and Extraction 369

17.1.1 Training and Test Datasets 369

17.2 Data Cleaning . 370

17.2.1 Variable Manipulations 375

17.2.2 Cleaning the Wine Dataset 377

17.2.3 Cleaning the Cardiac Dataset 377

17.2.4 Cleaning the Survey Dataset 377

17.3 Imputation . 378

17.3.1 Nearest Neighbours 378

17.3.2 Multiple Imputation 378

17.4 Data Linking . 379

17.4.1 Simple Linking . 379

17.4.2 Record Linkage . 380

17.5 Data Transformation . 380

17.5.1 Aggregation . 380

17.5.2 Normalising Data 381

xxiii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.5.3 Binning . 383

17.5.4 Interpolation . 384

17.6 Outlier Detection . 384

17.7 Variable Selection . 384

18 Descriptive and Predictive Analytics 387

18.1 Building a Model . 388

19 Cluster Analysis: K-Means 391

19.1 Summary . 391

19.1.1 Clusters . 391

19.2 Other Cluster Examples 395

20 Association Analysis: Apriori 397

20.1 Summary . 398

20.2 Overview . 398

20.3 Algorithm . 399

20.4 Usage . 401

20.4.1 Read Transactions 402

20.4.2 Summary . 402

20.4.3 Apriori . 402

20.4.4 Inspect . 402

20.5 Examples . 402

20.5.1 Video Marketing: Transactions From File 403

20.5.2 Survey Data: Data Preparation 406

xxiv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.5.3 Other Examples 413

20.6 Resources and Further Reading 414

21 Classification: Decision Trees 415

21.1 Summary . 415

21.2 Overview . 415

21.3 Algorithm . 415

21.4 Usage . 415

21.4.1 Rpart . 415

21.5 Examples . 417

21.6 Resources and Further Reading 426

22 Classification: Boosting 427

22.1 Summary . 428

22.2 Overview . 428

22.3 AdaBoost Algorithm . 429

22.4 Examples . 433

22.4.1 Step by Step . 433

22.4.2 Using gbm . 436

22.5 Extensions and Variations 438

22.5.1 Alternating Decision Tree 438

22.6 Resources and Further Reading 439

23 Classification: Random Forests 443

23.1 Summary . 443

xxv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

23.2 Overview . 443

23.3 Algorithm . 443

23.4 Usage . 443

23.4.1 Random Forest . 444

23.5 Examples . 444

23.6 Resources and Further Reading 446

24 Issues 447

24.1 Incremental or Online Modelling 447

24.2 Model Tuning . 447

24.2.1 Tuning rpart . 449

24.3 Unbalanced Classification 450

24.4 Building Models . 451

24.5 Outlier Analysis . 451

24.6 Temporal Analysis . 453

24.7 Survival Analysis . 453

25 Evaluation 455

25.1 Basics . 455

25.2 Basic Measures . 457

25.3 Cross Validation . 458

25.4 Graphical Performance Measures 460

25.4.1 Lift . 460

25.4.2 The ROC Curve 462

25.4.3 Other Examples 463

xxvi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

25.5 Calibration Curves . 466

26 Cluster Analysis 467

III Text Mining 469

27 Text Mining 471

27.1 Text Mining with R . 471

IV Algorithms 475

28 Bagging 479

28.1 Summary . 479

28.2 Overview . 480

28.3 Example . 480

28.4 Algorithm . 480

28.5 Resources and Further Reading 480

29 Bayes Classifier 481

29.1 Summary . 481

29.2 Example . 482

29.3 Algorithm . 482

29.4 Resources and Further Reading 484

30 Bootstrapping 485

30.1 Summary . 485

xxvii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

30.2 Usage . 486

30.3 Further Information . 486

31 Cluster Analysis 487

31.1 Discriminant Coordinates Plot 487

31.2 K Means . 487

31.2.1 Summary . 488

31.2.2 Clusters . 488

31.3 Hierarchical Clustering . 492

31.4 Summary . 492

31.5 Examples . 492

31.6 Resources and Further Reading 493

32 Conditional Trees 495

32.1 Summary . 495

32.2 Algorithm . 496

32.3 Examples . 496

32.4 Resources and Further Reading 497

33 Hierarchical Clustering 499

33.1 Summary . 499

33.2 Examples . 499

33.3 Resources and Further Reading 499

34 K-Nearest Neighbours 501

34.1 Summary . 502

xxviii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

34.2 Resources and Further Reading 502

35 Linear Models 503

35.0.1 Linear Model . 503

36 Regression: Ordinal Regression 505

37 Logistic Regression 507

37.1 Summary . 507

37.1.1 Linear Model . 507

37.2 Resources and Further Reading 508

38 Neural Networks 509

38.1 Overview . 510

38.2 Algorithm . 510

38.2.1 Neural Network . 510

38.3 Resources and Further Reading 510

39 SVM 511

39.1 Overview . 511

39.2 Examples . 512

39.3 Resources and Further Reading 512

39.3.1 Overview . 515

39.3.2 Examples . 516

39.3.3 Resources and Further Reading 516

xxix

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

V Open Products 517

39.4 Rattle and Other Data Mining Suites 519

40 AlphaMiner 521

41 Borgelt 523

41.1 Summary . 524

41.2 Usage . 524

42 KNime 525

43 R 527

43.1 Summary . 528

43.2 Further Information . 528

44 Rapid-I 529

45 Rattle 531

45.1 Summary . 532

45.2 Usage . 532

46 Weka 535

46.1 Summary . 536

46.2 Usage . 536

VI Closed Products 541

47 C4.5 543

xxx

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

47.1 Summary . 543

47.2 Overview . 544

47.3 Resources and Further Reading 545

48 Clementine 547

48.1 Summary . 547

49 Equbits Foresight 549

49.1 Summary . 549

50 GhostMiner 551

50.1 Summary . 551

50.2 Usage . 552

51 InductionEngine 555

51.1 Summary . 555

52 Oracle Data Mining 557

52.1 Summary . 558

52.2 Usage . 558

53 SAS Enterprise Miner 559

53.1 Summary . 560

53.2 Usage . 560

53.3 Tips and Tricks . 561

54 Statistica 563

xxxi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

54.1 Summary . 564

54.2 Usage . 564

54.3 Sample Applications . 566

54.4 Further Information . 567

55 TreeNet 569

55.1 Summary . 569

56 Virtual Predict 571

56.1 Summary . 571

56.2 Usage . 572

VII Appendicies 573

A Glossary 575

Bibliography 584

Index 591

xxxii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

List of Figures

2.1 The introductory screen displayed on starting Rattle . . . 15

2.2 Initial steps of the data mining process (Tony Nolan) . . . 17

2.3 The Rattle window showing paradigms 21

2.4 Selecting the Unsupervised paradigm 22

2.5 A sample of plots . 23

3.1 Rattle title bar showing the file name 27

3.2 The CSV file chooser . 29

3.3 After identifying a file to load 30

3.4 Data tab dataset summary. 31

3.5 Loading an ARFF file . 33

3.6 Loading data through an ODBC database connection . . 35

3.7 Teradata ODBC connection 35

3.8 Netezza ODBC connection 36

3.9 Netezza configuration . 36

3.10 Loading an R binary data file. 37

3.11 Loading an already defined R data frame 37

xxxiii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

3.12 Selected region of a spreadsheet copied to the clipboard . 38

3.14 Data entry spreadsheet . 39

3.13 Loading an R data frame originally from the clipboard . . 40

4.1 Select tab choosing Adjusted as a Risk variable. 43

5.1 Missing value summary for a version of the audit modified
to include missing values. 55

5.2 Benford stratified by Marital and Gender. 69

5.3 Mosaic plot of Age by Adjusted. 70

6.1 Transform options. 84

6.2 Selection of normalisations. 86

6.3 Normalisations of Age. 86

6.4 Normalisations of Age. 87

6.5 Selection of imputations. 89

6.6 Imputation using the mode for missing values of Age. . . 91

6.7 Binning Age. 93

6.8 Distributions of binned Age. 93

6.9 Turning Gender into an Indicator Variable. 94

6.10 Selection of cleanup operations. 96

7.1 Random forest tuning parameters. 114

7.2 Random forests only supports factors with up to 32 levels. 114

7.3 Random forest model of audit data. 115

7.4 Random forest model measure of variable importance. . . 116

7.5 Random forest risk charts: test and train datasets. 117

xxxiv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.6 Warning when evaluating a model on the training dataset. 117

7.7 Random forest ROC chart. 118

8.1 KMeans Iteration Interface 127

8.2 KMeans Iteration Plot . 127

9.1 Informal dialog when using training set for evaluation . . 137

13.1 R command line under GNU/Linux 168

13.2 R command line under MS/Windows 168

13.3 R GUI using ESS for Emacs 170

13.4 R Commander GUI . 171

16.1 An ordered monthly box plot. 343

18.1 A approximate model of random data. 389

22.1 Reduced example of an alternating decision tree. 440

22.2 Audit risk chart from an alternating decision tree. 440

45.1 Togaware’s Rattle Gnome Data Mining interface. 533

46.1 The Weka GUI chooser. 537

46.2 Weka explorer viewing data. 538

46.3 Import CSV data into Weka. 538

46.4 Output from running J48 (C4.5). 539

50.1 Fujitsu GhostMiner interface. 553

xxxv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

52.1 Sample ODMiner interface to ODM. 558

53.1 SAS Enterprise Miner interface (Version 4). 561

54.1 Statistica Data Miner graphical interface. 565

xxxvi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

List of Tables

29.1 Contact lens training data. 482

xxxvii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

xxxviii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

List of Listings

3.1 Locate and view the package supplied sample dataset . . . 28

3.2 Sample of a CSV format dataset 28

3.3 Sample of an ARFF format dataset 33

3.4 ARFF ISO-8601 date specification 34

3.5 Load data from clipboard into R 39

code/get–wine.R . 219

code/get–survey.R . 221

code/get–australia.R . 230

graphics/map–australia–plot.R 231

graphics/rplot–iris–scatter.R 237

graphics/rplot–iris–topbox.R 239

graphics/rplot–iris–arrows.R . 240

graphics/rplot–legends.R . 241

graphics/rplot–mandelbrot.R 249

graphics/rplot–wine–matplot.R 263

graphics/rplot–wine–zoo.R . 264

graphics/rplot–wine–pie.R . 265

xxxix

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

graphics/rplot–wine–hist.R . 270

graphics/rattle–audit–explore–distr–hist–income.R 271

graphics/rplot–wine–barplot.R 272

graphics/rplot–histogram–trellis.R 273

graphics/rplot–iris–density.R 275

graphics/rplot–hist.R . 277

graphics/rplot–hist–density.R 278

graphics/rplot–hist–colour.R 280

graphics/rplot–wine–scatter.R 284

graphics/rplot–wine–scatterm.R 287

graphics/rplot–wine–corr.R . 289

graphics/rplot–corr–wine.R . 292

graphics/rplot–wine–boxplot–single.R 299

graphics/rplot–wine–boxplot–multi.R 300

graphics/rplot–wine–boxplot–type.R 301

graphics/rplot–wine–boxplot–tuning.R 303

graphics/rplot–boxplot–qplot.R 304

graphics/rplot–wine–vioplot.R 305

graphics/rplot–dot.R . 306

graphics/rplot–matplot.R . 308

graphics/rplot–multi–hist.R . 309

graphics/rplot–multi–align.R 310

graphics/rplot–proby.R . 311

graphics/rplot–network.R . 312

xl

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

graphics/rplot–line.R . 315

graphics/rplot–line–means.R 316

graphics/rplot–bar–complex.R 320

graphics/rplot–bar–means.R . 322

graphics/rplot–titles.R . 323

graphics/rplot–labels.R . 324

graphics/rplot–bar.R . 326

graphics/rplot–bar–horizontal.R 327

graphics/rplot–trellis.R . 329

graphics/rplot–trellis–shapes.R 330

graphics/rplot–3dbox.R . 331

graphics/rplot–boxplot.R . 332

graphics/rplot–boxplot–means.R 333

graphics/rplot–bwplot.R . 334

graphics/rplot–stars.R . 336

graphics/rplot–lm–residuals.R 337

graphics/rplot–date.R . 338

graphics/rplot–time–multi.R . 340

graphics/rplot–time–basic.R . 341

graphics/rplot–time–basic.R . 341

graphics/rplot–time–basic–labels.R 342

graphics/rplot–wine–hist.R . 349

graphics/rplot–wine–barplot.R 350

graphics/rplot–iris–density.R 350

xli

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

graphics/rplot–hist.R . 351

graphics/rplot–hist–density.R 352

graphics/rplot–hist–colour.R 353

graphics/rplot–wine–corr.R . 354

graphics/rplot–corr–wine.R . 357

graphics/rplot–wine–boxplot–single.R 361

graphics/rplot–wine–boxplot–multi.R 362

graphics/rplot–wine–boxplot–type.R 363

graphics/rplot–boxplot.R . 363

graphics/rplot–boxplot–means.R 364

graphics/rplot–bwplot.R . 365

graphics/map–australia–states.R 367

graphics/rplot–cluster.R . 392

graphics/rplot–rpart.R . 418

graphics/rplot–adaboost.R . 432

graphics/rplot–rocr–survey–lift.R 460

graphics/rplot–rocr–survey–tpfp.R 462

graphics/rplot–rocr–4plots.R 463

graphics/rplot–rocr–10xfold.R 466

graphics/rplot–cluster.R . 488

graphics/rplot–ctree.R . 496

xlii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Preface

Knowledge leads to wisdom and better understanding. Data mining
builds knowledge from information, adding value to the tremendous
stores of data that abound today—stores that are ever increasing in
size and availability. Emerging from the database community in the
late 1980’s the discipline of data mining grew quickly to encompass re-
searchers and technologies from Machine Learning, High Performance
Computing, Visualisation, and Statistics, recognising the growing op-
portunity to add value to data. Today, this multi-disciplinary and trans-
disciplinary effort continues to deliver new techniques and tools for the
analysis of very large collections of data. Searching through databases
measuring in the gigabytes and terabytes, data mining delivers discov-
eries that improve the way an organisation does business. It can enable
companies to remain competitive in this modern data rich, knowledge
hungry, wisdom scarce world. Data mining delivers knowledge to drive
the getting of wisdom.

The range of techniques and algorithms used in data mining may appear
daunting and overwhelming. In performing data mining for a data rich
client many decisions need to be made regarding the choice of methodol-
ogy, the choice of data, the choice of tools, and the choice of application.

Data Mining with Rattle

In this book we introduce the basic concepts and algorithms of data min-
ing, deploying the Free and Open Source Software package Rattle, built
on top of the R system. As Free Software the source code of Rattle and R
is available to anyone, and anyone is permitted, and indeed encouraged,
to extend the software, and to read the source code to learn from it.
Indeed, R is supported by a world wide network of some of the world’s

xliii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

leading Statisticians. This book guides you through the various options
that Rattle provides and serves as a user guide both to Rattle and to Data
Mining. Some extensions into using R itself are presented, where this will
help with the migration to using the full capacity of the R system. The
companion book, R for the Data Miner, extensively covers the use of R
for data mining.

R for the Data Miner

In this book we deploy the Free and Open Source Software statistical
programming language R to illustrate the deployment of data mining
technology. As Free Software the source code of R is available to anyone,
and anyone is permitted, and indeed encouraged, to extend the software,
and to read the source code to learn from it. Indeed, R is supported by
a world wide network of some of the world’s leading Statisticians. This
book introduces the R language and then guides you through the various
R packages that are essential and comprehensive for the Data Miner. A
companion book, Data Mining with Rattle is a more gentle introduction
to Data Mining, and uses the Rattle graphical user interface to introduce
data mining (and hence requires very little knowledge of R).

Goals

This book presents a unique and easily accessible single stop resource for
the data miner. It provides a practical guide to actually doing data min-
ing. It is accessible to the information technology worker, the software
engineer, and the data analyst. It also serves well as a textbook for an
applications and techniques oriented course on data mining. While much
data analysis and modelling relies on a foundation of statistics, the aim
here is to not lose the reader in the statistical details. This presents a
challenge! At times the presentation will leave the statistically sophisti-
cated wanting a more solid treatment. In these cases the reader is referred
to the excellent statistical expositions in Dalgaard (2002), Venables and
Ripley (2002), and Hastie et al. (2001).

xliv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Organisation

Part ?? constitutes a complete guide to using Rattle for data mining.

In Chapter 2 we introduce Rattle as a graphical user interface (GUI)
developed for making any data mining project a lot simpler. This covers
the installation of both R and Rattle, as well as basic interaction with
Rattle.

Chapters 3 to 9 then detail the steps of the data mining process, corre-
sponding to the straightforward interface presented through Rattle. We
describe how to get data into Rattle, how to select variables, and how
to perform sampling in Chapter 3. Chapter 5 then reviews various ap-
proaches to exploring the data in order for us to gain some insights about
the data we are looking at as well as understanding the distribution of
the data and to assess the appropriateness of any modelling.

Chapters 8 to 27 cover modelling, including descriptive and predictive
modelling, and text mining. The evaluation of the performance of the
models and their deployment is covered in Chapter 9. Chapter 11 pro-
vides an introduction to migrating from Rattle to the underlying R sys-
tem. It does not attempt to cover all aspects of interacting with R but is
sufficient for a competent programmer or software engineer to be able to
extend and further fine tune the modelling performed in Rattle. Chap-
ter 12 covers troubleshooting within Rattle.

Part II delves much deeper into the use of R for data mining. In par-
ticular, R is introduced as a programming language for data mining.
Chapter 13 introduces the basic environment of R. Data and data types
are covered in Chapter 14 and R’s extensive capabilities in producing
stunning graphics is introduced in Chapter 15. We then pull together
the capabilities of R to help us understand data in Chapter 16. We then
move on to preparing our data for data mining in Chapter 17, building
models in Chapter 24, and evaluating our models in Chapter 25.

Part IV reviews the algorithms employed in data mining. The encyclo-
pedic type overview covers many tools and techniques deployed within
data mining, ranging from decision tree induction and association rules,
to multivariate adaptive regression splines and patient rule induction
methods. We also cover standards for sharing data and models.

xlv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

We continue the Desktop Guide with a snapshot of some current alterna-
tive open source and then commercial data mining products in Part V,
Open Source Products, and Part VI, Commercial Off The Shelf Products.

Features

A key feature of this book, that differentiates it from many other very
good textbooks on data mining, is the focus on the end-to-end process
for data mining. That is, we cover in quite some detail the business
understanding, data, modelling, evaluation, and practical deployment.
In addition to presenting descriptions of approaches and techniques for
data mining using modern tools, we provide a very practical resource
with actual examples using Rattle. These will be immediately useful
in delivering on data mining projects. We have chosen an easy to use
yet very powerful open source software for the examples presented in
the book. Anyone can obtain the appropriate software for free from the
Internet and quickly set up their computer with a very sophisticated data
mining environment, whether they use GNU/Linux, Unix, Mac/OSX, or
even MS/Windows.

Audience

The book is accessible to many readers and not necessarily just those
with strong backgrounds in computer science or statistics. At times
we do introduce some statistical, mathematical, and computer science
notations, but intentionally keep it simple. Sometimes this means over-
simplifying concepts, but only where it does not lose intent of the concept
and only where it retains its fundamental accuracy.

Typographical Conventions

We use the R language and the Rattle application to illustrate concepts
and modelling in data mining. R is both a programming language and
an interpreter. When we illustrate interactive sessions with R we will

xlvi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

generally show the R prompt, which by default is “>”. This allows the
output from R to more easily be distinguished. However, we generally do
not include the continuation prompt (a “+”) which appears when a single
command extends over multiple lines, as this makes it more difficult to
cut-and-paste from the examples in the electronic version of the book.

In providing example output from commands, at times we will truncate
the listing and indicate missing components with [...]. While most
examples will illustrate the output exactly as it appears in R there will
be times where the format will be modified slightly to fit with publication
limitations. This might involve silently removing or adding blank lines.

In describing the functionality of Rattle we will use a sans serif font to
identify a Rattle widget (which is a graphical user interface component
that we interact with, such as a button or menu). All of the widgets are
indexed under Rattle/Widget in the index. The kinds of widgets that
are used in Rattle include the check box for turning options on and off,
and the radio button for selecting an option from a list of alternatives,

A Note on Languages

Rattle, as a graphical user interface, has been developed using the Gnome
toolkit with the Glade GUI builder. Java was considered for the imple-
mentation of the GUI, using the Swing toolkit. But although Java was
a very good language in its early days, it continued to grow and lose its
attraction as a clean and easy to use and deploy system. Deployment be-
came painful, and the Java system remained very memory hungry. Sun
also refused for a long time to free it of restrictive license limitations.

Gnome, on the other hand, is programming language independent. In-
deed, the GUI side of Rattle started out as a Python program using
Gnome before it moved to R. The Rattle GUI is developed using the
Glade GUI builder, which is very simple and easy to use. This tool
generates an XML file that describes the interface in a programming
language independent way. That file can be loaded into any supported
programming language to immediately display the GUI. The actual func-
tionality underlying the application can then be written in any supported
language, which includes Java, C, C++, Ada, Python, Ruby, and R! We

xlvii

http://en.wikipedia.org/wiki/GUI_Widget
http://en.wikipedia.org/wiki/Check_box
http://en.wikipedia.org/wiki/Radio_button

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

have the freedom, though, to rather quickly change languages if the need
arose.

Acknowledgements

Many thanks to my many students from the Australian National Uni-
versity over the years who have been the reason for me to collect my
thoughts and experiences with data mining to bring together into this
book. I have benefited from their insights into how they learn best. They
have also contributed in a number of ways with suggestions and example
applications. I am also in debt to my colleagues over the years, particu-
larly Peter Milne and Zhexue Huang, for their support and contributions
over the years in the development of Data Mining in Australia.

Colleagues in various organisations deploying or developing skills in data
mining have also provided significant feedback, as well as the motiva-
tion, for this book. These include, but are not limited to my Australian
Taxation Office colleagues, Stuart Hamilton, Frank Lu, Anthony Nolan,
Peter Ricci, Shawn Wicks, and Robert Williams.

This book has grown from a desire to share experiences in using and
deploying data mining tools and techniques. A considerable proportion
of the material draws on over ten years of teaching data mining to under-
graduate and graduate students and running industry outreach courses.
The aim is to provide recipe type material that can be instantly deployed,
as well as reference material covering the concepts and terminology a data
miner is likely to come across.

Many have contributed to the content of the book, providing insights
and comments. Illustrative examples of using R have also come from
the R mailing lists and I have used many of these to guide the kinds
of examples that are included in the book. Many contributors to that
list need to be thanked, and include Gabor Grothendi, Jim Holtman,
Domenico Vistocco, and Earl F. Glynn.

Financial support for maintenance of the book is always welcome. Fi-
nancial support is used to contribute toward the costs of running the web
pages and the desktop machine used to make this book available.

xlviii

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

I acknowledge the support of many, including: Boudhayan Sen, Nis-
sen Lars, Ravi Vishnu, Graca Gaspar, Dag Petter Svendsen, Danijela
Puric-Mladenovic, Barend Bronsvoort, Carlos Martinez, Robert Berry,
William West, Hennie Gerber, Victor Urrea Gales, Jose Matias, Rene
Koch, David Thomas, Daniel Piret, Idielle Walters, Ambrose Andrews,
Katsuhiko Kawai, Ellen Pitt, Jean Coursol, Dorothy Webb, Julian Shaw,
Nicholas Barcza, Julien Mazerolle, Douglas Stone, Chris Liles, Take-
hiko Yasukawa, Thomas Callahan, Timothy Boudreau, Leif Kastdalen,
Robert Flagg, Steven King, Robert Azzopardi, Peter Newbigin, An-
thony Holmes, Daniel Naiman, Joseph Larmarange, Deborah Cham-
pagne, Joshua Rosenthal, James Porzak, Gary Kerns, Alfonso Iodice,
Milton Cabral, Gail McEwen, Wade Thunborg, Longbing Cao, Mar-
tin Schultz, Danilo Cillario, Toyota Finance, Michael Stigall, Melanie
Hilario, Siva Ganesh, Myra O’Regan, Stephen Zelle, Welling Howell,
Adam Weisberg, Takaharu Aaki, Caroline Rodriguez, Patrick L Du-
rusau, Menno Bot, Dorene A Gilyard, Henry Walker, Fei Huang, Di
Peter Kralicek, Lo Siu Keung, Julian Leslie, Mona Habib, John Chow,
Michael Provost, Hamish R Hutchison, Chris Raymond, Keith Lyons,
Shawn Swart, Hubert Weikert, and Tom Thomas.

Graham J Williams Canberra

xlix

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

l

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Part I

Data Mining with Rattle

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 1

Introduction

We are living in a time where data is collected and stored in unprece-
dented volumes. Large and small enterprises collect data about their
businesses, their customers, their human resources, their products, their
manufacturing processes, their suppliers, their business partners, their lo-
cal and international markets and their competitors. Turning this data
into information and that information into knowledge has become a key
component of the success of a business. Data contains valuable informa-
tion that can support managers in their business decisions in effectively
and efficiently running a business. Information is the basis for identifying
new opportunities. Knowledge is the linchpin of society!

Data mining is about building models from data. We build models to
gain insights into the world and how the world works. A data miner, in
building models, deploys many different data analysis and model building
techniques. Our choices depend on the business problems to be solved.
Although data mining is not the only approach it is becoming very widely
used because it is well suited to the data environments we find in today’s
enterprises. This is characterised by the volume of data available, com-
monly in the gigabytes and fast approaching the terabytes, and the com-
plexity of that data, both in terms of the relationships that are awaiting
discovery in the data and the data types available today, including text,
image, audio, and video. Also, the business environments are rapidly
changing, and analyses need to be regularly performed and models reg-
ularly updated to keep up with today’s dynamic world.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

4 Introduction

Modelling is what people often think of when they think of data mining.
Modelling is the process of turning data into some structured form or
model that reflects that data in some useful way. Overall the aim is to
address a specific problem through modelling the world in some way, and
from that model to develop a better understanding of the world.

There is a bewildering array of tools and techniques at the disposal of
the data miner for gaining insights into data and for building models.

In this chapter we introduce a modelling framework within which we can
present the various algorithms that we use in data mining for building
models of the world.

1.1 Data Mining

1.2 Types of Analysis

Much of the terminology used in data mining has grown out of that used
in both machine learning and statistics. We identify, for example, two
very broad categories of analysis as unsupervised and supervised (as
in supervised and unsupervised learning).

1.3 Data Mining Applications

Data mining is finding application in many areas, and indeed, is becoming
an all pervasive technology. Here we highlight many of the traditional
areas in which data mining has played a successful role.

1.4 A Framework for Modelling

Architects build models. Why? To see how things fit together, to make
sure they do fit together, to see how things will work in the real world,
and even to sell the idea behind the model they build! Data mining is

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

1.5 Agile Data Mining 5

about building models that give us insights into the world and how the
world works.

Building models is fundamental to understanding our world. When we
build a model, whether it be with lego bricks or computer software, we
get a new perspective of how things fit together or interact. Once we
have some basic models we can start to get ideas about more complex
models, building on what has come before.

In understanding new complex ideas we often begin by trying to map the
idea into concepts or constructs that we already know, by bringing those
constructs together in different ways that reflect how we understand the
new complex idea. As we learn more about the new complex idea we
change our model to better reflect the idea, until eventually we have a
model that matches the idea enough for us to make good effect of our
understanding of the idea.

And so it is with model building in computer science. Indeed, writing a
computer program is essentially about building a model.

There are three components to building a model: how do we repre-
sent the knowledge (the language for building models); how do we
search through all the possible ways of building the model (sentences
in the language); and how do we know when we have a good model
(measurement). In all of the model building that we are going to talk
about in this book, we will use this framework to present the approach
and to contrast the approach to alternatives.

1.5 Agile Data Mining

It is a curious fact that building models, in the context of the framework
we have just presented, is but one task of the data miner, albeit perhaps
the most important task. Almost as important, though, are all the other
tasks associated with data mining. We must ensure our data mining
activities are tackling the right business problem. We must understand
the data that is available and turn noisy data into data from which
we can build robust models. We must evaluate and demonstrate the
performance of our models. And we must ensure the effective deployment
of our models.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6 Introduction

Whilst we can easily describe these steps, it is important to be aware
that data mining is really what we might call and agile activity. The
concept of agility comes from the Agile Software Engineering principles
which include the evolution or incremental development of the business
requirements, the requirement for regular client input or feedback, the
testing of our models as they are being developed, and frequent rebuilding
of the models to improve their performance. An allied aspect is the
concept of peer programming where two data miners work together on
the same data, in a friendly, competitive and collaborative approach to
building models. The agile approach also emphasises the importance of
face-to-face communication over all the effort that is otherwise expended,
and often wasted, on written documents. This is not to remove the
need to write documents, but to identify what is really required to be
documented.

This book provides a practical guide to data mining, showing practi-
tioners how to deliver successful data mining projects. It does this by
stepping through the stages of an idealised data mining project. We
say “idealised” because every project is different, offering different chal-
lenges, and often requiring different approaches to the model building.
Nonetheless, we build from the commonality presented here, to form a
solid foundation for successful data mining.

We identify the steps in a data mining project and note that the following
chapters then walk us through these steps, one step at a time!

As well as the chapters in this book following this step-by-step process of
a data mining project, the open source and freely available tool, Rattle,
that is used here to illustrate data mining, is very much based around
these same steps. Using a tab based interface, each tab represents one of
the steps, and we proceed through the tabs as we work our way through a
data mining project. One noticeable exception to this is the first step of
business understanding. That is something that needs study, discussion,
thought, and brain power, and practical tools to help in this process are
not common.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 2

Rattle Data Miner

In learning about data mining it is important to learn by example and
by doing. Data mining is a very practical activity, often following ones
nose as we weave our way through our data. Our aim through this
book is to provide hands on practice in data mining. For this we need a
tool, and ideally, not one that is expensive and aims to hide how things
are done. Instead, we use the open source and freely available data
mining tool, called Rattle. It is available for anyone to download from
rattle.togawre.com.

Rattle (the R Analytical Tool To Learn Easily) is a graphical data mining
application built upon the statistical language R. An understanding of
R is not required in order to use Rattle. However, a basic introduction
is provided in Chapter 13 with the idea being that this is a springboard
into more sophisticated data mining in R itself. Rattle is simple to use,
quick to deploy, and allows us to rapidly work through the modelling
phase of a data mining project. R, on the other hand, provides a very
powerful language for performing data mining, and when we need to fine
tune our data mining projects we can migrate from Rattle to R simply
by taking Rattle’s underlying commands and deploying them within the
R console.

Rattle uses the Gnome graphical user interface and runs under various op-
erating systems, including GNU/Linux, Macintosh OS/X, and MS/Win-
dows. Its intuitive user interface takes us through the basic steps of data

rattle.togawre.com
http://en.wikipedia.org/wiki/R_programming_language

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

8 Rattle Data Miner

mining, as well as illustrating (through a Log tab) the actual R code that
is used to achieve this. The corresponding R code can be saved to file
and used as a script which can be loaded into R (outside of Rattle) to
repeat any data mining exercise.

While Rattle by itself may be sufficient for all of a user’s needs, it also
provides a stepping stone to more sophisticated processing and modelling
in R itself. The user is not limited to how Rattle does things. For
sophisticated and unconstrained data mining, the experienced user can
progress to interacting directly with a powerful language.

In this chapter we present the Rattle interface, and its basic environment
for interaction, including menus and toolbars, and saving and loading
projects. Chapter 3 works through the process of loading data into Rattle
and Chapter 5 presents the various options within Rattle for exploring
our data. Chapter 6 considers the options for transforming our data in
various ways. We then go through the process of building models and
evaluating the models in Chapters 7.1 to 9. Chapter 11 provides an
insight into how Rattle works under the bonnet. It begins the user on
their way to using R itself.

We begin this chapter with the instructions for installing Rattle.

2.1 Installing GTK, R, and Rattle

Rattle is distributed as an R package and is freely available from CRAN,
the Comprehensive R Archive Network. The latest development version
is also available as an R package from Togaware. Whilst this is a de-
velopment version, it is generally quite stable, and bugs will be fixed in
this version very quickly. The source code is freely available from Google
Code, where it is also possible to join the Rattle users mailing list.

Below we will find a few pages that cover the installation of the system.
This might seem quite daunting, but the process is straightforward and
we do try to cover various contingencies and operating system differences
all in one go!

The first step in installing Rattle is to install the GTK+ libraries, which
provide the Gnome user interface used by Rattle. We need to install the

http://cran.r-project.org/
http://rattle.togaware.com
http://code.google.com/p/rattle/
http://code.google.com/p/rattle/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.1 Installing GTK, R, and Rattle 9

correct package for our operating system. This installation is indepen-
dent of the installation of R itself and is emphasised as a preliminary
step that is often overlooked when installing Rattle.

If you are new to R there are just a few steps to get up and running
with Rattle. If you are running on a Macintosh1, be sure to run R from
inside X11 (off the XCode CD) using the X11 shell to start R. Native
Mac GTK+ is not fully supported. (You also need to use gcc 4.0.3,
rather than the Mac’s 4.0.1.) Be sure to install the glade libraries before
installing RGtk2, since RGtk2 will ignore libraries that it can’t find at
the time of installation (e.g., you may find a “newGladeXML is undefined”
error message when starting up Rattle).

2.1.1 Quick Start Install

The Quick Start (with Debian GNU/Linux assumed for the example)
is:

• Install the GTK+ libraries for your operating system
$ wajig install libglade2 -0

• Install R for your operating system
$ wajig install r-base -core

• Install Rattle

$ R

> install.packages("rattle", dependencies=TRUE)

• Start up Rattle

> library(rattle)

> rattle ()

And that is all there is! The details and idiosyncracies follow.
1Thanks to Daniel Harabor and Antony Unwin for the Mac/OSX information.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

10 Rattle Data Miner

2.1.2 Installation Details

We now provide a detailed step-by-step guide for installing Rattle. For
your particular operating system (e.g., GNU/Linux), simply ignore those
paragraphs beginning with the name of another operating system (i.e.,
MS/Windows and Mac/OSX). This intermingling of instructions, whilst
on the surface appears complicated, simplifies the presentation of the
process.

1. Install the GTK+ libraries

GNU/Linux: these libraries will already be installed if you are
running Gnome, but make sure you also have libglade installed. If
you are not running Gnome you may need to install the GTK+ li-
braries in your distribution. For example, with the excellent Debian
GNU/Linux distribution you can simply install the Glade package:
Debian: wajig install libglade2 -0

MS/Windows: install the latest version of the Glade package
from the Glade for Windows website. Download the self-installing
package (e.g., gtk-dev-2.10.11-win32-1.exe) and open it to in-
stall the libraries:
MS/Windows: run gtk -dev -2.10.11 - win32 -1.exe

An alternative that seems to work quite well (thanks to Andy Liaw
for pointing this out) is to run an R script that will install every-
thing required for GTK+ on MS/Windows. This R script installs
the rggobi package (and other things it depends on). You can start
up R (after installing R as in step 2 below) and then type the com-
mand:

source("http://www.ggobi.org/downloads/install.r")

This installs the GTK libraries for MS/Windows and the rggobi
package for R. (You need R installed already of course - see the
next step.)
Mac/OSX: make sure Apple X11 is installed on your machine as
GTK (and anything built with it) is not native to OSX. Using dar-
winports (from http://darwinports.opendarwin.org/ you can
install the packages:

http://www.debian.org
http://www.debian.org
http://gladewin32.sourceforge.net/modules/news/
http://darwinports.opendarwin.org/

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.1 Installing GTK, R, and Rattle 11

Mac/OSX: $ sudo port install gtk2 (couple of hours)

Mac/OSX: $ sudo port install libglade2 (about 10 minutes)

All Operating Systems: after installing libglade or any of the
other libraries, be sure to restart the R console, if you have one
running. This will ensure R can find the newly installed libraries.

2. Install R

GNU/Linux: R is packaged for many GNU/Linux distributions.
For example, on Debian GNU/Linux install the packages with:
Debian: $ wajig install r-recommended

MS/Windows: the binary distribution can be obtained from the
R Project website. Download the self-installing package and open it
(and R will be installed—we can generally accept all of the default
options that are offered in the installation process).
MS/Windows: run R-2.6.1 - win32.exe

Mac/OSX: download the package from CRAN and install it.

All Operating Systems: to confirm you have R installed, start
up a Terminal and enter the command R (that’s just the capital
letter R). If the response is that the command is not found, then
you probably need to install the R application!
$ R

R version 2.6.0 (2007 -10 -03)

Copyright (C) 2007 The R Foundation for Statistical Computing

ISBN 3 -900051 -07 -0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license ()’ or ’licence ()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type ’contributors ()’ for more information and

’citation ()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos , ’help()’ for on-line help , or

’help.start()’ for an HTML browser interface to help.

http://www.debian.org
http://www.r-project.org

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

12 Rattle Data Miner

Type ’q()’ to quit R.

[Previously saved workspace restored]

>

3. Install RGtk2

This package is available on CRAN and from the RGtk2 web site.
If you have installed all of the dependent R packages in the previous
step then you won’t need to install it here. Otherwise, from R, use:
R: > install.packages("RGtk2")

Or to install the most recent release:
R: > install.packages("RGtk2",repos="http://www.ggobi.org/r/")

GNU/Linux: you can generally just install the appropriate pack-
age for your distribution. On Debian this is done with:
Debain: $ wajig install r-cran -gtk2

Mac/OSX: download the source package from http://www.ggobi.
org/rgtk2/RGtk2_2.8.6.tar.gz, and run the command line in-
stall:
Mac/OSX: $ R CMD INSTALL RGtk2_2.8.6. tar.gz (30 minutes)

You may not be able to compile RGtk2 via the R GUI on Mac/OSX
as the GTK libraries can not be found when gcc is called. Once
installed though, R will detect the package; just don’t try to load
it within the GUI as GTK is not a native OSX application and it
will break. On the Mac/OSX be sure to run R from X11.

All Operating Systems: to confirm you have RGtk2 installed
enter the R command
R: > library(RGtk2)

4. Install R Packages

The following additional R packages are used by Rattle, and with-
out them some functionality will be missing. Rattle will gracefully
handle them being missing so you can install them when needed,

http://www.ggobi.org/rgtk2/
http://www.ggobi.org/rgtk2/RGtk2_2.8.6.tar.gz
http://www.ggobi.org/rgtk2/RGtk2_2.8.6.tar.gz

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.1 Installing GTK, R, and Rattle 13

or else all at once. If we perform an action where Rattle indi-
cates a package is missing, we can then install the package, if we
wish. Type ?install.packages at the R prompt for further help
on installing packages. To automatically get all of the packages
suggested by Rattle (and suggested by its dependencies in turn),
use the dependencies option. Otherwise list them all out in the
command or list just the ones you want:
R: > install.packages("rattle", dependencies=TRUE)

or
R: > install.packages(c("ada", "amap", "arules", "bitops",

"cairoDevice", "cba", "combinat", "doBy", "ellipse",

"fEcofin", "fCalendar", "fBasics", "fpc",

"gdata", "gtools", "gplots", "Hmisc", "kernlab",

"mice", "network", "pmml", "randomForest", "reshape",

"rggobi", "ROCR", "RODBC", "rpart", "RSvgDevice",

"XML"))

5. Install Rattle

From within R you can install Rattle directly from CRAN with:
R: > install.packages("rattle")

An alternative is to install the most recent release from Togaware:
R: > install.packages("rattle",

repos="http://rattle.togaware.com")

If these don’t work for some reason you can also download the
latest version of the rattle package directly from http://rattle.
togaware.com. Download either the .tar.gz file for GNU/Linux
and Mac/OSX, or the .zip file for MS/Windows, and then install
with, for example:
R: > install.packages("rattle_2.2.84. zip", repos=NULL)

Alternatively, for example on Mac/OSX, you can do the following:
Mac: R CMD INSTALL rattle_2.2.84. tar.gz

Use the name of the file as it was downloaded. Some people report
that the filename as downloaded actually becomes:
rattle_2.2.84. tar.gz.tar

You can either correct the name or use this name in the command.

http://rattle.togaware.com
http://rattle.togaware.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14 Rattle Data Miner

6. Start Rattle

From an X Windows terminal if you are using GNU/Linux, or from
an XTerminal if you are using Mac/OSX, or from the Rgui.exe if
using MS/Windows (we call all these, generically, the R Console),
you can load the rattle package into R’s library:
R: > library(rattle)

This loads the Rattle functionality (which is also available without
running the Rattle GUI). To start the Rattle GUI simply run the
command:
R: > rattle ()

We can package up the initiation of the Rattle application so that it can
be run by clicking an icon on the GNU/Linux or MS/Windows desktop.

On GNU/Linux you can create a shell script to run Rattle. The script
might be:
#!/bin/sh

wd=${PWD}

if [! -d ${HOME}/rattle]; then mkdir ${HOME}/rattle; fi

echo "library(rattle); setwd(\"${wd}\"); rattle ()" \

> ${HOME}/rattle/.Rprofile

gnome -terminal --working -directory=${HOME}/rattle \

--title="Rattle: R Console" \

--hide -menubar --execute "R"

This uses a trick of creating a .Rprofile file in a specific location. Such a
file is read when R is started up, and the commands there tell R to start
Rattle. You can call this script rattle and place it in /usr/local/bin
or in your own bin folder ${HOME}/bin.

On MS/Windows a similar trick is possible. Simply start R up in a
folder containing a .Rprofile with the following lines:
library(rattle)

rattle ()

When starting up Rattle the main window will be displayed. You will
see a welcoming message and a hint about using Rattle (see Figure 2.1).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.2 The Initial Interface 15

Figure 2.1: The introductory screen displayed on starting Rattle

2.2 The Initial Interface

The user interface for Rattle flows through the data mining process, pro-
gressing through the Tabs that form the primary mechanism for operat-
ing with Rattle. We essentially work our way from the left most tab (the
Data tab) to the right most tab (the Log tab).

We illustrate the basics of this simple interface for the common case of the
Two Class paradigm. The work flow process in Rattle can be summarised
as:

1. Load a Dataset;

2. Select variables and entites for exploring and mining;

3. Explore the data;

4. Transform the data into training and test datasets;

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16 Rattle Data Miner

5. Build your Models;

6. Evaluate the models;

7. Review the Log of the data mining process.

Pictorially, we illustrate a typical work flow that is embodied in the Rattle
interface in Figure 2.2.

Rattle supports a number of paradigms for data mining. The collection
of Paradigms, displayed as radio buttons to the right of the buttons on
the toolbar, allow a multitude of Rattle functionality to be shared while
supporting the variety of different types of tasks associated with the
different paradigms. For example, selecting the Unsupervised paradigm
will expose the Cluster and Associate tabs, suitable for descriptive data
mining, whilst hiding the Model and Evaluation tabs which are most
useful for predictive model building.

We will present more on paradigms in Section 2.5. Before we get there,
we need to understand how to interact with Rattle.

2.3 Interacting with Rattle

The Rattle interface is based on this set of tabs through which we progress.
For any tab, once we have set up the required information, we will click
the Execute button to perform the actions. Take a moment to explore
the interface a little. Notice the Help menu and find that the help layout
mimics the tab layout.

We will work through the functionality of Rattle with the use of a sim-
ple dataset, the audit dataset, which is supplied as part of the Rat-
tle package (it is also available for download as a CSV file from http:
//rattle.togaware.com/audit.csv). This is an artificial dataset con-
sisting of 2,000 fictional clients who have been audited, perhaps for tax
refund compliance. For each case an outcome is recorded (whether the
taxpayer’s claims had to be adjusted or not) and any amount of adjust-
ment that resulted is also recorded.

The dataset is only 2,000 entities in order to ensure model building is
relatively quick, for illustrative purposes. Typically, our data contains

http://rattle.togaware.com/audit.csv
http://rattle.togaware.com/audit.csv

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.3 Interacting with Rattle 17

Start Rattle

Load File Name

Chose Target and
then the desired
variables, ignore
the others.

Press Execute

Choose
Summary,
Describe, Basics,
Kurtosis,
Skewness

Select Tab

Examine results
for validity and
reliability issues.

View Data

Press Execute

Radio Button
Summary

Press Execute

Load
Audit.csv

Viewing Data, is important for
you to get a better understanding
of the shape, size and content of

your data.

Make sure that your data fits
good statistical practises. Take
time to read and understand it,

and explore the possibilities that
are available..

It is very important to have a
summary of your data before you

start, besides giving you a better feel
for your data, it give you the basics
you need to know for choosing the

types of analysis you need to perform

When loading data for the first
time it is always good to look at
your data and then to target and
ignore the variables accordingly
to what you need or do not need

for the desired function.

Figure 2.2: Initial steps of the data mining process (Tony Nolan)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

18 Rattle Data Miner

tens of thousands and more (often millions) of entities. The audit dataset
contains 13 columns (or variables), with the first being a unique client
identifier. Again, real data will often have one hundred or more variables.

We proceed through the typical steps of a data mining project, beginning
with a data load and selection, then an exploration of the data, some
transformations, and finally, modelling and evaluation.

We step through each tab, left to right, performing the corresponding
actions. Remember that for any tab configure the options and then
click the Execute button (or F5) to perform the appropriate tasks. It is
important to note that the tasks are not performed until the Execute
button (or F5 or the Execute menu item under Tools) is clicked.

The Status Bar at the base of the window will indicate when the action
is completed. Messages from R (e.g., error messages, although many R
error messages are captured by Rattle and displayed in a popup) will
appear in the R console from where Rattle was started.

The R Code that is executed underneath will appear in the Log tab. This
allows us to review the R commands that perform the corresponding data
mining tasks. The R code snippets can be copied as text from the Log
tab and pasted into the R Console from which Rattle is running, to be
directly executed. This allows us to deploy Rattle for basic tasks, yet still
give us the full power of R to be deployed as needed, perhaps through
using more command options than exposed through the Rattle interface.
This also allows us the opportunity to export the whole session as an
R script file as a record of the actions taken, and possibly for running
directly and automatically through R itself at a later time. Simply click
on the Export button to export the log to a file that will have the .R
extension.

2.4 Menus and Buttons

Before we proceed into the major functionality of Rattle, which is covered
in the following chapters, we will review the interface functions provided
by the menus and toolbar buttons. The Open and Save toolbar functions
and the corresponding menu items under the Project menu are discussed
in Section 2.4.1. Projects allow the current state of your interaction with

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.4 Menus and Buttons 19

Rattle to be saved to file for continuing later.

2.4.1 Project Menu and Buttons

A project is a packaging of a dataset, variable selections, explorations,
clusters and models built from the data. Rattle allows projects to be
saved for later resumption of the work or for sharing the data mining
project with other users.

A project is typically saved to a file with the .rattle extension (although
in reality it is just a standard .RData file).

At a later time you can load a project into rattle to restore the data,
models, and other displayed information relating to the project, and
resume your data mining from that point. You can also share these
project files with other Rattle users, which is quite useful for data mining
teams.

You can rename the files, keeping the .rattle extension, without impact-
ing the project file itself—that is, the file name has no formal bearing on
the contents, so use it to be descriptive—but best to avoid vacant spaces
and unusual characters!

2.4.2 Edit Menu

The Edit menu is currently not implemented.

2.4.3 Tools Menu and Toolbar

Execute

It is important to understand the user interface paradigm used within
Rattle. Basically, we specify within each tab what it is we want to hap-
pen, and then click the Execute button to have the actions performed.
Pressing the F5 function key and selecting the menu item Execute under
the Tools menu have the same effect.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20 Rattle Data Miner

Export

The Export button is available to export various objects and entities
from Rattle. Details are available together with the specific sections in
the following Chapters. The nature of the export depends on which tab
is active, and within the tab, which option is active. For example, if
the Model tab is on display then Export will save the current model as
PMML.

The Export button is not available for all tabs and options.

2.4.4 Settings

The settings menu allows us to turn tool tips on and off and to choose
whether to use the Cairo graphics device for displaying plots. The Cairo
device used to display graphics is covered in Section 2.6

2.4.5 Help

Extensive help is available through the Help menu. The structure of the
menu follows that of the Tabs of the main interface. On selecting a help
topic, a brief text popup will display some basic information. Many of
the popups then have the option of displaying further information, which
will be displayed within a Web browser. This additional documentation
is just that which is supplied by the corresponding R package.

2.5 Paradigms

There are many different uses to which data mining can be put. For
identifying fraud or assessing the likelihood of a client to take up a par-
ticular product, we might think of the task as deciding on one of two
outcomes. We might think of this as a two class problem. Or the task
may be to decide what type of item from amongst a collection of items
a client may have a propensity to purchase. This is then a multi class
problem. Perhaps we wish to predict how much someone might overstate
an insurance claim or understate their income for taxation purposes or

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.5 Paradigms 21

Figure 2.3: Paradigms as radio buttons to the right of the toolbar icons

overstate their income when seeking approval for a credit card. Here we
are predicting a continuous outcome, and refer to this as regression.

In all of these situations, or paradigms, we might think of it as having
a teaching who has supplied us examples of the outcomes—whether ex-
amples of fraudulent and non-fraudulent cases, or examples of different
types clients, or examples of clients and their declared income and actual
income. In such cases we refer to the task as supervised modelling.

Perhaps though we know little about the individual, specific targets,
but instead have general information about our population or their pur-
chasing patterns. We might think of what we need to do in this case
as building a model without the help of a teacher—or unsupervised
modelling.

Alternatively, our data may have some special characteristics, such as
time series and text data. In these cases we have different tasks we wish
to perform.

We refer to these different types of tasks in data mining as different
paradigms, and Rattle provides different subsets of functionality for the
different paradigms.

The paradigms are listed at the right end of the toolbar, as seen in
Figure 2.3, and are selectable as radio buttons. The paradigms provided
by Rattle are:

• Two Class for binary classification predictive modelling;

• Multi Class for multi-way classification predictive modelling;

• Regression for continuous variable predictive modelling;

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

22 Rattle Data Miner

Figure 2.4: Changing paradigms changes some of the displayed tabs

• Unsupervised for learning without a target or descriptive mod-
elling;

• Time Series for temporal data mining; and

• Text Mining for mining of unstructured text data.

Selecting a paradigm will change the tabs that are available in the main
body of Rattle. For example, the default paradigm is the Two Class
paradigm, which displays a Model and Evaluate tab, as well as the other
common tabs. The Model tab exposes a collection of techniques for build-
ing two class or binary models. The Evaluate tab provides a collection of
tools for evaluating the performance of those models.

Selecting the Unsupervised paradigm, as in Figure 2.4, removes the Model
and the Evaluate tabs, replacing them with a Cluster and an Associate
tab, for cluster analysis and association analysis, respectively.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

2.6 Interacting with Plots 23

Figure 2.5: A sample of plots

2.6 Interacting with Plots

Rattle uses the Cairo device for displaying graphic plots. If the Cairo
device is not available within your installation then Rattle resorts to the
default window device for the operating system (x11 for GNU/Linux and
window for MS/Windows). The Settings menu also allows control of the
choice of graphics device (allowing us to use the default, which is x11
for GNU/Linux and windows for MS/Windows). The Cairo device has
a number of advantages, one being that the device can be encapsulated
within other windows, as is done with Rattle, to provide various operating
system independent functionality, and a common interface. If we choose
not to use the Cairo device, we will have the default devices, and they
work just fine.

At the bottom of the window that embeds the Cairo device is a serious of
buttons that allow us to Save the plot to file, to Copy the plot to the clip-
board to allow it to be pasted into other applications (e.g., OpenOffice),
to Print the plot, and to Close the plot.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

24 Rattle Data Miner

The Save button of the plot window (on the Cairo device) allows you to
save the graphics to a file in one of the supported formats. The supported
formats include pdf, png (good for vector images and text), jpg (good
for colourful images), svg (for general scalable vector graphics), and, on
MS/Windows, wmf (for MS/Windows specific vector graphics). A popup
will request the filename to save to. The default is to save as PDF format,
saving to a file with the filename extension of .pdf. You can choose to
save in the other formats simply by specifying the appropriate filename
extension.

The Copy button will save a copy of the plot into the clipboard. This will
allow the image to be directly pasted into other applications. Typically
we might create a report using OpenOffice writer, and this option can
be used to include graphics from the exploration and modelling of our
data. The image is captured as a PNG image, and thus as a bitmap
image rather than a vector graphics. Generally the resolution will be
quite adequate, but it is not scalable.

The Print button will send the plot off to a printer. This requires the un-
derlying R application to have been set up properly to access the required
printer.

Finally, once we are finished with the plot we can click the Close button
to shut down that particular plot window.

2.7 Summary

In this Chapter we have covered the installation and setup of the Rattle
graphical user interface for data mining with R. The basic elements of the
Rattle interface have been covered, providing the basis for our interaction
with Rattle.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 3

Sourcing Data

Data is the starting point for all data mining—without it there is nothing
to mine. Today there is certainly no shortage of data—but turning that
data into information and knowledge is no simple matter. In this chapter
we explore issues relating to data, in particular, loading and selecting the
data for data mining.

3.1 Nomenclature

Data miners have a plethora of terminology for many of the same things,
due primarily to the history of data mining with its roots in many disci-
plines. Throughout this book we will use a single, consistent nomencla-
ture, and one that is generally accepted. This nomenclature is introduced
here.

We refer to collections of data as datasets. This might be a matrix or
a database table. A dataset consists of rows which we might refer to as
entities, and those entities are described in terms of variables which
form the columns. Synonyms for entity include record and object , while
synonyms for variable include attribute and feature.

Variables can serve one of two roles: as input variables or output variables
(Hastie et al., 2001). Input variables are measured or preset data items
while output variables are those that are perhaps “influenced” by the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

26 Sourcing Data

input variables. In data mining we often build models to predict the
output variables in terms of the input variables. Input variables are
also known as predictors, independent variables, observed variables and
descriptive variables. Output variables are also known as response and
dependent variables.

Variables can be categorical or numeric. A categorical variable is
one like eye colour and type of motor vehicle. Such variables take on a
value from a fixed set of values (e.g., a colour, or passenger vehicle,
utility, etc, or the common categorisations like low, medium, and high).
A numeric variable has values that are integers or real numbers, such
as a persons age or weight, or their income or amount of money in the
bank. Synonyms for categorical variable include nominal variable, quali-
tative variable and factor, while synonyms for numeric variable, include
quantitative variable and continuous variables.

Thus, we will talk of datasets consisting of entities described using
variables, which might consist of a mixture of input variables and
output variables, either of which may be categorical or numeric.

A dataset (or subsets of a dataset) might have different roles. For
building classification models, for example, we often partition a dataset
into a training dataset and a testing dataset. Typically, we build
our model on the training dataset and evaluate its performance on the
testing dataset.

3.2 Loading Data

The Data tab is the starting point for Rattle, and is where we load a
specific dataset into Rattle.

Rattle is able to load data from various sources. Support is directly in-
cluded in Rattle for comma separated data files (.csv files as might be
exported by a spreadsheet), tab separated files (.txt, which are also com-
monly exported from spreadsheets), the common data mining dataset
format used by Weka (.arff files), and from an ODBC connection (thus
allowing connection to an enormous collection of data sources includ-
ing MS/Excel, MS/Access, SQL Server, Oracle, IBM DB2, Teradata,
MySQL, Postgress, and SQLite).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

3.3 CSV Data 27

Figure 3.1: Rattle title bar showing the file name

When loading data into Rattle certain special strings are used to identify
variable roles. For example, if the variable names starts with ID then the
variable is marked as having an ID role See Section 4.2 for details.

Underneath Rattle, R is very flexible in where it obtains its data from,
and data from almost any source can be loaded. Consequently, Rattle is
able to access this same variety of sources. It does, however, require the
loading of the data into the R console and then within Rattle loading it as
an R Dataset. All kinds of additional data sources can be loaded directly
into R—including loading data directly from SAS, SPSS, Minitab, Oracle,
MySQL, and SQLite.

Once a dataset has been identified the name of the dataset will be dis-
played in the title of the Rattle window, as in Figure 3.1.

The remainder of this Chapter covers the loading of data sources directly
supported by Rattle.

3.3 CSV Data

The CSV option of the Data tab is an easy way to load data from many
different sources into Rattle. CSV stands for “comma separated value”
and is a standard file format often used to exchange data between appli-
cations. CSV files can be exported from spreadsheets and databases, in-
cluding OpenOffice Calc, Gnumeric, MS/Excel, SAS/Enterprise Miner,
Teradata’s Warehouse, and many, many, other applications. This is a
pretty good option for importing your data into Rattle, although it does
lose meta data information (that is, information about the data types of
the dataset). Without this meta data R sometimes guesses at the wrong
data type for a particular column, but it isn’t usually fatal!

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

28 Sourcing Data

> system.file("csv", "audit.csv", package = "rattle")

[1] "/usr/local/lib/R/site -library/rattle/csv/audit.csv"

> file.show(system.file("csv", "audit.csv", package = "rattle"))

Listing 3.1: Locate and view the package supplied sample dataset

ID,Age ,Employment ,Education ,Marital ,Occupation ,Income ,Gender ,...

1004641 ,38 , Private ,College ,Unmarried ,Service ,81838 , Female ,...

1010229 ,35 , Private ,Associate ,Absent ,Transport ,72099 ,Male ,...

1024587 ,32 , Private ,HSgrad ,Divorced ,Clerical ,154676.74 , Male ,...

1038288 ,45 , Private ,Bachelor ,Married ,Repair ,27743.82 , Male ,...

1044221 ,60 , Private ,College ,Married ,Executive ,7568.23 ,Male ,...

...

Listing 3.2: A sample of the top 6 lines of the CSV file audit.csv

An example CSV file is provided by Rattle and is called audit.csv. It
will have been installed when we installed Rattle and we would find it’s
actual location with:

The top of the file will be similar to the following (perhaps with quotes
around values, although they are not necessary, and perhaps with some
different values):

A CSV file is actually a normal text file that you could load into any text
editor to review its contents. A CSV file usually begins with a header
row, listing the names of the variables, each separated by a comma.
If any name (or indeed, any value in the file) contains an embedded
comma, then that name (or value) will be surrounded by quote marks.
The remainder of the file after the header is expected to consist of rows
of data that record information about the entities, with fields generally
separated by commas recording the values of the variables for this entity.

To make a CSV file known to Rattle we click the Filename button. A file
chooser dialog will pop up (Figure 3.2). We can use this to browse our
file system to find the file we wish to load into Rattle. By default, only
files that have a .csv extension will be listed (together with folders).
The pop up includes a pull down menu near the bottom right, above the
Open button, to allow you to select which files are listed. You can list
only files that end with a .csv or a .txt or else to list all files. The .txt
files are similar to CSV files but tend to use tab to separate columns
in the data, rather than commas. The window on the left of the popup

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

3.3 CSV Data 29

Figure 3.2: The CSV file chooser showing just those files with a .csv
extension, although we can also select to display just the .txt files or else
all files

allows us to browse to the different file systems available to us, while the
series of boxes at the top let us navigate through a series of folders on
a single file system. Once we have navigated to the folder on the file
system on which we have saved the audit.csv file, we can select this file
in the main panel of the file chooser dialog. Then click the Open button
to tell Rattle that this is the file we are interested in.

Notice in Figure 3.3 that the textview of the Data tab has changed to
give a reminder as to what we need to do next. That is, we have not
yet told Rattle to actually load the data—we have just identified where
the data is. So we now click the Execute button (or press the F5 key)
to load the dataset from the audit.csv file. Since Rattle is a simple
graphical interface sitting on top or R itself, the message in the textview
also reminds us that some errors encountered by R on loading the data
(and in fact during any operation performed by Rattle) may be displayed
in the R Console.

You can choose the field delimiter through the Separator entry. A comma
is the default. To load a .txt file which uses a tab as the field separator
enter \\t (that is, two slashes followed by a t) as the separator. You can

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

30 Sourcing Data

Figure 3.3: The Welcome Message of the startup window is replace by a
reminder to Execute the tab before the data is actually loaded

also leave the separator empty and any white space will be used as the
separator.

Any data with missing values (i.e., no value between a pair of commas)
or having the value “NA” or “.” or “?” is treated as a missing value,
which is represented in R as the string NA. Support for the “.” convention
allows the importation of CSV data generated by SAS, whilst the usage of
“?” is common following its usage in some of the early machine learning
applications like C4.5.

The contents of the textview of the Data tab has now changed again, as
we see in Figure 3.4. The panel contains a brief summary of the dataset.
From the summary we see that Rattle has loaded the file we requested,
showing the full path to the file. We then see that Rattle has created
something called a ’data.frame’. This is a basic data type in R used
to store a table of data, where the columns (the variables) can have a
mixture of data types. We then see that Rattle has loaded 2,000 entities
(called observations or obs. in R), each described by 13 variables. The
data type, and the first few values, for each entity are also displayed.

We can start getting an idea of the shape of the data from this simple
summary. For example, the first two variables, ID and Age, are both iden-
tified as integers (int). The first few values of ID are 1004641, 1010229,
1024587, and so on. They all appear to be of the same length (i.e, the
same number of digits) and together with having a name like ID provides

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

3.3 CSV Data 31

Figure 3.4: Data tab dataset summary.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

32 Sourcing Data

a very strong indicator that this is some kind of identifier for each entity.
The first few values of Age are 38, 35, 32, 45, 60, and so on.

The next variable, Employment, illustrates how R deals with categorical
variables. In R terms it is a Factor with 8 levels (i.e., 8 possible values).
The levels begin with "Consultant" and "Private". The following se-
quence of numbers, all of which happen to be 2 for the first 10 entities
of this dataset, discloses how R stores categorical data. Effectively, R
maintains an integer indexed table, associating the levels with integers,
so that "Consultant" is associated with 1, "Private" with 2, and so
on. Then only these integers need to be stored for each entity, which
is generally more efficient on memory usage. We see this more convinc-
ingly for the following categorical variables, Education, Marital, and
Occupation (because they have more than just a single level displayed
in this summary).

The seventh variable, Income, has been identified as a more general nu-
meric rather than specific integer variable. The display of the first few
values does not actually give us any insight as to why this might be
so, but reviewing the actual CSV data as in Listing 3.2 on page 28, we
see that the third entity actually has a value of 154676.74 for Income,
indicating that these values are real numbers rather than just integers.

We also note that Adjusted, for example, looks like it might be a cat-
egorical variable, with values 0 and 1, but R identifies it as an integer!
That’s fine for our purposes here. We can always changes this later.

3.4 ARFF Data

The Attribute-Relation File Format (ARFF) is an ASCII text file format
that is essentially a CSV file with a header that describes the meta-data.
ARFF was developed for use in the Weka machine learning software and
there are quite a few datasets in this format now. We can load an ARFF
dataset into Rattle through the ARFF option (Figure 3.5).

An example of the ARFF format for our audit dataset is shown in List-
ing 3.3.

A dataset is firstly described, beginning with the name of the dataset (or

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

3.4 ARFF Data 33

Figure 3.5: Choosing the ARFF radio button to load an ARFF file

@relation audit

@attribute ID numeric

@attribute Age numeric

@attribute Employment {Consultant , PSFederal , PSLocal , ...}

@attribute Education {Associate , Bachelor , College , Doctorate , ...}

@attribute Marital {Absent , Civil , Divorced , Married , ...}

@attribute Occupation {Cleaner , Clerical , Executive , Farming , ...}

@attribute Income numeric

@attribute Gender {Female , Male}

@attribute Deductions numeric

@attribute Hours numeric

@attribute Accounts {Canada , China , Columbia , Cuba , Ecuador , ...}

@attribute Adjustment numeric

@attribute Adjusted {0, 1}

@data

1004641 ,38 , Private ,College ,Separated ,Service ,71511.95 , Female ,0,...

1010229 ,35 , Private ,Associate ,Unmarried ,Transport ,73603.28 , Male ,...

1024587 ,32 , Private ,HSgrad ,Divorced ,Clerical ,82365.86 , Male ,0,40,...

1038288 ,45 , Private ,?,Civil ,Repair ,27332.32 , Male ,0,55,...

1044221 ,60 , Private ,College ,Civil ,Executive ,21048.33 , Male ,0,40,...

...

Listing 3.3: Sample of an ARFF format dataset

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

34 Sourcing Data

@attribute lodged date "yyyy -MM-dd ’T’HH:mm:ss"

Listing 3.4: ARFF ISO-8601 date specification

the relation in ARFF terminology). Each of the variables (or attribute
in ARFF terminology) used to describe the entities is then identified,
together with their data type, each definition on a single line (we have
truncated the lines in the above example). Numeric variables are iden-
tified as numeric, real, or integer. For categorical variables we simply
see a list the of possible values.

Two other data types recognised by ARFF are string and date. A
string data type simple indicates that the variable can have any string
as its value. A date data type also optionally specifies the format in
which the date is presented, with the default being in ISO-8601 format
which is equivalent to the specification shown in Listing 3.4.

The actual entities are then listed, each on a single line, with fields
separated by commas, much like a CSV file.

Comments can be included in the file, introduced at the beginning of a
line with a %, whereby the remainder of the line is ignored.

A significant advantage of the ARFF data file over the CSV data file is
the meta data information. This is particularly useful in Rattle where
for categorical data the possible values are determined from the data
(which may not included every possible value) rather than from a full
list of possible values.

Also, the ability to include comments ensure we can record extra infor-
mation about the data set, including how it was derived, where it came
from, and how it might be cited.

Missing values in an ARFF dataset are identified using the question mark
?. These are identified by read.arff underneath and we see them as the
usual NA in Rattle.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

3.5 ODBC Sourced Data 35

Figure 3.6: Loading data through an ODBC database connection

3.5 ODBC Sourced Data

Rattle supports obtaining a dataset from any database accessible through
ODBC (Open Database Connectivity) with the ODBC Option (Fig-
ure 3.6).

Figure 3.7: Teradata ODBC connection

The key to using ODBC
is to know (or to set
up) the data source name
(DSN) for your databases.
The setting up of DSNs
is outside the scope of
Rattle, being a configura-
tion tosk through your op-
erating system. Under
GNU/Linux, for example,
using the unixodbc pack-
age, the system DSNs are
often defined in the file
/etc/odbcinst.ini and in
/etc/odbc.ini. Under
MS/Windows the control
panel provides access to a
DSN tool.

Within Rattle we specify a
known DSN by typing the name into the text entry. Once that is done, we
press the Enter key and Rattle will attempt to connect. This may require

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

36 Sourcing Data

a username and password to be supplied. For a Teradata Warehouse
connection you will be presented with a dialog box like the one on the
right (Figure 3.7. For a Netezza ODBC connection we will get a window
like that in Figure 3.8.

Figure 3.8: Netezza ODBC connection

If the connection is suc-
cessful we will find a list of
available tables in the Ta-
ble combobox.

We can choose a Table,
and also include a limit on
the number of rows that
we wish to load into Rat-
tle. This allows us to get a
smaller sample of the data for testing purposes before loading up a large
dataset. If the Row Limit is set to 0 then all of the rows from the table
are retrieved. Unfortunately there is now SQL standard for limiting the
number of rows returned from a query. For the Teradata and Netezza
warehouses the SQL keyword is LIMIT and this is what is used by Rattle.

Figure 3.9: Netezza configuration

The Believe Num Rows op-
tion is an oddity required
for some ODBC drivers
and appears to be asso-
ciated with the pre-fetch
behaviour of these drivers.
The default is to activate
the check box (i.e., Believe
Num Rows is True). How-
ever, if you find that you
are not retrieveing all rows
from the source table, the the ODBC driver may be using a pre-fetch
mechanism that does not “correctly” report the number of rows (it is
probably only reporting the number of rows limited to the size of the
pre-fetch). In these cases deactivate the Believe Num Rows check box.
See Section 14.6 for more details. Another solution is to either disable
the pre-fetch option of the driver, or to increase its count. For exam-
ple, in connecting through the Netezza ODBC driver the configuration
window is available, where you can change the default Prefetch Count

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

3.6 R Data 37

Figure 3.10: Loading an R binary data file.

Figure 3.11: Loading an already defined R data frame

value.

3.6 R Data

Using the RData File option data can be loaded directly from a native R
data file (usually with the .RData or .RData extension). Such files may
contain multiple datasets (compressed) and you will be given an option
to choose just one of the available datasets from the combo box.

3.7 R Dataset

Rattle can use a dataset that is already loaded into R (although it will
take a copy of it, with memory implications). Only data frames are
currently supported, and Rattle will list for you the names of all of the
available data frames.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

38 Sourcing Data

Figure 3.12: Selected region of a spreadsheet copied to the clipboard

The data frames need to be constructed in the same R session that
is running Rattle (i.e., the same R Console in which you lo the Rattle
package). This provides much more flexibility in loading data into Rattle,
than is provided directly through the actual Rattle interface.

This is useful if you have data in a spreadsheet (or any application really)
and want to directly paste that data from a clipboard into R. Figure 3.12
illustrates a spreadsheet with three columns of data selected and copied
to the clipboard (by the right mouse button menu selecting the Copy
option). This data can then be loaded into R quite easily as illustrated
in Listing 3.5. There, we also convert the date from a string, which is

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

3.8 Data Entry 39

> expenses <- read.table(file("clipboard"), header=TRUE)

> expenses$Date <- as.Date(expenses$Date , format="%d-%b-%Y")

> expenses

Date Expense Total

1 2005 -11 -17 19.50 19.50

2 2005 -11 -23 -15.00 4.50

3 2005 -12 -10 30.00 34.50

4 2006 -01 -23 -110.00 -75.50

5 2006 -01 -28 -20.00 -95.50

6 2006 -02 -14 -10.00 -105.50

7 2006 -02 -14 300.00 194.50

8 2006 -02 -26 220.41 414.91

9 2006 -03 -03 -20.00 394.91

10 2006 -07 -14 50.00 444.91

11 2006 -07 -17 -5.00 439.91

12 2006 -09 -08 -120.00 319.91

13 2006 -09 -08 -130.00 189.91

14 2006 -10 -22 55.00 244.91

15 2006 -11 -23 135.00 379.91

16 2007 -02 -11 -90.00 289.91

17 2007 -02 -22 -20.00 269.91

Listing 3.5: Load data from clipboard into R

nothing more than a string, into a actual date data type.

We can then load this into Rattle directly, as in Figure 3.13.

As another example, you may want to load data from an SQLite database
directly, and have this available in Rattle.

3.8 Data Entry

Figure 3.14: Data entry spreadsheet

The Data Entry option pro-
vides a basic mechanism to
manually enter data for use in
Rattle. Of course, we would
not want to do this for any-
thing but a small dataset, but
at least the option is there for
some very simple exploration
of Rattle without the overhead
of loading some other dataset

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

40 Sourcing Data

Figure 3.13: Loading an R data frame originally from the clipboard

into Rattle.

To use the Data Entry option,
select the radio button and click on Execute. A window will popup,
having an interface like a spreadsheet. We can now start out data entry.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 4

Selecting Data

The Select tab is used to select a subset of rows (entities) to include in
the data mining, and to identify the role played by each of the variables
in the dataset.

Remember, for any changes that we make to the Select tab to actually
take effect we need to click the Execute button (or press F5 or choose the
Execute menu item from the Tools menu.)

4.1 Sampling Data

The Sample option allows us to partition our dataset into a training
dataset and a testing dataset, and to select different random samples if
we wish to explore the sensitivity of our models to different data samples.
Sampling is also useful when we have a very large dataset and want to
obtain some initial insights quickly, whilst exploring the whole dataset
may take hours.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

42 Selecting Data

Here we specify how we might partition the dataset for exploratory and
modelling purposes. The default for Rattle is to build two subsets of
the dataset: one is a training dataset from which to build models, while
the other is used for testing the performance of the model. The default
for Rattle is to use a 70% training and a 30% testing split, but you are
welcome to turn sampling off, or choose other samplings. A very small
sampling may be required to perform some explorations of the smaller
dataset, or to build models using the more computationally expensive
algorithms (like support vector machines).

R uses random numbers to generate samples, which may present a prob-
lem with regard repeatable modelling. This presents itself through the
fact that each time the sample function is called we will get a different
random sample. However, R provides the set.seed function to set a seed
for the next random numbers it generates. Thus, by setting the seed to
the same number each time you can be assured of obtaining the same
sample.

Rattle allows you to specify the random number generator seed. By de-
fault, this is the number 123, but you can change this to get a different
random sample on the next Execute. By keep the random number gen-
erator seed constant you can guarantee to get the same model, and by
changing it you can explore the sensitivity of the modelling to different
samples of the dataset.

Often in modelling we build our model on a training dataset and then
test its performance on a test dataset.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

4.2 Variable Roles 43

4.2 Variable Roles

Figure 4.1: Select tab choosing Adjusted as a Risk variable.

Variables can be inputs to modelling, the target variable for modelling,
the risk variable, an identifier, or an ignored variable. The default role for
most variables is that of an Input (i.e., independent) variable. Generally,
these are the variables that will be used to predict the value of a Target
(or dependent) variable.

Variables with particular names will have a default role assigned for them.
For example, if the variable name begins with ID then the default role
is set to Identifier. Other special strings that are looked for at the
beginning of the variable’s name include:

ID Identifier
IGNORE Ignored
RISK Risk measure

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

44 Selecting Data

Further, if a variable name begins with IMP (for imputed) then if the
same variable name without the IMP is found in the dataset then it will
be set to be ignored by default.

Rattle also uses simple heuristics to guess at a Target role for one of the
variables. Here we see that Adjusted has been selected as the target
variable. In this instance it is correct. The heuristic involves examining
the number of distinct values that a variable has, and if it has less than
5, then it is considered as a candidate. The candidate list is ordered
starting with the last variable (often the last variable is the target), and
then proceeding from the first onwards to find the first variable that
meets the conditions of looking like a target.

Any numeric variables that have a unique value for each entity is auto-
matically identified as an Ident. Any number of variables can be tagged
as being an Ident. All Ident variables are ignored when modelling, but
are used after scoring a dataset, being written to the resulting score file
so that the cases that are scored can be identified.

Sometimes not all variables in your dataset should be used or may not
be appropriate for a particular modelling task. For example, the random
forest model builder does not handle categorical variables with more than
32 levels, so you may choose to Ignore Accounts. You can change the
role of any variable to suit your needs, although you can only have one
Target and one Risk.

For an example of the use of the Risk variable, see Section 7.2.

4.3 Automatic Role Identification

Special variable names can be used with data imported into Rattle (and
in fact for any data used by Rattle) to identify their role. Any variable
with a name beginning with IGNORE will have the default role of Ignore.
Similarly RISK and TARGET . Any variable beginning with IMP is as-
sumed to be an imputed variable, and if there exists a variable with the
same name, but without the IMP prefix, that variable will be marked as
Ignore.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

4.4 Weights Calculator 45

4.4 Weights Calculator

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

46 Selecting Data

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 5

Exploring Data

A key task in any data mining project is exploratory data analysis (of-
ten abbreviated as EDA), which generally involves getting a basic under-
standing of a dataset. Statistics, the fundamental tool here, is essentially
about uncertainty—to understand it and thereby to make allowance for
it. It also provides a framework for understanding the discoveries made
in data mining. Discoveries need to be statistically sound and statis-
tically significant—uncertainty associated with modelling needs to be
understood.

We explore the shape or distribution of our data before we begin mining.
Through this exploration we begin to understand the “lay of the land,”
just as a miner works to understand the terrain before blindly digging
for gold. Through this exploration we may identify problems with the
data, including missing values, noise and erroneous data, and skewed
distributions. This will then drive our choice of tools for preparing and
transforming our data and for mining it.

Rattle provides tools ranging from textual summaries to visually appeal-
ing graphical summaries, tools for identifying correlations between vari-
ables, and a link to the very sophisticated GGobi tool for visualising
data. The Explore tab provides an opportunity to understand our data
in various ways.

http://en.wikipedia.org/wiki/Exploratory_data_analysis

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

48 Exploring Data

5.1 Summarising Data

While a picture might tell a thousand stories, textual summaries still play
an important roll in our understanding of data. We saw a basic summary
of our data after first loading the data into Rattle (page 31). The data
types and the first few values for each of the variables are automatically
listed. This is the most basic of summaries, and even so, begins to tell a
story about the data. It is the beginnings of understanding the data.

Rattle’s Summary option of the Explore tab provides a number of more
detailed textual summaries of our data.

With the Use Sample check box we can choose to summarise the whole
dataset, or just the training dataset. We might choose to only summarise
the sample when the dataset itself is very large and the summaries take
a long time to perform. We would usually not choose the sample option.

The rest of the check boxes of the Summary option allows us to fine tune
what it is we wish to explore textually. We can choose to display one
or many of the summary options. The first three—Summary, Describe,
and Basic—are three alternatives that provide overall statistics for each
variable (although the Basics option only summarises numeric variables).
The final two, Kurtosis and Skewness provide specific measures of the
characteristics of the data. These are separated out so that we can
compare the kurtosis or skewness directly across a number of variables.
These two measures both apply only to numeric data.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.1 Summarising Data 49

5.1.1 Summary

The Summary check box provides numerous measures for each variable,
including, in the first instance, the minimum, maximum, median, mean,
and the first and third quartiles. Generally, if the mean and median are
significantly different then we would think that there are some entities
with very large values in the data pulling the mean in one direction. It
does not seem to be the case for Age but is for Income.

For categorical variables the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

50 Exploring Data

5.1.2 Describe

The Describe check box

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.1 Summarising Data 51

5.1.3 Basics

The Basics check box

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

52 Exploring Data

5.1.4 Kurtosis

The kurtosis is a measure of the nature of the peaks in the distribution of
the data. A larger value for the kurtosis will indicate that the distribution
has a sharper peak, as we can see in comparing the distributions of
Income and Adjustment. A lower kurtosis indicates a smoother peak.

http://en.wikipedia.org/wiki/kurtosis

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.1 Summarising Data 53

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

54 Exploring Data

5.1.5 Skewness

The skewness is a measure of how asymmetrical our data is distributed. A
positive skew indicates that the tail to the right is longer, and a negative
skew that the tail to the left is longer.

http://en.wikipedia.org/wiki/skewness

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.1 Summarising Data 55

5.1.6 Missing

Missing values present challenges to data mining. The Show Missing
check button of the Summary option of the Explore tab provides a sum-
mary of missing values in our dataset. Figure 5.1 illustrates the missing
value summary. Such information is useful in understanding structure in
the missing values.

Figure 5.1: Missing value summary for a version of the audit modified
to include missing values.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

56 Exploring Data

The missing value summary table is presented with the variables listed
along the top. Each row corresponds to a pattern of missing values. A 1
indicates a value is present, whereas a 0 indicates a value is missing.

The right hand column records the number of entities that exhibit that
pattern, so that the sum of this column should be equal to the number
of entities in our dataset. The left hand column records the number of
variables with missing values for each pattern. The final row records the
number of missing values over the whole dataset for each of the variables,
with the total number of missing values recorded at the bottom right.

The rows and columns are sorted according to the amount of missing
data.

Generally, the first row records the number of entities that have no miss-
ing values, as is the case in Figure 5.1, where 1575 rows are complete.

The second row corresponds to a pattern of missing values for the variable
Age. There are 39 entities that have just Age missing (and there are 42
entities that have Age missing, overall). This particular row’s pattern has
just a single variable missing, as indicated by the 1 in the final column.

The final row indicates that there are, for example, 37 missing values for
the variable Marital, and that there are 560 missing values altogether
in this dataset.

See Section 6.2 for dealing with missing values through imputation.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.2 Exploring Distributions 57

5.2 Exploring Distributions

It is usually a good idea to review the distributions of the values of each
of the variables in your dataset. The Distributions option allows you to
visually explore the distributions for specific variables.

Using graphical tools to visually investigate the data’s characteristics
can help our understanding the data, in error correction, and in variable
selection and variable transformation.

Graphical presentations are more effective for most people, and Rattle
provides a graphical summary of the distribution of the data with the
Distribution option of the Explore tab.

Visualising data has been an area of study within statistics for many
years. A vast array of tools are available within R for presenting data
visually and the topic is covered in detail in books in their own right,
including Cleveland (1993) and Tufte.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

58 Exploring Data

By choosing the Distributions radio button you can select specific vari-
ables of interest, and display various distribution plots. Selecting many
variables will lead to many plots being displayed, and so it may be useful
to display multiple plots per page (i.e., per window) by setting the ap-
propriate value in the interface. By default, four plots will be displayed
per page or window, but you can change this to anywhere from 1 plot
per page to 9 plots per page. If we are actually generating fewer plots
than our selected number of plots per page, then we will see that the
plots will fill up the window rather than leaving empty places. Thus the
Plots per Page is really a maximum number of plots per page.

The Annotate check box can be checked to obtain additional annotations
on the plots. For a Box Plot, for example, this will add the actual numeric
values for the median and quartiles.

Here we illustrate a window with the
default four plots. Four plots per
page are useful, for example, to dis-
play each of the four different types
of plots for a single continuous vari-
able. Clockwise, they are the Box
Plot, the Histogram, a Cumulative
Function Plot, and a Benford’s Law
Plot. Because we have identified a
target variable the plots include the
distributions for each subset of enti-
ties associated with each value of the
target variable, wherever this makes
sense to do so (e.g., not for the histogram).

The box and whiskers plot identifies the median and mean of the variable,
the spread from the first quartile to the third, and indicates the outliers.
The histogram splits the range of values of the variable into segments and
shows the number of entities in each segment. The cumulative plot shows
the percentage of entities below any particular value of the variable. And
the Benford’s Law plot compares the distribution of the first digit of the
numbers against that which is expected according to Benford’s Law.
Each of the plots shown here is explained in more detail in the following
sections.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.2 Exploring Distributions 59

For categorical variables three types
of plots are supported, more as alter-
natives than adding extra informa-
tion: the Bar Plot, the Dot Plot, and
the Mosaic Plot. Each plot shows,
in its own way, the number of enti-
ties that have a particular value for
the chosen variable. The bar and
dot plots sort the categorical values
from the most frequent to the least
frequent value. In the example here,
we can see that the value Private of
the variable Employment is the most
frequent, occurring over 1,400 times in this dataset.

A bar plot uses vertical bars while the dot plot uses dots placed hori-
zontally. The dot plot has more of a chance to list the actual values for
the variable, whilst a bar plot will have trouble listing all of the values
(as illustrated here). The mosaic plot is similar to the bar plot but each
“bar” splits the values between the distinct values of the target variable
(if one is chosen).

Each of the plots is explained in more detail in the following sections.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

60 Exploring Data

5.2.1 Box Plot

●
●
●●
●

●

●

●
●

●

●●
●

●

●

●
●

All 0 1

20
40

60
80

Adjusted

Distribution of Age

Rattle 2007−11−25 16:15:45 gjw

A boxplot (Tukey, 1977)
(also known as a box-and-
whisker plot) provides a
graphical overview of how
data is distributed over the
number line. Rattle’s Box
Plot displays a graphical
representation of the tex-
tual summary of data. It
is useful for quickly ascer-
taining the skewness of the
distribution of the data. If
we have identified a Target
variable, then the boxplot
will also show the distribu-
tion of the values of the variable partitioned by values of the target
variable, as we illustrate for the variable Age where Adjusted has been
chosen as the Target variable.

●
●
●●
●

●

●

●
●

●

●●
●

●

●

●
●

All 0 1

20
40

60
80

Adjusted

17

28

37

48

78

17

26

34

46

76

21

37

44

51

72

Distribution of Age

Rattle 2007−11−25 16:15:46 gjw

The boxplot (which here
is shown with the Anno-
tate option checked) shows
the median (which is also
called the second quartile
or the 50th percentile) as
the thicker line within the
box (Age = 37 over the
whole population, as we
can see from the Summary
option’s Summary check
box). The top and bot-
tom extents of the box (48
and 28 respectively) iden-
tify the upper quartile (the
third quartile or the 75th percentile) and the lower quartile (the first
quartile and the 25th percentile). The extent of the box is known as
the interquartile range (48 − 28 = 20). The dashed lines extend to the

http://en.wikipedia.org/wiki/boxplot
http://en.wikipedia.org/wiki/median
http://en.wikipedia.org/wiki/quartile
http://en.wikipedia.org/wiki/percentile
http://en.wikipedia.org/wiki/Interquartile_range

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.2 Exploring Distributions 61

maximum and minimum data points that are no more than 1.5 times
the interquartile range from the median. Outliers (points further than
1.5 times the interquartile range from the median) are then individually
plotted (at 79, 81, 82, 83, and 90). The mean (38.62) is also displayed
as the asterisk.

The notches in the box, around the median, indicate a level of confidence
about the value of the median for the population in general. It is useful
in comparing the distributions, and in this instance it allows us to say
that all three distributions being presented here have significantly dif-
ferent means. In particular we can state that the positive cases (where
Adjusted = 1) are older than the negative cases (where Adjusted = 0).

We note that the annotated box plot (as enable by checking the Annotate
check box) does not attempt to place the annotations in any particularly
optimal location, except a little below the point being annotated. They
may be a little difficult to read at times. The user is at liberty to correct
thus through replicating the plotting steps from the log window, but
modifying the offsets in the display of the annotations.

http://en.wikipedia.org/wiki/mean

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

62 Exploring Data

5.2.2 Histogram

F
re

qu
en

cy

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
20

0
40

0
60

0
80

0

Distribution of Income

Rattle 2007−11−25 16:15:47 gjw

A histogram provides a
quick and useful graphical
view of the spread of the
data. A histogram plot in
Rattle includes three com-
ponents. The first of these
is obviously the coloured
vertical bars. The contin-
uous data in the example
here (Distribution of In-
come) has been partitioned
into ranges, and the fre-
quency of each range is dis-
played as the bar. R is au-
tomatically choosing both
the partitioning and how the x-axis is labelled here, showing x-axis points
at 0, 10,000 (using scientific notation of 1e + 05 which means 1x105, or
10,000), and so on. Thus, we can see that the most frequent range of
values is in the 0− 5, 000 partition. However, each partition spans quite
a large range (a range of $5,000).

The plot also includes a line plot showing the so called density estimate
and is a more accurate display of the actual (at least estimated true)
distribution of the data (the values of Income). It allows us to see that
rather than values in the range 0 − 5, 000 occurring frequently, in fact
there is a much smaller range (perhaps 3, 000− 5, 000) that occurs very
frequently.

The third element of the plot is the so called rug along the bottom of the
plot. The rug is a single dimension plot of the data along the number line.
It is useful in seeing exactly where data points actually lay. For large
collections of data with a relatively even spread of values the rug ends up
being quite black, as is the case here, up to about $25,000. Above about
$35,000 we can see that there is only a splattering of entities with such
values. In fact, from the Summary option, using the Describe check box,
we can see that the highest values are actually $36,1092.60, $38,0018.10,
$39,1436.70, $40,4420.70, and $42,1362.70.

http://en.wikipedia.org/wiki/histogram
http://en.wikipedia.org/wiki/density_estimate

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.2 Exploring Distributions 63

F
re

qu
en

cy

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00

Distribution of Hours

Rattle 2007−11−25 16:15:48 gjw

This second plot, show-
ing the distribution for the
variable Hours, illustrates
a more normal distribu-
tion. It is, roughly speak-
ing, a distribution with a
peak in the middle and di-
minishing on both sides,
with regards the frequency.
The density plot shows
that it is not a very strong
normal distribution, and
the rug plot indicates that
the data take on very dis-
tinct values (i.e., one would
suggest that they are integer values, as is confirmed through viewing the
textual summaries in the Summary option).

http://en.wikipedia.org/wiki/normal_distribution
http://en.wikipedia.org/wiki/normal_distribution

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

64 Exploring Data

5.2.3 Cumulative Distribution Plot

CUMULATIVE PLOTS OF INCOME AND HOURS TO GO HERE.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.2 Exploring Distributions 65

5.2.4 Benford’s Law

The use of Benford’s Law has proven to be effective in identifying oddities
in data. For example, it has been used for sample selection in fraud
detection. Benford’s law relates to the frequency of occurrence of the
first digit in a collection of numbers. In many cases, the digit ‘1’ appears
as the first digit of the numbers in the collection some 30% of the time,
whilst the digit ‘9’ appears as the first digit less than 5% of the time.
This rather startling observation is certainly found, empirically, to hold
in many collections of numbers, such as bank account balances, taxation
refunds, stock prices, death rates, lengths of rivers, and process that a
described by what are called power laws, which are common in nature.
By plotting a collection of numbers against the expectation as based on
Benford’s law, we are able to quickly see any odd behaviour in the data.

Benford’s law is not valid for all collections of numbers. For example,
people’s ages would not be expected to follow Benford’s Law, nor would
telephone numbers. So use the observations with care.

http://en.wikipedia.org/wiki/Benfords_law

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

66 Exploring Data

●

●

●

●

●

●
●

●
●

Initial Digit

P
ro

ba
bi

lit
y

1 2 3 4 5 6 7 8 9

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

●

●

●

●

●

● ● ● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ● ●

Adjusted
Benford
All
0
1

Benford's Law: Income

Rattle 2006−08−26 20:47:06 gjw

You can select any number of contin-
uous variables to be compared with
Benford’s Law. By default, a line
chart is used, with the red line cor-
responding to the expected frequency
for each of the initial digits. In this
plot we have requested that Income be
compared to Benford’s Law. A Tar-
get variable has been identified (in the
Variables tab) and so not only is the
whole population’s distribution of ini-
tial digits compared to Benford’s Law,
but so are the distributions of the sub-
sets corresponding to the different val-
ues of the target variable. It is in-
teresting to observe here that those
cases in this dataset that required an adjustment after investigation
(Adjustment = 1) conformed much less to Benford’s Law than those
that were found to require no adjustment (Adjustment = 0). In fact,
this latter group had a very close conformance to Benford’s Law.

1 2 3 4 5 6 7 8 9

Initial Digit

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Adjusted
Benford
All
0
1

Benford's Law: Income

Rattle 2006−08−26 20:39:53 gjw

By selecting the Benford Bars option
a bar chart will be used to display
the same information. The expected
distribution of the initial digit of the
numbers under consideration, accord-
ing to Benford’s Law, is once again
shown as the initial red bar in each
group. This is followed by the popula-
tion distribution, and then the distri-
bution for each of the sub-populations
corresponding to the value of the Tar-
get variable. The bar chart again
shows a very clear differentiation be-
tween the adjusted and non-adjusted
cases.

Some users find the bar chart presentation more readily conveys the
information, whilst many prefer the less clutter and increased clarity of

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.2 Exploring Distributions 67

the line chart. However, a bar chart is useful if when you display a line
chart you can not see all of the lines because they overlap. The bar chart
will show all of the bars.

Regardless of which you prefer, Rattle will generate a single plot for each
of the variables that have been selected for comparison with Benford’s
Law.

●

●

●

●
●

● ● ● ●

Initial Digit

P
ro

ba
bi

lit
y

1 2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

●

● ●
●

●

●

● ● ●

●

●

●
●

●
● ● ● ●

●

●

●
●

●
●

●
●

●

●

● ● ●
● ●

●

●
●

Variables
Benford
Age
Income
Deductions
Adjustment

Benford's Law

Rattle 2006−08−26 20:49:18 gjw

In the situation where no target vari-
able has been identified (either be-
cause, for the dataset being explored,
there is no target variable or because
the user has purposely not identi-
fied the target variable to Rattle) and
where a line chart, rather than a bar
chart, is requested, the distribution of
all variables will be displayed on the
one plot. This is the case here where
we have chosen to explore Age, In-
come, Deductions, and Adjustment.

This particular exploration of Ben-
ford’s Law leads to a number of in-
teresting observations. In the first in-
stance, the variable Age clearly does not conform. As mentioned, age is
not expected to conform since it is a number series that is constrained
in various ways. In particular, people under the age of 20 are very much
under-represented in this dataset, and the proportion of people over 50
diminishes with age.

The variable Deductions also looks particularly odd with numbers begin-
ning with ‘1’ being way beyond expectations. In fact, numbers beginning
with ‘3’ and beyond are very much under-represented, although, inter-
estingly, there is a small surge at ‘9’. There are good reasons for this.
In this dataset we know that people are claiming deductions of less than
$300, since this is a threshold in the tax law below which less documen-
tation is required to substantiate the claims. The surge at ‘9’ could be
something to explore further, thinking perhaps that clients committing
fraud may be trying to push their claims as high as possible (although
there is really no need, in such circumstances, to limit oneself, it would

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

68 Exploring Data

seem, to less than $1000).

By exploring this single plot (i.e., without partitioning the data according
to whether the case was adjusted or not) we see that the interesting
behaviours we observed with relation to Income have disappeared. This
highlights a point that the approach of exploring Benford’s Law may be
of most use in exploring the behaviours of particular sub-populations.

Note that even when no target is identified (in the Variables tab) and
the user chooses to produce Benford Bars, a new plot will be generated
for each variable, as the bar charts can otherwise become quite full.

Other Digits

Benford’s Law primarily applies to the first digit of the numbers. A
similar, but much less strong, law also applies to the second, third and
fourth digits. A common mathematical formula has been developed that
generalises the distribution for the first, and the distributions converge
to a flat distribution the further we go.

For the second digit, for example, the expected frequency of the digit 1
is 11.4%, compared to the digit 2’s 10.9%. As we proceed to the third
and fourth and so on, each has an expected frequency pretty close to 0.1
(or 10%), indicating they are all generally equally likely.

Even though the distributions become flat, it can still be useful to plot
the actual distribution in order to explore for oddities in our data. Rattle
allows us to plot up to the ninth digit.

Stratified Benford Plots

We often want to stratify our data
(that is, split it up into subgroups in
some way). For example, in fraud in-
vestigations we might split our data
up into groups associated with dif-
ferent geographic regions, or different
auditors, etc. Suppose we are con-

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.2 Exploring Distributions 69

sidering accounts payable data where
each record is a payment and there
are, say, ten individuals who sign off
on the invoices. We can choose in the
Select tab the variable that identifies
the individuals who are signing off as
the Target variable.

The plot here illustrates the idea using
the audit dataset. Here, we have chosen Marital to have the role as a
Target variable (doing this in the Select tab). Then we have asked for
a Benford plot of the Income variable, and we can see that the plot is
stratified over the possible values for the Marital variable.

Figure 5.2: Benford stratified by
Marital and Gender.

To stratify on more than two cate-
gorical variables requires a little extra
work. Rattle does not allow selecting
more than a single target! However,
under the Transform tab, under the
Remap option (Section 6.3.3, page 95),
you can ”join” two categorical vari-
ables into one and then set this com-
bined categorical as your target vari-
able.

This could be useful when, using
the accounts payable example again,
we have a person signing off the
invoices and another person issuing
the invoices, and we wish to ex-
plore whether there are any patterns
through the combination of these two.
That is, the person signing off invoices might only be manipulating those
invoices issued by a specific individual. Thus, re-mapping these two cat-
egorical variables into a single combined categorical variable will allow
us to explore this relationship.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

70 Exploring Data

5.2.5 Bar Plot

XXXX

5.2.6 Dot Plot

XXXX

5.2.7 Mosaic Plot

Figure 5.3: Mosaic plot of Age
by Adjusted.

A mosaic plot is an effective way to
visualise the distribution of the values
of a variable over the different values
of another variable. Often, this sec-
ond variable is the target variable that
we are interested in (e.g., Adjusted in
our audit).

The example in Figure 5.3 dis-
plays the relationship between the in-
put variable Age and target variable
Adjusted. Age is a numeric variable,
so for it to make sense in a mosaic
plot we need to bin it so that it be-
comes categorical, which can be ac-
complished using the Remap option of
the Transform tab. In this case we
have transformed Age into 6 quantiles
(equal sized groups).

The plot tells us that XXXX

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.3 Sophisticated Exploration with GGobi 71

5.3 Sophisticated Exploration with GGobi

GGobi provides quite sophisticated visualisation tools as an adjunct to
Rattle basic visualisations provided. To use the GGobi option the GGobi
application will need to be installed on your system. GGobi runs under
GNU/Linux, OS/X, and MS/Windows and is available for download
from http://www.ggobi.org/.

GGobi is very powerful indeed, and here we only cover the basic function-
ality. With GGobi we are able to explore high-dimensional data through
highly dynamic and interactive graphics such as tours, scatterplots, bar-
charts and parallel coordinates plots. The plots are interactive and linked
with brushing and identification. The available functionality is extensive,
but includes being able to review entities with low or high values on par-
ticular variables and to view values for other variables through brushing
in linked plots. Panning and zooming is supported. Data can be rotated
in 3D, and we can tour high dimensional data through 1D, 2D, and 2x1D
projections, with manual and automatic control of projection pursuits.

http://www.ggobi.org/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

72 Exploring Data

5.3.1 Scatterplot

When you startup GGobi (Execute the
GGobi option) two windows will appear:
one to control the visualisations and the
other to display the default visualisation
(a two variable scatterplot). The control
window is as displayed to the right. It is
a basic window with menus that provide
the overall control of the visualisations.
Below the menu bar you will see XY Plot
which tells us that we are displaying a two
variable scatterplot. On the right hand
side is a list of the variables from your
dataset, togther with buttons to choose
which variable to plot as the X and the Y.
By default, the first (Age) and second (Employment) are chosen. You
can choose any of your variables to be the X or the Y by clicking the
appropriate button. This will change what is displayed in the plot.

From the Display menu you can choose a New Scatterplot Display so
that you can have two (or more) plots displayed at a time. At any one
time just one plot is the current plot (as indicated in the title) and you
can make a plot current by clicking in it.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.3 Sophisticated Exploration with GGobi 73

For our purposes we are usually
most interested in the relation-
ship between the values of the
variables for entities that have an
Adjusted value of 1 or 0. We
can have these highlighted in dif-
ferent colours very easily. From
the Tools menu choose Automatic
Brushing. From the variables list
at the top of the resulting popup
window choose Adjusted. Now
click on the Apply button and you
will see that the 1,537 points that have a value of 0 for Adjusted remain
purple, whilst those 463 entities that have a value of 1 are now yellow.
This will apply to all displayed plots.

The Display menu provides a number of other op-
tions. The Scatterplot Matrix, for example, can
be used to display a matrix of scatterplots across
many variables at the one time. By default, the
first four variables are displayed, as illustrated
here, but we can add and remove variables by
selecting the appropriate buttons in the control
window (which is now displaying only the choice
of X variables. You can also use the Automatic
Brushing that we illustrated above to highlight

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

74 Exploring Data

the adjusted cases. Such matrix scatterplots are effective in providing an
overview of the distributions of our data.

INCLUDE PARALLEL COORDINATES

INCLUDE BAR CHART PLUS THE INTERACTIVE BINNING

The thing to note here is the two arrows down the bottom left side of
the plot. Drag these around to get different width bars.

A scatterplot over very many points will sometimes be solid black and

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.3 Sophisticated Exploration with GGobi 75

shows little useful information. In these cases a bagplot may be useful.

5.3.2 Data Viewer: Identifying Entities in Plots

Often we are interested in viewing the actual
data/entities associated with points in our plots.
The Tools menu provides many options and op-
erations for visualising our data. In particular
it provides access to a number of GGobiplugins.
Some basic information about plugins is avail-
able from the Help menu, selecting the About
Plugins item. The actual plugin we are inter-
ested in is the Data Viewer. Selecting this item
from the Tools menu will display a textual view
of the data, showing thw row numbers and the
column names, and allowing us to sort the rows
by clicking on particular column names.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

76 Exploring Data

To make most use of the Data Viewer we
will want to use the Identify option avail-
able under the Interaction menu. This
will change the Control window to dis-
play the Identify controls as shown here.
The Data Viewer is then linked to the
Plot, allowing us to select a particular
row in the Data Viewer to have the corre-
sponding entity identified in the current
Plot. Similarly, we can mouse over the
Plot to have the individual points iden-
tified (with their row number) as well as
displaying to the entity within the Data
Viewer. Within the Plot display we can also right mouse button a point
to have it’s row number remain within the plot (useful when printing to
highlight particular points). The right mouse button on the same point
will remove the row number display.

5.3.3 Other Options

The Variable Manipulation option allows variables to be rescaled, cloned
and manipulated and new variables to be created. The Transform Vari-
ables option allows us to view various transformations of the variables,
including Log transforms, rescaling, and standardisation. Sphering per-
forms a visual principal components analysis. The Color Scheme option

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.3 Sophisticated Exploration with GGobi 77

allows us to change the colours used in our plots. Automatic Brushing
will colour various ranges of the values of each variable. Subsetting and
Sampling allows us to choose subsets of the whole dataset using different
methods, including random sampling, selection of blocks of data, every
nth entity, and several others. There are also options to specify Graph
Layout and Graph Options.

5.3.4 Further GGobi Documentation

We have only really scratched the surface of using GGobi here. There
is a lot more functionality available, and whilst the functionality that is
likely to be useful for the data miner has been touched on, there is a lot
more to explore. So do explore the other features of GGobi as some will
surely be useful for new tasks.

A full suite of documentation for GGobi is available from the GGobi web
site at http://www.ggobi.org/, including a tutorial introduction and
a complete book. These provide a much more complete treatise of the
application.

http://www.ggobi.org/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

78 Exploring Data

5.4 Correlation Analysis

Income

Hours

Deductions

Adjustment

Adjusted

Age

In
co

m
e

H
ou

rs

D
ed

uc
tio

ns

A
dj

us
tm

en
t

A
dj

us
te

d

A
ge

Correlation audit

Rattle 2007−11−25 16:15:49 gjw

A correlation plot will display cor-
relations between the values of
variables in the dataset. In addi-
tion to the usual correlation cal-
culated between values of different
variables, the correlation between
missing values can be explored by
checking the Explore Missing check
box.

The first thing to notice for this
correlation plot is that only the
numeric variables appear. Rat-
tle only computes correlations be-
tween numeric variables at this
time. The second thing to note
about the graphic is that it is sym-
metric about the diagonal. The correlation between two variables is the
same, irrespective of the order in which we view the two variables. The

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.4 Correlation Analysis 79

third thing to note is that the order of the variables does not correspond
to the order in the dataset, but to the order of the strength of any cor-
relations, from the least to the greatest. This is done simply to achieve
a more pleasing graphic which is easier to take in.

We interpret the degree of any correlation by both the shape and colour
of the graphic elements. Any variable is, of course, perfectly correlated
with itself, and this is reflected as the diagonal lies on the diagonal of
the graphic. Where the graphic element is a perfect circle, then there
is no correlation between the variables, as is the case in the correlation
between Hours and Deductions—although in fact there is a correlation,
just a very weak one.

The colours used to shade the circles give another (if perhaps redundant)
clue to the strength of the correlation. The intensity of the colour is
maximal for a perfect correlation, and minimal (white) if there is no
correlation. Shades of red are used for negative correlations and blue for
positive correlations.

Accounts

Employment

Occupation

A
cc

ou
nt

s

E
m

pl
oy

m
en

t

O
cc

up
at

io
n

Correlation of Missing Values audit

Rattle 2007−11−25 16:15:50 gjw

By selecting the Explore Missing
check box you can obtain a cor-
relation plot that will show any
correlations between the missing
values of variables. This is par-
ticularly useful to understand how
missing values in one variable are
related to missing values in an-
other.

We notice immediately that only
three variables are included in this
correlation plot. Rattle has iden-
tified that the other variables in
fact have no missing values, and
so there is no point including them
in the plot. We also notice that a
categorical variable, Accounts, is included in the plot even though it was
not included in the usual correlation plot. In this case we can obtain a
correlation for categorical variables since we only measure missing and
presence of a value, which is easily interpreted as numeric.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

80 Exploring Data

The graphic shows us that Employment and Occupation are highly cor-
related in their presence of missing values. That is, when Employment
has a missing value, so does Occupation, and vice versa, at least in gen-
eral. The actual correlation is 0.995 (which can be read from the Rattle
text view window), which is very close to 1.

On the other hand, there is no (in fact very little at 0.013) correlation
between Accounts and the other two variables, with regard missing val-
ues.

It is important to note that the correlations showing missing values may
be based on very small samples, and this information is included in the
text view of the Rattle window. For example, in this example we can
see that there are only 100, 101, and 43 missing values, respectively, for
each of the three variables having any missing values. This corresponds
to approximately 5%, 5%, and 2% of the entities, respectively, having
missing values for these variables.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

5.4 Correlation Analysis 81

Rattle uses the default R correlation calculation known as Pearson’s cor-
relation, a common measure of correlation.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

82 Exploring Data

5.4.1 Hierarchical Correlation

1.5 1.0 0.5 0.0

●

Income

●

Deductions

●

Hours

●

Age

●

Adjustment

Adjusted

Variable Correlation Clusters audit.csv

Rattle 2007−11−25 16:08:20 gjw

5.4.2 Principal Components

5.5 Single Variable Overviews

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 6

Transforming Data

The Transform tab provides numerous options for transforming our datasets.
Cleaning our data and creating new features from the data occupies much
of our time as data miners. There is a myriad of approaches, and a pro-
gramming language like R supports them all. Through the Rattle user
interface we can perform some of the more common transformations.
This includes normalising our data, filling in missing values, turning nu-
meric variables into categorical variables, and vice versa, dealing with
outliers, and removing variables or entities with missing values.

In this chapter we introduce the various transformations supported by
Rattle. Transformations are not always appropriate and so we indicate
where they might be applicable as well providing warnings about the
different approaches, particularly in the context of imputation, which
can significantly alter the distribution of our datasets.

In tuning our dataset to suit our needs, we do often transform it in many
different ways. Of course, once we have transformed our dataset, we will
want to save the new version. After working on our dataset through the
Transform tab we can save the data through the Export button. We will
be prompted for a CSV file into which the current transformation of the
dataset will be saved. In fact, this is the same save operation as available
through the Export button on the Data and Select tabs.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

84 Transforming Data

Figure 6.1: Transform options.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6.1 Normalising Data 85

6.1 Normalising Data

Different model builders require different characteristics of the data from
which the models will be built. For example, when building a cluster-
ing using any kind of distance measure, we may need to normalise the
data. Otherwise, a variable like Income will overwhelm a variable like
Age, when calculating distances. A distance of 10 “years” may be more
significant than a distance of $10,000, yet, 10000 swamps 10 when they
are added together, as would be the case by calculating distances.

In these situations we will want to Normalise our data. The types of
normalisations (available through the Normalise option of the Transform
tab) we may want to perform include re-centering and rescaling our data
to be around zero (Recenter), rescaling our data to be in the range from
0 to 1 (Scale [0,1]), covert the numbers into a rank ordering (Rank),
and finally, to do a robust rescaling around zero using the median (-
Median/MAD). Figure 6.2 displays the interface.

We can see in Figure 6.2 the apprach we take to normalising (and to
transforming) our data. The original data is not modified. Instead,
a new variable is created with a prefix added to the variable’s name
that indicates the kind of transformation. As we can see in the fig-
ure, the prefixes are NORM_RECENTER_, NORM_SCALE01_, NORM_RANK_, and
NORM_MEDIANAD_.

We can see the effect of the four normalisations in comparing the his-
togram of the variable, Age, in Figure 6.3, with the four plots in Fig-
ure 6.4 for the corresponding four normalisations.

6.1.1 Recenter

A common normalisation is to recenter and rescale our data. The sim-
plest approach to do this is to subtract the mean value of a variable from
each entity’s value of the variable (to recenter the variable) and to then
divide the values by the standard deviation, which re-scales the variable
back to a range of a few integer values around zero.

http://en.wikipedia.org/wiki/Normalise

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

86 Transforming Data

Figure 6.2: Selection of normalisations.

Figure 6.3: Normalisations of Age.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6.1 Normalising Data 87

Figure 6.4: Normalisations of Age.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

88 Transforming Data

6.1.2 Scale [0,1]

Another common requirement is to remap our data to the [0, 1] range.

6.1.3 Rank

This option will convert the values into a rank.

6.1.4 Median/MAD

This option is regarded as a robust version of the standard Recenter
option. Instead of using the mean and standard deviation, we subtract
the median and divide by median absolute deviation.

6.2 Impute

Imputation is the process of filling in the gaps (or missing values) in data.
Often, data will contain missing values, and this can cause a problem
for some modelling algorithms. For example, the random forest option
silently removes any entity with any missing value! For datasets with
a very large number of variables, and a reasonable number of missing
values, this may well result in a small, unrepresentative dataset, or even
no dataset at all!

There are many types of imputations available, only some of which are
directly available in Rattle. We note thought that there is always discus-
sion about whether imputation is a good idea or not. After all, we end
up inventing data to suit the needs of the tool we are using. We won’t
discuss the pros and cons in much detail, but we provide some obser-
vations and concentrate on how we might impute values. Do be aware
though that imputation can be problematic.

If the missing data pattern is monotonic, then imputation can be simpli-
fied. See Schafer (1997) for details. Th pattern of missing values is also
useful in suggesting which variables could be candidates for imputing the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6.2 Impute 89

Figure 6.5: Selection of imputations.

missing values of other variables. Refer to the Show Missing check button
of the Summary option of the Explore tab for details

(see Section 5.1.6).

When Rattle performs an imputation it will store the results in a variable
of the dataset which has the same name as the variable that is imputed,
but prefixed with IMP . Such variables, whether they are imputed by
Rattle or already existed in the dataset loaded into Rattle (e.g., a dataset
from SAS), will be treated as input variables, and the original variable
marked to be ignored.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

90 Transforming Data

6.2.1 Zero/Missing

The simplest of imputations involves replacing all missing values for a
variable with a single value! This makes most sense when we know
that the missing values actually indicate that the value is 0 rather than
unknown. For example, in a taxation context, if a tax payer does not
provide a value for a specific type of deduction, then we might assume
that they intend it to be zero. Similarly, if the number of children in a
family is not recorded, it could be a reasonable assumption to assume it
is zero.

For categorical data the simplest approach to imputation is to replace
missing values with a special value, Missing.

6.2.2 Mean/Median/Mode

Often a simple, if not always satisfactory, choice for missing values that
are known not to be zero is to use some “central” value of the variable.
This is often the mean, median, or mode, and thus usually has limited
impact on the distribution. We might choose to use the mean, for ex-
ample, if the variable is otherwise generally normally distributed (and in
particular does not have any skewness). If the data does exhibit some
skewness though (e.g., there are a small number of very large values)
then the median might be a better choice.

For categorical variables, there is, of course, no mean nor median, and so
in such cases we might choose to use the mode (the most frequent value)
as the default to fill in for the otherwise missing values. The mode can
also be used for numeric variables.

Whilst this is a simple and computationally quick approach, it is a very
blunt approach to imputation and can lead to poor performance from
the resulting models.

We can see the effect of the imputation of missing values on the variable
Age using the mode in Figure

Refer to Data Mining With R, from page 42, for more details.

http://www.liacc.up.pt/~ltorgo/DataMiningWithR/PDF/DataMiningWithR.pdf

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6.2 Impute 91

Figure 6.6: Imputation using the mode for missing values of Age.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

92 Transforming Data

6.2.3 Constant

This choice allows us to provide our own default value to fill in the gaps.
This might be an integer or real number for numeric variables, or else
a special marker or the choice of something other than the majority
category for Categorical variables.

6.3 Remap

This provides numerous re-mapping operations, including binning, log
transforms, ratios, and mapping categorical variables into indicator vari-
ables.

6.3.1 Binning

A binning function is provided by Rattle, coded by Daniele Medri. The
Rattle interface provides an option to choose between Quantile binning,
KMeans binning, and Equal Width binning. For each option the default
number of bins is 4, and we can change this to suit our needs. The
generated variables are prefixed with either BIN_QUn_, BIN_KMn_, and
BIN_EWn_ respectively, with n replaced with the number of bins. Thus,
we can create multiple binnings for any variable.

Note that quantile binning is the same as equal count binning.

6.3.2 Indicator Variables

Some model builders do not handle categorical variables. Neural net-
works and regression are two examples. A simple approach in this case
is to turn the categorical variable into some numeric form. If the cat-
egorical variable is not an ordered categorical variable, then the usual
approach is to turn the single variable into a collection of so called indi-
cator variables. For each value of the categorical variable there will be
a new indicator variable which will have the value 1 for any entity that
has this categorical value, and 0 otherwise. The result is a collection of
numeric variables.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6.3 Remap 93

Figure 6.7: Binning Age.

Figure 6.8: Distributions of binned Age.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

94 Transforming Data

Figure 6.9: Turning Gender into an Indicator Variable.

Rattle’s Transform tab provides an option to transform one or more cate-
gorical variables into a collection of indicator variables. Each is prefixed
by INDI_ and the remainder is made up of the name of the categorical
variable (e.g., Gender) and the particular value (e.g., Female), to give
INDI_Gender_Female. Figure 6.9 shows the result of turning the variable
Gender into two indicator variables.

There is not always a need to transform a categorical variable. Some
model builders, like the regressions in Rattle, will do it for us automati-
cally.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6.4 Outliers 95

6.3.3 Join Categoricals

The Join Categoricals option provides a convenient way to stratify the
dataset, based on multiple categorical variables. It is a simple mechanism
that creates a new variable from the combination of all of the values of the
two constituent variables selected in the Rattle interface. The resulting
variables are prefixed with JOIN_ and include the names of both the
constituent variables.

A simple example might be to join Gender and Marital, to give a new
variable, JOIN_Marital_Gender.

We might also want to join a numeric variable and a categorical variable,
like the typical Age and Gender stratification. To do this we first use the
Binning option within Remap to categorise the Age variable (Section 6.3.1,
page 92).

6.3.4 Math Transforms

A Log transform is available. The generated variable is prefixed with
REMAP_LOG_.

6.4 Outliers

To be implemented.

6.5 Cleanup

It is quite easy to get our dataset variable count up to significant num-
bers. The Cleanup option (not yet available) allows us to tell Rattle to
actually delete columns from the dataset. This allows us to perform nu-
merous transformations and then to save the dataset back into a CSV
file (by exporting it from the Data tab).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

96 Transforming Data

Figure 6.10: Selection of cleanup operations.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

6.5 Cleanup 97

6.5.1 Delete Ignored

As an example, suppose we have loaded our familiar audit dataset. In the
Select tab choose to set the role of Age, Employment, Education, Marital,
and Occupation to be Ignore, and then click the Execute button for these
new roles to take effect. In the R console window use the object.size to
determine the current amount of memory the dataset is taking up:
> object.size(crs$dataset)

[1] 128904

Now, back in the Rattle window, navigate to the Transform tab and choose
the Cleanup option. The Delete Ignored sub-option is the default. Click
the Execute button to remove the columns that we marked as Ignored.
Now in the R console, check how much space the dataset is taking up:
> object.size(crs$dataset)

[1] 84216

6.5.2 Delete Selected

Delete the variables selected in the textview below the radio buttons.

6.5.3 Delete Missing

Delete all variables that have any missing values. The variables with
missing values are indicated in the textview below the radio buttons.

6.5.4 Delete Entities with Missing

Rather than delete variables with missing values, we can delete entities
that have any missing values.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

98 Transforming Data

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 7

Building Classification
Models

The task of classification is at the heart of data mining! Most of what
we learn from a traditional data mining course focuses on the algorithms
from machine learning and statistics that build classification models.
These models can then be used to classify new entities. The actual
structure of the model also gives us insight into the relationships between
the variables that are important in differentiating the classes.

This chapter focuses on this common data mining task of classification
and prediction. We consider binary (or two class) classification, but the
concepts also apply to multi-class classification.

The chapter begins with the introduction of a framework in which we
understand model building. We then continue with a review of risk
charts as a mechanism for evaluating two class models. Whilst a separate
chapter (Chapter ??, page ??) covers evaluation in detail we present
the concept of risk charts here so that we can explore and compare the
performance of the models we build as we introduce the different model
builders.

Each of the model builders supported by Rattle is then introduced. The
model builders focus on binary (tow-class) classification, where the aim
is to distinguish between two classes of entities. Such problems abound,
and the two classes might, for example, distinguish high risk and low risk

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

100 Building Classification Models

insurance clients, productive and unproductive taxation audits, respon-
sive and non-responsive customers, successful and unsuccessful security
breaches, and many other similar examples.

Rattle provides a straight-forward interface to the collection of model
builders commonly used in data mining for binary classification. For
each, a basic collection of tuning parameters is exposed through the
interface for fine tuning the model building process. Where possible,
Rattle attempts to present good default values to allow the user to simply
build a model with no or little tuning. This may not always be the right
approach, but is certainly a good place to start.

The two class model builders provided by Rattle are: Decision Trees,
Boosted Decision Trees, Random Forests, Support Vector Machines, and
Logistic Regression.

We will consider each of the model builders deployed in Rattle and char-
acterise them through the types of models they generate and how the
model building algorithms search for the best model that captures or
summarises what the data is indicating.

Whilst a model is being built you will see the cursor image change to
indicate the system is busy, and the status bar will report that a model
is being built.

7.1 Building Models

In this section we present a framework within which we cast the task of
data mining—the task being model building. We refer to an algorithm
for building a model as a model builder. Rattle supports a number of
model builders, including decision tree induction, boosted decision trees,
random forests, support vector machines, logistic regression, kmeans,
and association rules. In essence, the model builders differ in how they
represent the models they build (i.e., the discovered knowledge) and how
they find (or search for) the best model within this representation.

We can think of the discovered knowledge, or the model, as being ex-
pressed as sentences in a language. We are familiar with the fact that we
express ourselves using sentences in our own specific human languages

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.2 Risk Charts 101

(whether that be English, French, or Chinese, for example). As we know,
there is an infinite number of sentences that we can construct in our hu-
man languages.

The situation is similar for the “sentences” we construct through using
model builders—there is generally an infinite number possible sentences.
In human language we are generally very well skilled at choosing sen-
tences from this infinite number of possibilities to best represent what
we would like to communicate. And so it is with model building. The
skill is to express within the language chosen the best sentences that
capture what it is we are attempting to model.

We formally present this general framework. The following sections then
present models builders for various tasks in the context of this framework.

FRAMEWORK GOES HERE

7.2 Risk Charts

0 20 40 60 80 100

0
20

40
60

80
10

0

Caseload (%)

P
er

fo
rm

an
ce

 (
%

)

22%
Revenue (82%)
Adjustments (78%)
Strike Rate

Risk Chart rf audit [test] Adjustment

Rattle 2007−11−25 16:08:38 gjw

We have mentioned in
passing, particularly in the
previous chapter, the idea
of a risk chart for evalu-
ating the performance of
our models. A risk chart
is somewhat similar in
concept to a number of
the other evaluation ap-
proaches, particularly the
ROC curves, which have
also been mentioned and
will be covered in detail in
Chapter 9. We formally in-
troduce the risk chart here
(rather than in Chapter 9) in order to be able to discuss the model
builders in practise, and in particular illustrate their performance. The
risk charts can be displayed within Rattle, once we have built our models,
by choosing the Risk option of the Evaluate tab.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

102 Building Classification Models

A risk chart is particularly useful in the context of the audit dataset, and
for risk analysis tasks in general. Already we have noted that this dataset
has a two class target variable, Adjusted. We have also identified a so
called risk variable, Adjustment, which is a measure of the size of the risk
associated with each entity. Entities that have no adjustment following
an audit (i.e., they are clients who have supplied the correct information)
will of course have no risk associated with them (Adjustment = 0).
Entities that do have an adjustment will have a risk associated with
them, and for convenience we simply identify the value of the adjustment
as the magnitude of the risk

In particular, we can think of revenue (or tax) authorities, where the
outcomes of audits include a dollar amount by which the tax obligation
of the taxpayer has been changed (which may be a change in favour of the
revenue authority or in favour of the taxpayer). For fraud investigations,
the outcome might be the dollar amount recovered from the fraudster.
In these situations it is often useful to see the tradeoff between the return
on investment and the number of cases investigated.

Rattle introduces the idea of a risk chart to evaluate the performance of
a model in the context of risk analysis.

A risk chart plots performance against caseload. Suppose we had a pop-
ulation of just 100 entities (audit cases). The case load is the percentage
of these cases that we will actually ask our auditors to process. The
remainder we will not consider any further, expecting them to be low
risk, and hence, with limited resources, not requiring any action. The
decision as to what percentage of cases are actually actioned corresponds
to the X axis of the risk chart - the caseload. A 100% caseload indicates
that we will action all audit cases. A 25% caseload indicates that we will

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.2 Risk Charts 103

action just one quarter of all cases.

For a given testing population we know how many cases resulted in ad-
justments. We also know the magnitude of those adjustments (the risk).
For a population of 100 cases, if we were to randomly choose 50% of
the cases for actioning, we might expect to recover just 50% of the cases
that actually did require an adjustment and 50% of the risk (or in this
case, the revenue) recovered from these adjusted cases. Similarly for ev-
ery caseload value: for a random caseload of 25% of the population we
might expect to recover 25% of the adjustments and revenue. The diago-
nal black line of the risk chart represents this random selection, and can
be thought of as the baseline against which to compare the performance
of our models.

Any model that Rattle builds in the two-class paradigm generates a risk
score for each entity. This is generally the probably of the case requiring
an adjustment. We can use this score to sort all of the cases in decreas-
ing order of the score. In selecting cases to be actioned, we then start
with those cases that have the highest score. Thus, in evaluating the
performance of our model, the caseload axis represents the sorted list of
cases, from the highest scored cases at the left (starting at 0% of the
cases actioned), and the lowest at the right (ending with 100% of the
cases actioned).

The green (dashed) line of a risk chart then records the percentage of
adjusted cases that we would actually expect to identify for a given per-
centage of the caseload. In the risk chart above, for example, we can
see that if we only actioned the top 20% of the cases, as scored by our
model, we recover almost 60% of the cases that actually did require an
adjustment. Similarly, for an 80% caseload we can recover essentially all
of the cases that required adjustment. Hence our model can save us 20%
of our caseload (i.e., 20% of our resources) whilst pretty much recovering
all of the adjustments.

The red (solid) line similarly records the percentage of the total revenue
(or risk) that is recovered for any particular caseload. In our example
above we see that the red and green lines essentially follow each other.
This is not always the case.

EXPLAIN THE REVENUE AND STRIKE RATES. EXPLAIN THE
AUC.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

104 Building Classification Models

0 20 40 60 80 100

0
20

40
60

80
10

0

Caseload (%)

P
er

fo
rm

an
ce

 (
%

)

24%

Revenue (88%)
Adjustments (88%)
Strike Rate

Risk Chart rf audit [**test**] Adjustment

Rattle 2007−11−25 16:15:43 gjw

A perfect model perfor-
mance assessed through a
risk chart is then a risk
chart that maximises the
area under the two curves.
We can illustrate such a
risk chart by plotting the
performance of a random
forest model on the train-
ing data where a random
forest often performs “per-
fectly,” as illustrated in
this risk chart. The strike
rate over the whole dataset
in this case is 24% (as an-
notated at the right hand end of the strike rate line). That is, only 24% of
all of the cases in this dataset of audit cases actually required an adjust-
ment. The perfect model accurately identifies all 24% of the cases (and
24$ of the risk) with 24% of the caseload! Thus we see the performance
plot having just two components: the essentially linear progression from
a caseload of 0% and performance of 0% up to a caseload of 24% and
performance of 100%, and then the flat 100% performance as we increase
the caseload to 100%.

When a Risk Chart is generated the text window in Rattle will display
the aggregated data that is used to construct the plot. This data consists
of a row for each level of the probability distribution that is output from
the model, ordered from the lowest probability value to a value of 1. For
each row we record the model performance in terms of predicting a class
of 1 if the probability cutoff was set to the corresponding value.

For example, we might choose a cutoff to be a probability of 0.28 so that
anything predicted to be in class 1 with a probability of 0.28 or more will
be regarded as in class 1. Then the number of predicted positives (or
the Caseload) will be 30% (0.301667) of all cases. Amongst this 30% of
cases are 69% of all true positives and they account for 79% of the total
of the risk scores. The strike rate (number of true positives amongst the
positives predicted by the model) is 61%. Finally, the measure reports
the sum of the distances of the risk and recall from the baseline (the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.3 Decision Trees 105

diagonal line). This measure can indicate the optimal caseload in terms
of maximising both risk recovery and recall.

7.3 Decision Trees

One of the classic ma-
chine learning techniques,
widely deployed in data
mining, is decision tree in-
duction. Using a sim-
ple algorithm and a simple
knowledge structure, the
approach has proven to be
very effective. These sim-
ple tree structures repre-
sent a classification (and
regression) model. Starting at the root node, a simple question is asked

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

106 Building Classification Models

(usually a test on a variable value, like Age < 35). The branches em-
anating from the node correspond to alternative answers. For example,
with a test of Age < 35 the alternatives would be Yes and No. Once
a leaf node is reached (one from which no branches emanate) we take
the decision or classification associated with that node. Some form of
probability may also be associated with the nodes, indicating a degree of
certainty for the decision. Decision tree algorithms handle mixed types
of variables, handle missing values, are robust to outliers and monotonic
transformations of the input, and robust to irrelevant inputs. Predictive
power tends to be poorer than other techniques.

The model is expressed in the form of a simple decision tree (the knowl-
edge representation). At each node of the tree we test the value of one of
the variables, and depending on its value, we follow one of the branches
emanating from that node. Thus, each branch can be thought of as hav-
ing a test associated with it, for example Age < 35. This branch then
leads to another node where there will be another variable to test, and
so on, until we reach a leaf node of the tree. The leaf node represents
the decision to be made. For example, it may be a yes or no for deciding
whether an insurance claim appears to be fraudulent.

In searching for a decision tree to best model our data, alternative de-
cision trees are considered in a top-down fashion, beginning with the
decision of the variable to initially partition the data (at the root node).

0 20 40 60 80 100

0
20

40
60

80
10

0

Caseload (%)

P
er

fo
rm

an
ce

 (
%

)

24%

Revenue (77%)
Adjustments (75%)
Strike Rate

Risk Chart rpart audit [test] Adjustment

Rattle 2007−11−25 16:08:33 gjw

Decision trees are the build-
ing blocks of data min-
ing. Since their develop-
ment back in the 1980’s
they have been the most
widely deployed data min-
ing model builder. The at-
traction lies in the simplic-
ity of the resulting model,
where a decision tree (at
least one that is not too
large) is quite easy to view,
to understand, and, in-
deed, to explain to man-
agement! However, deci-

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.3 Decision Trees 107

sion trees do not deliver the best performance in terms of the risk charts,
and so there is a trade off between performance and simplicity of expla-
nation and deployment.

7.3.1 Tutorial Example

Marital

0
762 cases

94.4%

2 Occupation

Deductions < − > 1708

0
391 cases

73.9%

12

1
8 cases
100%

13

Education

Employment

0
60 cases

60%

28

1
26 cases

73.1%

29

1
153 cases

78.4%

15

Decision Tree audit $ Adjusted

Rattle 2006−09−20 20:53:25 gjw

7.3.2 Formalities

7.3.3 Tuning Parameters

Priors

Sometimes the proportions of classes in a training set do not reflect their
true proportions in the population. You can inform Rattle of the popu-
lation proportions and the resulting model will reflect these.

The priors can be used to “boost” a particularly important class, by
giving it a higher prior probability, although this might best be done
through the Loss Matrix.

In Rattle the priors are expressed as a list of numbers that sum up to 1,
and of the same length as the number of classes in the training dataset.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

108 Building Classification Models

An example for binary classification is 0.5,0.5.

The default priors are set to be the class proprtions as found in the
training dataset.

Loss Matrix

The loss matrix is used to weight the outcome classes differently (the
default is that all outcomes have the same loss of 1). The matrix will be
constructed row-wise from the list of numbers we supply, and is of the
same dimensions as the number of classes in the training dataset. Thus,
for binary classification, four numbers must be supplied. The diagonal
should be all zeros.

An example is: 0,10,1,0, which might be interpreted as saying that an
actual 1, predicted as 0 (i.e., a false negative) is 10 times more unwelcome
that a false positive!

Rattle uses the loss matrix to alter the priors which will affect the choice
of variable to split the dataset on at each node, giving more weight where
appropriate.

Complexity

The complexity parameter (cp) is used to control the size of the decision
tree and to select the optimal tree size. If the cost of adding another
variable to the decision tree from the current node is above the value of
cp, then tree building does not continue. We could also say that tree
construction does not continue unless it would decrease the overall lack
of fit by a factor of cp.

Setting this to zero will build a tree to its maximum depth (and perhaps
will build a very, very, large tree). This is useful if you want to look at
the values for CP for various tree sizes. This information will be in the
text view window. You will look for the number of splits where the sum
of the xerror (cross validation error, relative to the root node error) and
xstd is minimum. This is usually early in the list.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.4 Boosting 109

7.4 Boosting

Yes/No

M1

Training Data/Classification Data

{−1, 1}{−1, 1}{−1, 1}
Weighted Sum → {−1, 1}

M2

MT

The Boosting meta-algorithm is
an efficient, simple, and easy to
understand model building strat-
egy. The popular variant called
AdaBoost (an abbreviation for
Adaptive Boosting) has been de-
scribed as the “best off-the-shelf
classifier in the world” (attributed
to Leo Breiman by Hastie et al.
(2001, p. 302)). Boosting algo-
rithms build multiple models from
a dataset, using some other model
builders, such as a decision tree builder, that need not be a particularly
good model builder. The basic idea of boosting is to associate a weight
with each entity in the dataset. A series of models are built and the
weights are increased (boosted) if a model incorrectly classifies the en-
tity. The weights of such entities generally oscillate up and down from
one model to the next. The final model is then an additive model con-
structed from the sequence of models, each model’s output weighted by
some score. There is little tuning required and little is assumed about
the model builder used, except that it should be a relatively weak model
builder! We note that boosting can fail to perform if there is insuffi-
cient data or if the weak models are overly complex. Boosting is also
susceptible to noise.

Boosting is an example of an ensemble model builder.

Boosting builds a collection of models using a “weak learner” and thereby
reduces misclassification error, bias, and variance (Bauer and Kohavi,
1999; Schapire et al., 1997). Boosting has been implemented in, for
example, C5.0. The term originates with Freund and Schapire (1995).

The algorithm is quite simple, beginning by building an initial model
from the training dataset. Those entites in the training data which the
model was unable to capture (i.e., the model mis-classifies those entites)
have their weights boosted. A new model is then built with these boosted
entities, which we might think of as the problematic entities in the train-

http://en.wikipedia.org/wiki/Boosting
http://en.wikipedia.org/wiki/AdaBoost
http://en.wikipedia.org/wiki/Boosting

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

110 Building Classification Models

ing dataset. This model building followed by boosting is repeated until
the specific generated model performs no better than random. The re-
sult is then a panel of models used to make a decision on new data by
combining the “expertise” of each model in such a way that the more
accurate experts carry more weight.

As a meta learner Boosting employs some other simple learning algorithm
to build the models. The key is the use of a weak learning algorithm—
essentially any weak learner can be used. A weak learning algorithm
is one that is only somewhat better than random guessing in terms of
error rates (i.e., the error rate is just below 50%). An example might be
decision trees of depth 1 (i.e., decision stumps).

7.4.1 Tutorial Example

0 20 40 60 80 100

0
20

40
60

80
10

0

Caseload (%)

P
er

fo
rm

an
ce

 (
%

)

21%
Revenue (82%)
Adjustments (79%)
Strike Rate

Risk Chart ada audit [test] Adjustment

Rattle 2007−11−25 16:08:31 gjw

The ensemble approaches
build upon the decision
tree model builder by build-
ing many decision tress
through sampling the train-
ing dataset in various ways.
The ada boosting algo-
rithm is deployed by Rat-
tle to provide its boosting
model builder. With the
default settings a very rea-
sonable model can be built.
At a 60% caseload we are
recovering 98% of the cases
that required adjustment
and 98% of the revenue.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.5 Random Forests 111

7.4.2 Formalities

7.4.3 Tuning Parameters

There are quite a few options exposed by Rattle for boosting our decision
tree model. We will explore how these can help us to build the best
model.

It is not always clear exactly how many trees we should build for our
ensemble. The default for ada is to build 50 trees. But is that enough?
The Boost functionality in Rattle allows the ensemble of trees to be added
to, so that we can easily explore whether more trees will improve the
performance of the model. To do so, simply increase the value specified
in the Number of Trees text box and click the Continue button. This will
pick up the model building from where it was left off and build as many
more trees as is needed to get up to the specified number of trees.

7.5 Random Forests

A random forest is an ensemble (i.e.,
a collection) of unpruned decision trees.
Random forests are often used when we
have very large training datasets and a
very large number of input variables (hun-
dreds or even thousands of input vari-
ables). A random forest model is typically made up of tens or hundreds

http://en.wikipedia.org/wiki/Random_forest

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

112 Building Classification Models

of decision trees.

The generalisation error rate from random forests tends to compare
favourably to boosting approaches, yet the approach tends to be more
robust to noise in the training dataset, and so tends to be a very sta-
ble model builder, not suffering the sensitivity to noise in a dataset that
single decision tree induction does. The general observation is that the
random forest model builder is very competitive with nonlinear classi-
fiers such as artificial neural nets and support vector machines. However,
performance is often dataset dependent and so it remains useful to try a
suite of approaches.

Each decision tree is built from a random subset of the training dataset,
using what is called replacement (thus it is doing what is known as bag-
ging), in performing this sampling. That is, some entities will be included
more than once in the sample, and others won’t appear at all. Gener-
ally, about two thirds of the entities will be included in the subset of the
training dataset, and one third will be left out.

In building each decision tree model based on a different random subset
of the training dataset a random subset of the available variables is used
to choose how best to partition the dataset at each node. Each decision
tree is built to its maximum size, with no pruning performed.

Together, the resulting decision tree models of the forest represent the
final ensemble model where each decision tree votes for the result, and
the majority wins. (For a regression model the result is the average value
over the ensemble of regression trees.)

In building the random forest model we have options to choose the num-
ber of trees to build, to choose the training dataset sample size to use
for building each decision tree, and to choose the number of variables to
randomly select when considering how to partition the training dataset
at each node. The random forest model builder can also report on the in-
put variables that are actually most important in determining the values
of the output variable.

By building each decision tree to its maximal depth (i.e., by not pruning
the decision tree) we can end up with a model that is less biased.

The randomness introduced by the random forest model builder in the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.5 Random Forests 113

dataset selection and in the variable selection delivers considerable ro-
bustness to noise, outliers, and over-fitting, when compared to a single
tree classifier.

The randomness also delivers substantial computational efficiencies. In
building a single decision tree the model builder may select a random
subset of the training dataset. Also, at each node in the process of build-
ing the decision tree, only a small fraction of all of the available variables
are considered when determining how to best partition the dataset. This
substantially reduces the computational requirement.

In summary, a random forest model is a good choice for model building
for a number of reasons. First, just like decision trees, very little, if any,
pre-processing of the data needs to be performed. The data does not
need to be normalised and the approach is resiliant to outliers. Second,
if we have many input variables, we generally do not need to do any
variable selection before we begin model building. The random forest
model builder is able to target the most useful variables. Thirdly, because
many trees are built and there are two levels of randomness and each tree
is effectively an independent model, the model builder tends not to overfit
to the training dataset.

7.5.1 Tutorial Example

Our audit dataset can be used to provide a simple illustration of building
a random forest model. To follow this example, load the audit dataset
into Rattle using the Data tab (Section 3.3, page 27), and select the
appropriate input variables using the Select tab (Section 4.2, page 43) to
identify Adjustment as the Risk variable (Figure 4.1, page 43).

Now on the Model tab choose the Forest radio button as shown in Fig-
ure 7.1.

Click the Execute button to build the model. We will see a popup, as
in Figure 7.2, explaining one of the limitations of this implementation
of random forests. Underneath, Rattle simply employs the R package
called randomForest (implemented by Andy Liaw) which in turn is based
on the original Fortran code from the developers of the algorithm (Leo
Breiman and Adele Cutler, who also own the Random Forests trademark

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

114 Building Classification Models

Figure 7.1: Random forest tuning parameters.

Figure 7.2: Random forests only supports factors with up to 32 levels.

and license it exclusively to Salford Systems). Thus some limitations are
carried through to Rattle. This particular limitation is that categorical
variables with more than 32 categories are not handled. Statistical con-
cerns also suggest that categorical variables with more than 32 categories
don’t make a lot of sense.

As an aside, we also note that the Breiman-Cutler implementation of
the random forest model builder as used in R appears to produce bet-
ter results than those produced by the Weka implementation of random
forest.

To rectify this problem with too many categorical values, the simplest
approach is to change the role of the Accounts variable under the Select
tab, to be one of Ignore, being sure to Execute the tab before coming
back to the Model tab to build a the model. The model building takes
about 3 seconds, and the results are displayed in the textview window of

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.5 Random Forests 115

Figure 7.3: Random forest model of audit data.

Rattle, as in Figure 7.3.

We can see that by default the summary begins with a review of the
actual underlying R code that was executed. We need to scroll to the
right in order to see the full command.

The next bit of text provides a summary of the model builder’s param-
eters, indicating that a classification model was built, consisting of 500
decision trees, and 3 variables to choose from for each time we partition
the dataset.

Next we see what is called an OOB estimate of error rate. OOB stands
for “out of bag.” This estimate is regarded tøbe an unbiased estimate of
the true error of the model. The idea is that in building any particular
tree in the ensemble, we use a sample of the training dataset (technically
this is called a bootstrap sample and is usually about two thirds of all
the available data). The entities that are in the sample are said to be
contained within the bag that is used to build the model. Thus those that
are not being used to build the model are said to be out-of-bag. These
out-of-bag entities are not used in building the model this time round,
and hence can be used as a test dataset for this specific model. Any

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

116 Building Classification Models

Figure 7.4: Random forest model measure of variable importance.

particular entity will be out-of-bag a reasonable number of times, and so
we can obtain the proportion of times this entity is correctly classified
and so obtain the estimates of performance for the whole model, which
is what is reported by the model builder.

The Importance button allows us to graphically view the random forest’s
perspective on which variables are important in determining the value of
the output variable. The plot (Figure 7.4) shows the two different mea-
sures of variable importance. The first importance is the scaled average
of the prediction accuracy of each variable, and the second is the total
decrease in node impurities splitting on the variable over all trees, using
the Gini index.

Moving on to the Evaluate tab, selecting the Risk radio button, and click-
ing the Execute button will generate the risk chart for this model, using
the Adjustment variable as the measure of the size of the actual risk
associated with those cases that required adjustments. The risk chart,
Figure 7.5, indicates that we have a reasonable model.

For deployment, as a data miner we can put forward a case for using this
model to score our population, and to then only have our auditors review
perhaps 70% of the current number of cases. Thus, we would be saving
our effort on the remaining 30% where we only recover less than 2% of

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.5 Random Forests 117

0 20 40 60 80 100

0
20

40
60

80
10

0

Caseload (%)

P
er

fo
rm

an
ce

 (
%

)

22%
Revenue (82%)
Adjustments (78%)
Strike Rate

Risk Chart rf audit [test] Adjustment

Rattle 2007−11−25 16:08:38 gjw

0 20 40 60 80 100

0
20

40
60

80
10

0
Caseload (%)

P
er

fo
rm

an
ce

 (
%

)

24%

Revenue (88%)
Adjustments (88%)
Strike Rate

Risk Chart rf audit [**test**] Adjustment

Rattle 2007−11−25 16:15:43 gjw

Figure 7.5: Random forest risk charts: test and train datasets.

Figure 7.6: Warning when evaluating a model on the training dataset.

the actual risk, and 5% of the actual cases that needed adjustment. This
is quite a powerful argument for business, and a saving of even 10% is
often worth the effort.

In Rattle the default for the Evaluate tab is to use the testing dataset
to show a reasonable estimate of the true performance of the model. It
is informative, though to display the performance on the training set.
In fact, building a random forest and evaluating it on training dataset
gives a “prefect” result. For other models this would tend to tell us that
our model has overfit the training data. However, the performance on
the testing dataset indicates that we have a generally good model. See
Section 10.2 for a discussion of overfitting.

Do note though that when applying the model to the training dataset for
evaluation, Rattle will popup a warning indicating that this is not such
a good idea (Figure 7.6).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

118 Building Classification Models

Figure 7.7: Random forest ROC chart.

We can obtain a more traditional ROC chart (Figure 7.7) from the Eval-
uate tab.

7.5.2 Formalities

The random forest model builder represents its knowledge as an ensemble
of decision trees (Section 7.3.2, page 107 for details of decision trees).

7.5.3 Tuning Parameters

For the Two Class paradigm of Rattle, the random forest model build
builds a classification model. Each tree in the resulting ensemble model
is then used to predict the class of an entity, with the proportion of trees
predicting the positive class then being the probability of the entity being
in the positive class.

Rattle provides access to just three parameters (Figure 7.1) for tuning the
models built by the random forest model builder: the number of trees,
sample size, and number of variables. As is generally the case with Rattle,
the defaults are a very good starting point! The defaults are to build
500 trees, to not do any sampling of the training dataset, and to choose
from the square root of the number of variables available. In Figure 7.1
we see that the number of variables has automatically been set to 3 for

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.6 Support Vector Machine 119

the audit auto.csv dataset, which has 9 input variables.

Number of Trees

This specifies how many trees are to be built to populate the random
forest. The default value is 500 and a common recommendation is that
a minimum of 100 trees be built.

Random forest performance does not degrade as the number of trees
increases.

Sample Size

Number of Variables

This option sets the number of variables to randomly select from all of
those available, each time we look to partition a dataset in the process of
building the decision tree. The general default value is the square root
of the total number of variables available.

If there are many noise variables, increase the number of variables con-
sidered at each node.

7.6 Support Vector Machine

M
argin

Support Vectors

wx + b = 0

wx + b = -1

Support Vectors

wx + b = 1

A Support Vector Machine (SMV)
searches for so called support vec-
tors which are data points that are
found to lie at the edge of an area
in space which is a boundary from
one class of points to another. In
the terminology of SVM we talk
about the space between regions
containing data points in differ-
ent classes as being the margin
between those classes. The sup-

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

120 Building Classification Models

port vectors are used to identify
a hyperplane (when we are talk-
ing about many dimensions in the
data, or a line if we were talking about only two dimensional data) that
separates the classes. Essentially, the maximum margin between the sep-
arable classes is found. An advantage of the method is that the modelling
only deals with these support vectors, rather than the whole training
dataset, and so the size of the training set is not usually an issue. If the
data is not linearly separable, then kernels are used to map the data into
higher dimensions so that the classes are linearly separable. Also, Sup-
port Vector Machines have been found to perform well on problems that
are non-linear, sparse, and high dimensional. A disadvantage is that the
algorithm is sensitive to the choice of variable settings, making it harder
to use, and time consuming to identify the best.

Support vector machines do not predict probabilities but rather produce
normalised distances to the decision boundary. A common approach to
transforming these decisions to probabilities is by passing them through
a sigmoid function.

0 20 40 60 80 100

0
20

40
60

80
10

0

Caseload (%)

P
er

fo
rm

an
ce

 (
%

)

22%
Revenue (82%)
Adjustments (79%)
Strike Rate

Risk Chart ksvm audit [test] Adjustment

Rattle 2007−11−25 16:18:03 gjw

Rattle supports the build-
ing of support vector ma-
chine (SVM) models us-
ing the kernlab package
for R. This package pro-
vides an extensive collec-
tion of kernel functions,
and a variety of tuning op-
tions. The trick with sup-
port vector machines is to
use the right combination
of kernel function and ker-
nel parameters—and this
can be quite tricky. Some
experimentation with the
audit dataset, exploring different kernel functions and parameter set-
tings, identified that a polynomial kernel function with the class weights
set to c("0"=4, "1"=1) resulted in the best risk chart. For a 50%
caseload we are recovering 94% of the adjustments and 96% of the rev-

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.7 Logistic Regression 121

enue.

There are other general variables that can be set for ksvm, including the
cost of constraint violation (the trade-off between the training error and
margin? could be from 1 to 1000, and is 1 by default).

For best results it is often a good idea to scale the numeric variables to
have a mean of 0 and a standard deviation of 1.

For polynominal kernels you can choose the degree of the polynomial.
The default is 1. For the audit data as you increase the degree the model
gets much more accurate on the training data but the model generalises
less well, as exhibited by its performance on the test dataset.

Another variable often needing setting for a radial basis function kernel
is the sigma value. Rattle uses automatic sigma estimation (sigest) for
this kernel, to find the best sigma, and so the user need not set a sigma
value. If we wanted to experiment with various sigma values we can
copy the R code from the Log tab and paste it into the R console, add
in the additional settings, and run the model. Assuming the results are
assigned into the variable crs$ksvm, as in the Log, we can the evaluate
the perfromance of this new model using the Evaluate tab.

7.7 Logistic Regression

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

122 Building Classification Models

Logistic regression is a statistical model
builder using traditional regression tech-
niques but for predicting a 1/0 outcome.
Logistic regression in fact builds a type of
generalized linear model, using a so called
logit function.

Logistic regression is the traditional sta-
tistical approach and indeed it can still
produce good models as evidenced in the
risk chart here. As noted in Section 10.1 though, logistic regression has
not always been found to produce good models. Nonetheless, here we see
a very good model that gives us an area under the curve of 80% for both
Revenue and Adjustments, and at the 50% caseload we are recovering
94% of the cases requiring adjustment and 95% of the revenue associated
with the cases that are adjusted.

0 20 40 60 80 100

0
20

40
60

80
10

0

Caseload (%)

P
er

fo
rm

an
ce

 (
%

)

22%
Revenue (84%)
Adjustments (80%)
Strike Rate

Risk Chart rpart audit [test] Adjustment

Rattle 2007−11−25 16:08:32 gjw

For best results it is often
a good idea to scale the nu-
meric variables to have a
mean of 0 and a standard
deviation of 1.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

7.8 Bibliographic Notes 123

7.8 Bibliographic Notes

Caruana and Niculescu-Mizil (2006) present a comprehensive empirical
comparison of many of the modern model builders. An older comparison
is known as the Statlog comparison (King et al., 1995).

The ada package for boosting was implemented by Mark Culp, Kjell
Johnson, and George Michailidis, and is described in Culp et al. (2006).

Random forests were introduced by Breiman (2001), building on the
concept of bagging (Breiman, 1996) and the random subspace method
for decision forests (Ho, 1998). Breiman observed that “random forests
do not overfit.”

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

124 Building Classification Models

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 8

Unsupervised Modelling

8.1 Cluster Analysis

0 1 2 3 5 6 7 8 9 104

0

1

2

3

5

6

7

8

9

10

4

Z

Z

Z

Z

V

V

V

Z Z

V

Clustering is one of the core tools used
by the data miner. Clustering allows us
to group entities in a generally unguided
fashion, according to how similar they
are. This is done on the basis of a measure
of the distance between entities. The aim
of clustering is to identify groups of enti-
ties that are close together but as a group
are quite separate from other groups.

8.1.1 KMeans

8.1.2 Export KMeans Clusters

We also note the export functionality is implemented for kmeans clusters.
We have a choice though in what is exported. To export the actual
model as PMML, where the centroids are recorded in the PMML model
specification, choose the appropriate radio button before clicking the
Export button. Alternatively, to save the association between each entity
and the cluster into which it has been placed, choose the Clusters (CSV)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

126 Unsupervised Modelling

radio button. In either case we are prompted for the name of a file into
which we save the data.

8.1.3 Discriminant Coordinates Plot

The discriminant coordinates plot is generated by projecting the original
data.

8.1.4 Number of Clusters

Choosing the number of clusters is often quite a tricky exercise. Some-
times it is a matter of just try it and see. Other times you have some
heuristics that help you to decide. Rattle provides a iterate approach.
There is no definitive statistical answer to this issues

In deciding on a size for a robust cluster we need to note that the larger
the number of clusters relative to the size of the sample, then the smaller
our clusters will be. Perhaps there is a cluster size below which we don;t
want to go.

Different cluster algorithms (and even different random seeds) result in
different clusters, and how much they differ is a measure of cluster sta-
bility.

One approach to identifying a good cluster number is to iterate through
multiple clusters and observe the sum of the within sum of squares.
Rattle supports this with the Iterate Clusters option (see Figure 8.1),
where a plot is also always generated (see Figure 8.2). A heuristic is to
choose the number of clusters where we see the largest drop in the sum
of the within sum of squares. In Figure 8.2 we might choose 12, 17 or
perhaps even 26.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

8.1 Cluster Analysis 127

Figure 8.1: KMeans Iteration Interface

Figure 8.2: KMeans Iteration Plot

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

128 Unsupervised Modelling

8.2 Hierarchical Clusters

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

8.3 Association Rules 129

8.3 Association Rules

and
⇓

Association analysis identifies relationships or
affinities between entities and/or between vari-
ables. These relationships are then expressed as
a collection of association rules. The approach
has been particularly successful in mining very
large transaction databases and is one of the core
classes of techniques in data mining. A typical
example is in the retail business where historic
data might identify that customers who purchase
the Gladiator DVD and the Patriot DVD also
purchase the Braveheart DVD. The historic data might indicate that the
first two DVDs are purchased by only 5% of all customers. But 70%
of these then also purchase Braveheart. This is an interesting group
of customers. As a business we may be able to take advantage of this
observation by targetting advertising of the Braveheart DVD to those
customers who have purchased both Gladiator and Patriot.

DETAILS OF REPRESENTATION AND SEARCH REQUIRED HERE.

Association rules are one of the more common types of techniques most
associated with data mining. Rattle supports association rules through
the Associate tab of the Unsupervised paradigm.

Two types of association rules are supported. Rattle will use either the
Ident and Target variables for the analysis if a market basket analysis is
requested, or else will use the Input variables for a rules analysis.

8.3.1 Basket Analysis

The simplest association analysis is often referred to as market bas-
ket analysis. Within Rattle this is enabled when the Baskets button
is checked. In this case, the data is thought of as representing shopping
baskets (or any other type of collection of items, such as a basket of med-
ical tests, a basket of medicines prescribed to a patient, a basket of stocks
held by an investor, and so on). Each basket has a unique identifier, and
the variable specified as an Ident variable in the Select tab is taken as the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

130 Unsupervised Modelling

identifier of a shopping basket. The contents of the basket are then the
items contained in the column of data identified as the target variable.
For market basket analysis, these are the only two variables used.

To illustrate market basket analysis with Rattle, we will use a very simple
dataset consisting of the DVD movies purchased by customers. Suppose
the data is stored in the file dvdtrans.csv and consists of the following:
ID,Item

1,Sixth Sense

1,LOTR1

1,Harry Potter1

1,Green Mile

1,LOTR2

2,Gladiator

2,Patriot

2,Braveheart

3,LOTR1

3,LOTR2

4,Gladiator

4,Patriot

4,Sixth Sense

5,Gladiator

5,Patriot

5,Sixth Sense

6,Gladiator

6,Patriot

6,Sixth Sense

7,Harry Potter1

7,Harry Potter2

8,Gladiator

8,Patriot

9,Gladiator

9,Patriot

9,Sixth Sense

10,Sixth Sense

10,LOTR

10,Galdiator

10,Green Mile

We load this data into Rattle and choose the appropriate variable roles.
In this case it is quite simple: On the Associate tab (of the Unsupervised
paradigm) ensure the Baskets check box is checked. Click the Execute
button to identify the associations: Here we see a summary of the as-
sociations found. There were 38 association rules that met the criteria
of having a minimum support of 0.1 and a minimum confidence of 0.1.
Of these, 9 were of length 1 (i.e., a single item that has occurred fre-
quently enough in the data), 20 were of length 2 and another 9 of length
3. Across the rules the support ranges from 0.11 up to 0.56. Confidence

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

8.3 Association Rules 131

ranges from 0.11 up to 1.0, and lift from 0.9 up to 9.0.

The lower part of the same textview contains information about the
running of the algorithm: We can see the variable settings used, noting
that Rattle only provides access to a smaller set of settings (support and
confidence). The output includes timing information fore the various
phases of the algorithm. For such a small dataset, the times are of
course essentially 0!

8.3.2 General Rules

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

132 Unsupervised Modelling

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

8.3 Association Rules 133

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

134 Unsupervised Modelling

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 9

Model Evaluation and
Deployment

Evaluating the performance of model building is important. We need to
measure how any model we build will perform on previously unseen cases.
A measure will also allow us to ascertain how well a model performs
in comparison to other models we might choose to build, either using
the same model builder, or a very different model builder. A common
approach is to measure the error rate as the proportional number of cases
that the model incorrectly (or equivalently, correctly) classifies. Common
methods for presenting and estimating the empirical error rate include
confusion matrices and cross-validation.

The various approaches to measuring performance include Lift, area
under the ROC curve, the F-score, average precision, precision/recall,
squared error, and risk charts.

In this chapter we explore Rattle’s various tools for reporting the perfor-
mance of a model and it’s various approaches to evaluating the output
of data mining. We include the confusion matrix (using underneath the
table function) for producing confusion matrices, Rattle’s new Risk Chart
for effectively displaying model performance including a measure of the
success of each case, and we explore the use of the ROCR package for the
graphical presentation of numerous evaluations, including those common
approaches included in Rattle. Moving in to R illustrates how to fine the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

136 Evaluation

presentations for your own needs.

This chapter also touches on issues around Deployment of our models,
and in particular Rattle’s Scoring option, which allows us to load a new
dataset and apply our model to that dataset, and to save the scores,
together with the identity data, to a file for actioning.

9.1 The Evaluate Tab

The Evaluate tab displays all the options available for evaluating the per-
formance of our models, and for deploying the model over new datasets.

The range of different types of evaluations is presented as a series of
radio buttons, allowing just a single evaluation type to be chosen at any
time. Each type of evaluation is presented in the following sections of
this chapter.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

9.1 The Evaluate Tab 137

Below the row of evaluation types is a row of check boxes to choose the
model types we wish to evaluate. The check boxes are only sensitive once
a model has been built, and so on a fresh start of Rattle no model check
box can be checked. As models are built, they will become sensitive, and
as we move from the Model tab to this Evaluate tab the most recently
built model will be automatically checked (and any previously checked
Model choices will be unselected). This corresponds to a common pattern
of behaviour, in that often we will build and tune a model, then want to
explore its performance by moving to this Evaluate tab. If the All option
has been chosen of the Model tab then all models that were successfully
built will automatically be checked on the Evaluate tab.

To evaluate a model we need to identify a dataset on which to perform
the evaluation.

Figure 9.1: Informal dialog when using
training set for evaluation

The first option (but not
the best option) is to evalu-
ate our model on the train-
ing dataset. This is gener-
ally not a good idea, and
the information dialogue
shown here will be dis-
played each time we per-
form an evaluation on a
training dataset. The out-
put of any evaluation on
the training dataset will also highlight this fact. The problem is that
we have built our model on this training dataset, and it is often the case
that the model will perform very well on that dataset! It should, because
we’ve tried hard to make sure it does. But this does not give us a very
good idea of how well the model will perform in general, on previously
unseen data.

For a better guide to how well the model will perform in general, that is,
on new and previously unseen data, we need to apply the model to such
data and obtain an error rate. This error rate, and not the error rate
from the training dataset, will then be a better estimate of how well the
model will perform.

We discussed the concept of a training set in Section 4.1, presenting

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

138 Evaluation

the Sample option of the Select tab which provides a simple but effective
mechanism for identifying a part of the dataset to be held separately from
the training dataset, and to be used explicitly as the testing dataset. As
indicated there, the default in Rattle is to use 70% of the dataset for
training, and 30% for testing.

The final piece of information displayed in the common area of the Eval-
uate tab is the Risk Variable. The concept of the Risk Variable has been
discussed in Section 4. It is used as a measure of how significant each
case is, with a typical example recording the dollar value of the fraud
related to the case. The Risk Chart makes use of this variable if there
is one, and it is included in the common area of the Evaluate tab for
information purposes only.

9.2 Confusion Matrix

9.2.1 Measures

True positives (TPs) are those entities which are correctly classified
by a model as positive instances of the concept being modelled (e.g., the
model identifies them as a case of fraud, and they indeed are a case of
fraud). False positives (FPs) are classified as positive instances by the
model, but in fact are known not to be. Similarly, true negatives (TNs)
are those entities correctly classified by the model as not being instances
of the concept, and false negatives (FNs) are classified as not being
instances, but are in fact know to be. These are the basic measures of
the performance of a model. These basic measures are often presented
in the form of a confusion matrix, produced using a contingency table.

9.2.2 Graphical Measures

ROC graphs, sensitivity/specificity curves, lift charts, and precision/re-
call plots are useful in illustrating specific pairs of performance measures
for classifiers. The ROCR package creates 2D performance curves from
any two of over 25 standard performance measures. Curves from differ-
ent cross-validation or bootstrapping runs can be averaged by different

http://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/contingency_table

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

9.3 Lift 139

methods, and standard deviations, standard errors or box plots can be
used to visualize the variability across the runs. See demo(ROCR) and
http://rocr.bioinf.mpi-sb.mpg.de/ for examples.

9.3 Lift

http://rocr.bioinf.mpi-sb.mpg.de/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

140 Evaluation

9.4 ROC Curves

Area Under Curve

9.5 Precision versus Recall

9.6 Sensitivity versus Specificity

Sensitivity is the true positive rate.

Specificity is the true negative rate.

9.7 Scoring

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

9.8 Calibration Curves 141

Often you will want to apply a model to a dataset to generate the scores
for each entity in the dataset. Such scores may be useful for further
exploration in other tools, of for actual deployment.

The Score radio button allows you to score (i.e., to generate probabilities
for each entry in) a dataset. The specific dataset which is scored is that
which is identified with the Data option. In the above example, the
model will be used to score the Testing dataset. You can score the
actual Training dataset, a dataset loaded from a CSV data file, or from
a dataset already loaded into R.

Rattle will generate a CSV file containing the “scores” for the dataset.
Each line of the CSV file will consist of a comma separated list of all
of the variables that have been identified as Idents in the Variables tab,
followed by the score itself. This score will be a number between 0 and
1.

Note the status bar in the sample screenshot has identified that the score
file has been saved to the suitably named file. The file name is derived
from name of the dataset (perhaps a source data csv filename or the
name of an R data frame), whether it is a test or training dataset, the
type of model and the type of score.

The output looks like:
ID,predict

98953270 ,0.104

12161980 ,NA

96316627 ,0.014

54464140 ,0.346

57742269 ,0.648

19307037 ,0.07

61179245 ,0.004

36044473 ,0.338

19156946 ,0.33

9.8 Calibration Curves

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

142 Evaluation

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 10

Issues

We consider in this chapter the general issues with model building, such
as selecting the best model builder, over-fitting models, and dealing with
imbalanced classes.

10.1 Model Selection

The question that obviously now comes to mind is which model builder
do we use. That is a question that has challenged us for a long time,
and still there remains no definitive answer. It all depends on how well
the model builder works on your data, and, in fact, how you measure the
performance on the model. We review some of the insights that might
help us choice the right model builder and, indeed, the right model, for
our task.

Contrary to expectations, there are few comprehensive comparative stud-
ies of the performance of various model builders. A notable exception is
the study by Caruana and Niculescu-Mizil, who compared most modern
model builders across numerous datasets using a variety of performance
measures. The key conclusion, they found, was that boosted trees and
random forests generally perform the best, and that decision trees, logis-
tic regression and boosted stumps generally perform the worst. Perhaps
more importantly though, it often depends on what is being measured

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

144 Issues

as the performance criteria, and on the characteristics of the data being
modelled.

An overall conclusion from such comparative studies, then, is that often
it is best to deploy different model builders over the dataset to investigate
which performs the best. This is better than a single shot at the bullseye.
We also need to be sure to select the appropriate criteria for evaluating
the performance. The criteria should match the task at hand. For ex-
ample, if the task is one of information retrieval then a Precision/Recall
measure may be best. If the task is in the area of health, then the area
under the ROC curve is an often used measure. For marketing, perhaps
it is lift. For risk assessment, the Risk Charts are a good measure.

So, in conclusion, it is good to build multiple models using multiple
model builders. The tricky bits are tuning the model builders (requiring
an understanding of the sometimes very many and very complex model
builder parameters) and selecting the right criteria to assess the perfor-
mance of the model (a criteria to match the task at hand—noting that
raw accuracy is not always, and maybe not often, the right criteria).

10.2 Overfitting

Overfitting is more of a problem when training on smaller datasets.

A characteristic of the random forest algorithm is that it will often overfit
the training data. For any model builder this, at first, may be a little
disconcerting, with hte usual thought that therefore the model will not
generalise to new data. However, for random forests, this overfitting is
not usually a problem. Applying the model to a test dataset will usually
indicate that it does generalise quite well, and that it does not suffer from
the usual consequence of a model that has overfit the training dataset.

10.3 Imbalanced Classification

Model accuracy is not such an appropriate measure of performance when
the data has a very imbalanced distribution of outcomes. For example, if
positive cases account for just 1% of all cases, as might be the situation in

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

10.3 Imbalanced Classification 145

an insurance dataset recording cases of fraud or in medical diagnoses for
rare but terminal diseases, then the most accurate, but most useless, of
models is one that predicts no fraud or diagnoses no disease in all cases.
It will be 99% accurate! In such situations, the usual goal of the model
builder, which is to build the most accurate model, does not match the
actual goal of the model building.

There are two common approaches to dealing with imbalance: sampling
and cost sensitive learning.

Before describing these two approaches to dealing with this issue, it is
worth noting that some algorithms have no difficulty with building mod-
els from training data with imbalanced classes. Random forests, for
example, need no such treatment of the training data in order to build
models that capture under-represented classes quite well.

10.3.1 Sampling

A traditional approach to solving class imbalance, and one that works
well in many modelling situations, but not all, is to sample your data.
Sampling aims to remove or at least redress the balance. It is a data
preprocessing step whereby the algorithm used by the model builder
does not generally need to be modified. Because of this, the approach is
readily applicable (but not necessarily appropriate) to any model builder.

MENTION APPROACHES AND FOR EACH ILLUSTRATE HOW TO
DO IT IN R.

Random undersampling will randomly choose a subset of the over repre-
sented class (or classes) to approach the same number as the underpre-
sented class (or classes) for inclusion in the training dataset.

Random oversampling will randomly duplicate records from the under-
represented class (or classes) for inclusion in the training dataset.

The synthetic minority oversampling technique (SMOTE).

Cluster-based oversampling.

One-sided selection.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

146 Issues

Wilson’s editing.

10.3.2 Cost Based Learning

An alternative is to use cost sensitive learning where the algorithm used
by the model builder itself is modified. This approaches introduces nu-
meric modifications to any formula used to estimate the error in our
model. Mis-classifying a positive example as a negative, a false negative,
(e.g., identifying a fraudulent case as not fraudulent) is more “costly”
than a false positive. In health, for example, we do not want to miss
cases of true cancer, and might find it somewhat more acceptable to
momentarily investigate cases that turn out not to be cancer, simply be-
cause, missing the cancer may lead to premature death. A model builder
will take into account the different costs of the outcome classes and build
a model that does not so readily dismiss the very much under represented
outcome.

10.4 Model Deployment and Interoperability

10.4.1 SQL

SQL is a structured query language for summarising and reporting on
data in a database or data warehouse. Some organisations have at-
tempted to use SQL for the implementation of models. Such attempts
have not been successful, in general. SQL is not well suited to efficiently
implementing models. Simple models might be okay, but practical mod-
els present challenges.

Why would one consider SQL? The data warehouse vendor, Teradata, for
example, provides the Teradata Warehouse Miner toolkit which includes
some basic, but not sophisticated, data mining tools.

SQL DEPLOYMENT OF MODELS IN TWM

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

10.5 Bibliographic Notes 147

10.4.2 PMML

INTRO PMML.

TWM IMPORTS PMML.

SAS GENERATE PMML.

Rattle EXPORTS PMML. BUT RF PMML IS 250,000 LINES OF SQL

10.5 Bibliographic Notes

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

148 Issues

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 11

Moving into R

R is a statistical programming language together with an extensive col-
lection of packages (of which Rattle is one) that provide a comprehensive
toolkit for, amongst other things, data mining. Indeed, R is extensively
deployed in bio-informatics, epidemiology, geophysics, agriculture and
crop science, ecology, oceanography, fisheries, risk analysis, process engi-
neering, pharmaceutical research, customer analytics, sociology, political
science, psychology, and more.

One of the goals of Rattle is to ease a user’s transition into using R
directly, and thereby unleashing the full power of the language. R is a
relatively simple language to learn, but has its own idiosyncrasies that
emerge in any language that has such a long history, as R does.

In this chapter we discuss how we can access the internal data structures
used by Rattle. This then allows us to smoothly switch between using
Rattle and R in a single session. We significantly augment the function-
ality encapsulated in Rattle through this direct interaction with R, whilst
not losing the ability to quickly explore the results in Rattle.

11.1 The Current Rattle State

Internally, Rattle uses the variable crs to store the current rattle state.
We can have a look at the structure of this variable at any time using

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

150 Moving into R

the str function in the R Console.

crs$ident List of variable names treated as identifiers.
crs$input List of variable names for input to modelling.
crs$target The name of the variable used as target for modelling.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

11.2 Data 151

11.2 Data

Our example of loading data into Rattle from a CSV file simply uses the
R function read.csv.

11.3 Samples

Rattle uses a simple approach to generating a partitioning of our dataset
into training and testing datasets with the sample function.
crs$sample <- sample(nrow(crs$dataset),floor(nrow(crs$dataset)*0.7))

The first argument to sample is the top of the range of integers you wish
to choose from, and the second is the number to choose. In this exam-
ple, corresponding to the audit dataset, 1400 (which is 70% of the 2000
entities in the whole dataset) random numbers between 1 and 2000 will
be generated. This list of random numbers is saved in the corresponding
Rattle variable, crs$sample and used throughout Rattle for selecting or
excluding these entities, depending on the task.

To use the chosen 1400 entities as a training dataset, we index our dataset
with the corresponding Rattle variable:
crs$dataset[crs$sample ,]

This then selects the 1400 rows from crs$dataset and all columns.

Similarly, to use the other 600 entities as a testing dataset, we index our
dataset using the same Rattle variable, but in the negative!
crs$dataset[-crs$sample ,]

Each call to the sample function generates a different random selection.
In Rattle, to ensure we get repeatable results, a specific seed is used each
time, so that with the same seed, we obtain the same random selection,
whilst also providing us with the opportunity to obtain different random
selections. The set.seed function is called immediately prior to the sample
call to specify the user chosen seed. The default seed used in Rattle is
arbitrarily the number 123:

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

152 Moving into R

set.seed (123)

crs$sample <- sample(nrow(crs$dataset),floor(nrow(crs$dataset)*0.7))

In moving into R we might find the sample.split function of the caTools
package handy. It will split a

vector into two subsets, two thirds in one and one third in the other,
maintaining the relative ratio of the different categorical values repre-
sented in the vector. Rather than returning a list of indices, it works
with a more efficient Boolean representation:
> library(caTools)

> mask <- sample.split(crs$dataset$Adjusted)

> head(mask)

[1] TRUE TRUE TRUE FALSE TRUE TRUE

> table(crs$dataset$Adjusted)

0 1

1537 463

> table(crs$dataset$Adjusted[mask])

0 1

1025 309

> table(crs$dataset$Adjusted[!mask])

0 1

512 154

Perhaps it will be more convincing to list the proportions in each of the
groups of the target variable (rounding these to just two digits):
> options(digits =2)

> table(crs$dataset$Adjusted)/

length(crs$dataset$Adjusted)

0 1

0.77 0.23

> table(crs$dataset$Adjusted[mask])/

length(crs$dataset$Adjusted[mask])

0 1

0.77 0.23

> table(crs$dataset$Adjusted[!mask])/

length(crs$dataset$Adjusted[!mask])

0 1

0.77 0.23

Thus, using this approach, both the training and the testing datasets
will have the same distribution of the target variable.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

11.4 Projects 153

11.4 Projects

We have illustrated in this chapter how to save Rattle’s current state
of affairs to a .rattle file. This file is in fact a standard R file, and
is simply saving a single R object called crs (for Current Rattle State).
The object has many slots, storing the dataset, the models, and various
option settings.

11.5 The Rattle Log

All R commands that Rattle runs underneath are exposed through the
text view of the Log tab. The intention is that the R commands be
available for copying into the R console so that where Rattle only exposes
a limited number of options, further options can be tuned via the R
console.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

154 Moving into R

The Log tab aims to be educational as much as possible. Informative
comments are included to describe the steps involved.

Also, the whole log can be saved to a script file (with a R filename
extension) and in principle, loaded into R to repeat the exact steps of
the Rattle interactions. In general, you may want to review the steps and
fine tune them to suit your purposes. After pasting the contents of the
Log text view into a file, perhaps with a filename of audit-rf-risk.R,
you can have the file execute as a script in R with:
> source("audit -rf-risk.R")

Internally, Rattle uses a variable called crs to store its current state, and
you can modify this variable directly. Generally, changes you make will
be reflected within Rattle and vice versa.

We can export the Log to an R script file (with the .R extension) using
the Export button.

11.6 Further Tuning Models

One of the goals of Rattle is to keep things simple for the user. Conse-
quently, not all options available for many of the functions provided by R
are exposed through the Rattle user interface. This is not meant to be a
limitation though, and Rattle is quite at ease working with modifications
you make to the crs data structure within the R Console, at least to
quite some extent.

Suppose for example that you wish to build an ada model using the x
and y arguments rather than the formula argument. First, within Rattle,
build the normal ada model and go to the Log tab to highlight and copy
the command used:
crs$ada <- ada(Adjusted ~ .,

data=crs$dataset[crs$sample ,c(2:4 ,6:10 ,13)] ,

control=rpart.control(maxdepth =30, cp=0.010000 ,

minsplit =20, xval =10),

iter =50)

Now past that into the R Console, but modify it approriately:
crs$ada <- ada(crs$dataset[crs$sample ,c(2:4 ,6:10)] ,

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

11.6 Further Tuning Models 155

crs$dataset[crs$sample ,c(13)],

control=rpart.control(maxdepth =30, cp=0.010000 ,

minsplit =20, xval =10),

iter =50)

You can now go back to the Rattle window’s Evaluate tab and evaluate
the performance of this new model. Indeed, you can, if you choose, save
the models to different variables in the R Console, and selectively copy
them into crs$ada and then evaluate then with Rattle. Of course, the
alternative is to copy the R commands for the evaluation from the Log tab
of Rattle and paste them into the R console and perform the evaluation
prgrammatically.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

156 Moving into R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 12

Troubleshooting

Rattle is open source, freely available, software, and benefits from user
feedback and user contributions. It is also under constant development
and improvement. Whilst every effort is made to ensure Rattle is error
and bug free, there is always the possibility that we will find a new bug.
This is then the opportunity for us to review the code and to improve
the code. At the very least though, if you find a problem with Rattle,
contact the author to report the problem. At best, feel free to hunt down
the source of the problem in the R code and provide the solution to the
author, for all to benefit.

In this chapter we record some known issues that you may come across
in using Rattle. These aren’t bugs as such but rather known issues that
a data miner is likely to come across in building models.

12.1 Cairo: cairo pdf surface create could not
be located

A number of users have reported (April 2007) the following error when
trying to display using the Cairo Device:
The procedure entry point cairo_pdf_surface_create could not be

located in the dynamic link library libcairo -2. dll

Error in dyn.load(x, as.logical(local), as.logical(now)) :

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

158 Troubleshooting

unable to load shared library

’C:/PROGRA~1/R/R-24~1.1/library/cairoDevice/libs/cairoDevice.dll’:

LoadLibrary failure: The specified procedure could not be found.

The reason for the error is currently unknown. A work-around is to not
use the Cairo device for plotting. This can be set in the Settings menu,
or else simply remove the cairoDevice package and Rattle will default to
using the Windows device.

12.2 A factor has new levels

This occurs when the training dataset does not contain examples of all
of the levels of particular factor and the testing set contains examples of
these other levels.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Part II

R for the Data Miner

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 13

R: The Language

R is a statistical and data mining package consisting of a programming
language and a graphics system. It is used throughout this book to illus-
trate data mining procedures. It is the programming language used to
implement the Rattle graphical user interface for data mining in Chap-
ter 2, page 7. If you are moving to R from SAS or SPSS, then you may
find the document http://oit.utk.edu/scc/RforSAS&SPSSusers.doc
helpful.

In the following sections of this chapter we introduce the basics of R.
We will find many examples presented which can be readily copied into
an R console to facilitate learning. You will also find many examples on
the R-help mailing list at https://stat.ethz.ch/mailman/listinfo/
r-help.

Learning by example is a powerful learning paradigm. Motivated by the
programming paradigm of “programming by example” (Cypher, 1993),
the intention is that you will be able to replicate the examples from the
book, and then fine tune them to suit your own needs. This, of course, is
also one of the underlying principles of Rattle, as described in Chapter 2,
page 7, where all of the R commands that are used under the graphical
user interface are exposed to the user. This makes it a useful teaching
tool in learning R for the specific task of data mining, and also a good
memory aid!

So R is a language. The basic modus operandi is to write sentences

http://oit.utk.edu/scc/RforSAS&SPSSusers.doc
https://stat.ethz.ch/mailman/listinfo/r-help
https://stat.ethz.ch/mailman/listinfo/r-help

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

162 R: The Language

expressed in this language. After a while you will want to do more than
to issue single, simple, commands (sentences), but to write sentences and
paragraphs and full novels in the language! R script files (often with the
R filename extension) are the place to write scripts. You can re-run your
scripts to transform, at will and automatically, your source data into
information and knowledge.

This chapter begins with an overview of some of the key advantages (and
disadvantages) of using R and continues with a guide to interacting with
R. For data mining purposes the recommended interface is the simple
to use Rattle (Chapter 2), although more advanced users will prefer the
powerful Emacs editor, augmented with the ESS package. Both run
under GNU/Linux, Mac/OSX, and MS/Windows. This is a personal
preference and you may prefer some of the alternatives we discuss—this
freedom of choice is yours.

Direct interaction with R has a steeper learning curve than using GUI
based systems, but once into R, performing operations over the same
or similar datasets becomes very easy using its programming language
interface. For the R beginner, using a GUI like Rattle, where all under-
lying R commands are available for your perusal and direct pasting into
R itself, may be a good first step.

Let’s start with some of the advantages with using R:

• R is licensed under the GNU General Public License, with Copy-
right held by The R Foundation for Statistical Computing. Thus,
it is Free Open Source Software, freely available, so that anyone
can freely download and install the software and even freely mod-
ify the software, or look at the code behind the software to learn
how things can be done. Indeed, anyone is welcome to provide
bug fixes, code enhancements, and new packages, and the wealth
of quality packages available for R is a testament to this approach
to software development and sharing.

• R probably has the most complete collection of statistical functions
of any statistical or data mining package. New technology and ideas
often appear first in R.

• The graphic capabilities of R are outstanding, providing a fully

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

163

programmable graphics language which surpasses most other sta-
tistical and graphical packages.

• A very active email list, with some of the worlds leading statisti-
cians actively responding, is available for anyone to join. Questions
are quickly answered and the archive provides a wealth of user so-
lutions and examples. Be sure to read the Posting Guide first.

• Being open source the R source code is peer reviewed, and anyone
is welcome to review it and suggest improvements. Bugs are fixed
very quickly. Consequently, R is a rock solid product. New packages
provided with R do go through a life cycle, often beginning as
somewhat less quality tools, but usually quickly evolving into top
quality products.

• R plays well with many other tools, importing data, for exam-
ple, from CSV files, SAS, and SPSS, or directly from MS/Excel,
MS/Access, Oracle, MySQL, and SQLite. It can also produce
graphics output in PDF, JPG, PNG, and SVG formats, and ta-
ble output for LATEX and HTML.

Whilst the advantages might flow from the pen with a great deal of
enthusiasm, it is useful to note some of the disadvantages or weaknesses
of R, even if they are perhaps transitory!

• R is not so easy to use for the novice. There are several simple
to use graphical user interfaces (GUIs) for R that encompass point
and click interactions, but they generally do not have the polish of
the commercial offerings of Clementine (Chapter 48, page 547) and
SAS/Enterprise Miner (Chapter 53, page 559).

• Documentation is sometimes patchy. Whilst there are extensive
documents on line and available in books and throughout the In-
ternet, it can sometimes be terse and even impenetrable to the
non-statistician. On the other hand, for example, SAS has ex-
tensive, self-contained, and often well explained, documentation,
readily available to the user. Nonetheless, users do comment that
the R documentation is to the point and easy to consult.

http://www.R-project.org/posting-guide.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

164 R: The Language

• The quality of some packages is less than perfect, although if a
package is useful to many people, it will quickly evolve into a very
robust product through collaborative efforts.

• There is no one to complain to if something doesn’t work - at least
no one who has a financial interest in keeping you, the user, as
a satisfied customer. Organisations are quite happy to pay major
premiums for that apparent peace of mind! Nonetheless, problems
are usually dealt with quickly on the mailing list, and bugs disap-
pear with lightning speed.

The remaining sections of this chapter can generally be skipped on a
reading through the book, particularly if you are using Rattle. They
provide a basic reference guide to using R, and in particular some of its
programming capabilities. While chapter 3 deals in detail with creating
data in R, we introduce some of the basics here. The most basic needs
include creating simple datasets, and being familiar with the basic data
types and programming concepts, and how to get help.

13.1 Obtaining and Installing R

CRAN is the Comprehensive R Archive Network where you will find the
R installation package and all verified R packages. Installation of R is
then straightforward, either from source or from a pre-compiled binary
package. The installation of R itself is covered in Section 2.1, page 8.

Be aware though that you can even run R without installing it! The
Quantian live CD can be used to boot your computer and run GNU/Linux
from the CD, from where you can start up R and run it over data on
your hard disk. All of this can be done without touching what ever op-
erating system is already installed on your hard disk. If you like what
you see (and it will run slower than a proper install) you can then install
it properly.

We briefly review the installation of R here.

http://www.r-project.org
http://dirk.eddelbuettel.com/quantian.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.1 Obtaining and Installing R 165

13.1.1 Installing on Debian GNU/Linux

In short, on a Debian GNU/Linux system, the premier GNU/Linux sys-
tem, R has been packaged by Dirk Eddelbuettel, and is part of the main
Debian distribution. To install it simply install the r-recommended pack-
age using any of Debian’s package management tools. For example, enter
the following command into a terminal window:
$ wajig install r-recommended

This will install a basic system. There are, though, over 95 individual
R packages to add to your installation as you need. These include, for
example:
$ wajig install r-cran -cluster r-cran -hmisc r-cran -rpart

To install most of those available:
$ wajig listnames ^r- > Rpackages

$ wajig install -file Rpackages

Other packages can be installed from the CRAN archives directly using
the install.packages function. See Section 13.6.2, page 178 for details.

13.1.2 Installing on MS/Windows

To install R under MS/Windows, download the self installing pack-
age from http://cran.us.r-project.org/bin/windows/base/R-2.4.
1-win32.exe (the version number changes each 6 months) or a CRAN
site near you. Simply run the installer and R will be appropriately in-
stalled. To install individual packages use the install.packages function
(Section 13.6.2, page 178).

13.1.3 Install MS/Windows Version Under GNU/Linux

Installing the MS/Windows version of R on a GNU/Linux machine seems
like a very odd thing to do, but there are times when you may need to
share a high quality graphics file in a format that your MS/Windows
limited colleagues can use. Only the MS/Windows version of R can
generate MS/Windows Metafiles (with filename extension wmf and emf).

http://cran.us.r-project.org/bin/windows/base/R-2.4.1-win32.exe
http://cran.us.r-project.org/bin/windows/base/R-2.4.1-win32.exe

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

166 R: The Language

As with many things in GNU/Linux, which is all about freedom, you
can install the MS/Windows version of R using the GNU/Linux package
called Wine. The steps are (replace http://cran.au.r-project.org/
with an archive near you—see http://cran.r-project.org/mirrors):
$ wget http://cran.au.r-project.org/bin/windows/base/R-2.4.1 - win32.exe

$ wine R-2.3.1 - win32.exe

$ wine ~/.wine/fake_windows/Program\ Files/R/2.4.1/bin/Rgui.exe

The resulting window will be running the MS/Windows application on
your GNU/Linux desktop.

Inside the Rgui you can create a MS/Windows Metafile image in this
way:
> win.metafile("sample.emf")

> plot(iris$Petal.Length , iris$Petal.Width)

> dev.off()

But now we are ahead of ourselves! These three lines illustrate sentences
that we write in order to command R to do things for us. The ‘>’ is
a prompt which indicates that R is waiting for our instructions. We
type in what follows (e.g., plot) which instructs R to produce a plot.
The information between the brackets tell R what to plot—they are the
command arguments.

13.2 Interacting With R

The basic paradigm for interacting with R is that of writing sentences
in a language. For this you need an editor, and ideally one that sup-
ports: R syntax highlighting in colour; parenthesis checking; command
completion; and code evaluation by R. Such an editor, and highly recom-
mended, is Emacs with the ESS package. Which ever editor you prefer,
a favoured mode of operation is to write your R sentences, using your
editor, into a file, and then ask R to evaluate the instructions you have
provided. Such a practise will ensure you work efficiently to capture the
results of your data understanding, data cleaning, data transformations,
and data mining. It will also ensure your work is repeatable, and as your
data changes, you can simply re-run your processes, as expressed in your
script files.

http://cran.r-project.org/mirrors

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.2 Interacting With R 167

While graphical user interfaces (GUIs) provide an easy path into using
a tool, you very quickly lose the ability to capture your processes and,
by staying within the GUI you quickly find that you have limited func-
tionality and flexibility that a full language would provide. Indeed, you
also tend to end up not understanding what it is you are doing, and can
easily fall into statistical traps! GUIs are good for helping remember the
commands to perform specific tasks but a GUI can often end up getting
in the way, rather than helping.

Compare this to writing books which still fundamentally involves putting
words into sentences in a document. So it is with writing data mining
stories. The tools available provide much help in writing our stories, but
still we need to put the sentences together.

And like any story, we will be writing them for others to read, not just
for the computer to evaluate. So always write your R code with the
intention that others will want to read it. They will!

13.2.1 Basic Command Line

R is essentially a command line tool that is usually initiated by running
the command R in a command line window (e.g., a gnome-terminal) on
your system. When R is ready to accept your instructions it will issue the
> prompt, and then wait for your input. Figure 13.1 shows that a user
has invoked the nrow function with argument iris to find the number of
rows in the iris dataset. R has responded with an answer of 150

The basic MS/Windows command line GUI provides a menu-based sys-
tem to access some of the meta-functionality of R, such as to load and
install packages. By default it uses a multiple document interface (MDI)
so that all R windows open up in a single Rgui frame. To use a Single
Document Interface (SDI) choose the appropriate option under Single or
multiple windows, which you can find under the GUI preferences of the
Edit menu. Then save the configuration in the default Rconsole file,
and restart R.

To interrupt a running R command simply type Ctrl-C. To exit from R
use the q function:
> q()

Save workspace image? [y/n/c]: n

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

168 R: The Language

Figure 13.1: The R Command Line is the basic interface to R.

Figure 13.2: The R interface under MS/Windows, with the default MDI
display.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.2 Interacting With R 169

You are given the option to save all of the currently defined objects (the
workspace image), which will automatically be reloaded next time you
start R from this same location (directory). If you choose to do so R will
save the workspace image to a file called .RData.

13.2.2 Emacs and ESS

We discussed above the philosophy of using an editor to interact with
R, and thus fortuitously saving our work to file. Numerous editor based
interfaces are available for R, and a good choice is Emacs with the ESS
package.

Emacs, as often it does, provides the most sophisticated access to R,
through the use of the ESS Emacs package, providing a simple mechanism
to type R commands into a file and have them executed by R on request.
Figure 13.3 illustrates the basic interface. After starting Emacs, load
in a file (or create a new file) with a name ending in R. With the ESS
package for Emacs installed (for example, installing the ess package on
Debian GNU/Linux) you will see an empty window with an R toolbar,
similar to Figure 13.3.

Initiate an R subprocess in Emacs by clicking on the R icon. You’ll
be asked for a folder for R to treat as it’s default location for storing
and reading data. A buffer named *R* will display and you can type R
functions directly to have them evaluated. Switching back to an R file
buffer (or, as in the figure, splitting the window to display both buffers)
will allow you to type R functions into the buffer and have them evaluated
on request. The series of icons to the right of the R and SPlus icons allow
the functions in the file buffer to be executed in the R subprocess buffer.
From left to right they are: evaluate the current line (the arrow and
single line); evaluate the currently highlighted region; load the file into
R; or evaluate the current function. Simply clicking one of these icons
will cause the R commands to be evaluated. It is a simple yet effective
interface.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

170 R: The Language

Figure 13.3: The ESS GUI interface to R within Emacs, showing the edit
window on top, where R code can be constructed and saved to file and
requested to be evaluated. The R window below is where the R code is
evaluated and its output is displayed.

13.2.3 Windows, Icons, Mouse, Pointer—WIMP

Graphical interfaces might be good for a while, but soon become restric-
tive. Nonetheless, people like to get into new tools graphically, so we will
introduce a common option within R, using Rcmdr, whilst noting that
rattle (Chapter 2, page 7) is an alternative, specifically targeted for data
mining.

Rcmdr is the most feature full R GUI. To start it up, simply load the
package:
> library(Rcmdr)

A basic GUI interface with split screens will appear, as in Figure 13.4.

The top window in the GUI records the commands or functions that are
to be sent to R. You can edit the commands here or else use the menus to
generate the commands for you. The lower window shows the commands
as they are evaluated and their output.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.2 Interacting With R 171

Figure 13.4: The R Commander GUI provides a simplified interface to
using R. The interface consists of the top edit window and the lower
execution and results window.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

172 R: The Language

The GUI provides an excellent pathway into learning how to use R. Using
various menus and resulting pop-up windows to build R functions can be
very instructive. For some, the Rcmdr may be all that is needed for
using R, allowing commands to be entered directly and then saved to
script files, either as a record of processing and modelling, or else for
later automatic regeneration of results.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.3 Evaluation 173

13.3 Evaluation

R is an interpreted language providing procedural, functional, and ob-
ject oriented paradigms. The basic mode of interacting with R has the
user typing commands (function names and arguments) and R evaluating
them to return an answer (or an object). The object returned is often
a vector (a collection of objects all of the same data type). The ele-
ments of the vector are numbered, beginning with 1, as indicated within
the square brackets of the output. The returned elements are printed
at the beginning of the line following the commands you type, but for
brevity we include them as comments in our examples here (a comment
is introduced with a # and continues to the end of a line):
> 5+2 # [1] 7

> 5-2 # [1] 3

> 5*2 # [1] 10

> 5/2 # [1] 2.5

> 5%%2 # [1] 1 Remainder after division

> 5^2 # [1] 25

> 5^2-2*3 # (5^2) - (2*3) [1] 19

All of these examples use in place function names (i.e., operators like +
and -) with the arguments on either side and returns a vector of length
1.

Documentation relating to operator precedence is available with:
> help(Syntax)

R is most typically seen as a functional language, meaning that it works
by calling functions, such as log (for calculating the logarithm of a num-
ber), and returning values from these functions. Functions often require
arguments that give additional information to the function. Some argu-
ments are optional, and can be introduced through giving the name of
the argument, which can be abbreviated, or missing altogether using the
position to indicate the intent of the argument.
> log (1000) # 6.907755

> log(1000, base =10) # 3

> log(1000, b=10) # 3 Command arguments can be abbreviated

> log(1000, 10) # 3 Command arguments can be positional

In fact, even the in-place operators we saw above (e.g., 5+2) are just a
syntactic abbreviation for a function call:

http://en.wikipedia.org/wiki/Interpreted_Language
http://en.wikipedia.org/wiki/Functional_language
http://en.wikipedia.org/wiki/Functional_programming

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

174 R: The Language

> "+"(5,2) # 7 In -place operators are a syntactic convenience

13.4 Help

R provides extensive on-line documentation, some of which is very good,
but there is a degree of variability and often the novice is left with a
pointer to a paper in a research journal that requires a degree in statistics
to read! But, as is the power of open source software, anyone is welcome
to improve the situation by contributing better documentation. Also, the
on-line Wikipedia is becoming a great tool for understanding the basic
concepts.

You can view documentation either within the R window or else through
an external web browser through the call to help.start :
> help.start()

Once this call has been made, all following help requests are displayed
in the web browser. You can turn this off with the htmlhelp option:
> options(htmlhelp=FALSE)

Basic documentation is available through the help function. Preceding
any function name with a question mark (?) will also invoke the help
function. The str and args functions are also useful in listing the signa-
ture of the function:
> help(scale) # Display the manual page for the scale function.

> ?scale # Same as help(scale).

> str(scale) # Show the structure of the function call.

function (x, center = TRUE , scale = TRUE)

> args(scale)

function (x, center = TRUE , scale = TRUE)

NULL

To obtain a basic overview of a package you can use the help option of
the library function (see Section 13.6 for information on packages):
library(help=maptools)

Often, more detailed documentation is provided through vignettes. To
list all the available vignettes call the vignette function without any ar-
guments. Then to view a specific vignette simply pass it as an argument.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.4 Help 175

Of particular use is the combination of the R function edit with vignette
which will place you in a text editor with the sample code from the
vignette, giving you an opportunity to try the code out.
> vignette ()

Vignettes in package ’arules ’:

arules Data structures for association rules (source , pdf)

[...]

> vignette("arules")

> edit(vignette("arules"))

Most packages provide examples of their usage with the basic documen-
tation. You can run the examples through R using the example function:
> example(persp)

If you are looking for a specific function, you might want to use the
help.search function to search through R packages that are installed on
your system, or the RSiteSearch function to search the CRAN archive:
> help.search("lda")

> RSiteSearch("lda", restrict="function")

The following rely on the function being identified in the current session
(i.e., they are already attached):
> find(lda) #

> apropos("abc") # List objects matching the string.

> getAnywhere(lda) # Provides useful description of source.

Being an object-oriented language, R provides multiple implementations
for numerous functions (or methods). For example, which plot function
is called is determined according to the type of object being plotted. If it
is an rpart object, then plot.rpart is actually called up to do the plotting.
For any such function you can get a list of candidate methods with the
methods function.
> methods(plot)

[1] plot.Date* plot.HoltWinters* plot.POSIXct*

[4] plot.POSIXlt* plot.TukeyHSD plot.acf*

[7] plot.data.frame* plot.decomposed.ts* plot.default

[10] plot.dendrogram* plot.density plot.ecdf

[13] plot.factor* plot.formula* plot.hclust*

[16] plot.histogram* plot.isoreg* plot.lm

[19] plot.medpolish* plot.mlm plot.ppr*

[22] plot.prcomp* plot.princomp* plot.profile.nls*

[25] plot.rpart* plot.spec plot.spec.coherency

[28] plot.spec.phase plot.stepfun plot.stl*

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

176 R: The Language

[31] plot.table* plot.ts plot.tskernel*

Non -visible functions are asterisked

Noting that the open square bracket is actually an operator which ex-
tracts or replaces parts of an object, we can get help on such operators,
and their specific methods, using the same notation:
> ?"[" # Help on the [operator

> ?"[. factor" # Help on the [operator when applied to a factor

> ?"[<-.data.frame" # Help on the data frame replace operator

13.5 Assignment

Storing data into variables is a fundamental operation in any language,
and R provides the arrow notation for the assignment operator:
> x <- 10

The assignment can operate in the opposite direction but it is not so
common, and is probably best avoided:
> 10 -> x

Occasionally you might also see the double headed arrow notation:
> x <<- 10

It is not generally used, should be avoided, and is included here only
for completeness. It is used, for example, to maintain information in a
function across different function calls to the same function, or to share
some information across a number of functions. In effect it assigns a
value to a variable that exists outside the function (in fact, it searches
through the list of environments up to the Global Environment to find
where the variable is defined, and assigns the value to the first it finds,
or creates a new one in the Global Environment if none found). This
breaks some of the principles of functional programming—in that user
variables might be changed unexpectedly, possibly resulting in erroneous
computations.

An alternative to <- is =, and in most situations they are equivalent.
There are subtle differences as in:

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.6 Libraries and Packages 177

if (x=0) 1 else 2

This gives a syntax error, whereas replacing = with <- is quite legitimate
(though unusual). This helps to avoid a common coding bug where this
test is not expected to be an assignment, but in fact a comparison (which
should really be using ==).

13.6 Libraries and Packages

Much of the usefulness of R comes from functionality implemented in
various packages. R provides an extensive collection of packages avail-
able from CRAN. Packages are installed into your own libraries which
are directories containing collections of packages. The library function
requests R to find a package in some library and load that package. The
require function can be used in packages and functions to also load a
library, but only give a warning and return FALSE if the package can
not be found.

13.6.1 Searching for Objects

Objects (data, functions, and methods) are searched for through a search
path of packages and datasets. If the object is not found an error is raised.
The search function will list the current search path. We add elements
to the search path with the attach and library functions and can remove
them with the detach function:
> Species

Error: object "Species" not found

> search ()

[1] ".GlobalEnv" "package:Rcmdr" "package:car"

[4] "package:tcltk" "package:methods" "package:stats"

[7] "package:graphics" "package:grDevices" "package:utils"

[10] "package:datasets" "RcmdrEnv" "Autoloads"

[13] "package:base"

> attach(iris)

> search ()

[1] ".GlobalEnv" "iris" "package:Rcmdr"

[4] "package:car" "package:tcltk" "package:methods"

[7] "package:stats" "package:graphics" "package:grDevices"

[10] "package:utils" "package:datasets" "RcmdrEnv"

[13] "Autoloads" "package:base"

> Species

http://www.r-project.org

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

178 R: The Language

[1] setosa setosa setosa setosa setosa setosa

[...]

[145] virginica virginica virginica virginica virginica virginica

Levels: setosa versicolor virginica

> detach(iris)

> search ()

[1] ".GlobalEnv" "package:Rcmdr" "package:car"

[4] "package:tcltk" "package:methods" "package:stats"

[7] "package:graphics" "package:grDevices" "package:utils"

[10] "package:datasets" "RcmdrEnv" "Autoloads"

[13] "package:base"

13.6.2 Package Management

Packages can be installed or updated using the install.packages function,
which will connect to a CRAN repository on the Internet and down-
load the package. If no repository has already been specified, R will
request one to use. You can specify one using the options function. Your
installed packages will be updated using the update.packages function,
while packages can be removed using remove.packages.
> options(repos="http://cran.us.r-project.org/")

> install.packages("ellipse") # Installs the ellipse package from CRAN.

> install.packages("H:/ellipse_2.0 -14. zip", repos=NULL)

> update.packages ()

> remove.packages ([...])

The available.packages function will list the packages available from the
CRAN archives. See also installed.packages and download.packages.

You can identify the status of the packages you have installed in your R
system with packageStatus. You will be asked to select a CRAN mirror
from which to retrieve information about the available packages.
> packageStatus ()

--- Please select a CRAN mirror for use in this session ---

Loading Tcl/Tk interface ... done

Number of installed packages:

ok upgrade unavailable

/usr/local/lib/R/site -library 12 10 0

/usr/lib/R/site -library 46 11 10

/usr/lib/R/library 24 2 0

Number of available packages (each package/bundle counted only once):

installed not installed

http://cran.au.r-project.org/src/contrib 89 494

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.6 Libraries and Packages 179

If you then request a summary of the packageStatus you will get details
about the packages, including, for example, those available from each of
the local libraries, identifying those that have upgrades available.
> summary(packageStatus ())

Installed packages:

*** Library /usr/local/lib/R/site -library

$ok

[1] "ISwR" "ROCR" "XML" "ash" "dprep"

[6] "kernlab" "leaps" "modeltools" "mvpart" "oz"

[11] "sfsmisc" "vioplot"

$upgrade

[1] "DAAG" "arules" "chplot" "coin" "ellipse"

[6] "gbm" "party" "pixmap" "plotrix" "randomForest"

\$unavailable

NULL

*** Library /usr/lib/R/site -library

$ok

[1] "Design" "Hmisc" "MCMCpack" "MNP" "MatchIt"

[6] "RMySQL" "RODBC" "RQuantLib" "Rcmdr" "Rmpi"

[11] "Zelig" "abind" "acepack" "coda" "date"

[16] "effects" "fBasics" "fCalendar" "fExtremes" "fMultivar"

[21] "fOptions" "fPortfolio" "fSeries" "gtkDevice" "its"

[26] "lmtest" "mapdata" "mapproj" "maps" "misc3d"

[31] "multcomp" "mvtnorm" "pscl" "psy" "qtl"

[36] "quadprog" "relimp" "rgl" "rpvm" "rsprng"

[41] "sandwich" "sm" "snow" "tkrplot" "tseries"

[46] "zoo"

$upgrade

[1] "DBI" "Matrix" "XML"

[4] "car" "gregmisc:gdata" "gregmisc:gmodels"

[7] "gregmisc:gplots" "gregmisc:gregmisc" "gregmisc:gtools"

[10] "lme4" "strucchange"

$unavailable

[1] "RGtk" "Rggobi" "event" "gnlm" "growth"

[6] "ordinal" "repeated" "reposTools" "rmutil" "stable"

*** Library /usr/lib/R/library

$ok

[1] "KernSmooth" "VR:MASS" "VR:class" "VR:nnet" "VR:spatial"

[6] "base" "boot" "cluster" "datasets" "foreign"

[11] "grDevices" "graphics" "grid" "lattice" "methods"

[16] "mgcv" "rpart" "splines" "stats" "stats4"

[21] "survival" "tcltk" "tools" "utils"

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

180 R: The Language

$upgrade

[1] "StatDataML" "nlme"

$unavailable

NULL

Available packages:

(each package appears only once)

*** Repository http://cran.au.r-project.org/src/contrib

$installed

[1] "DAAG" "DBI" "Design" "Hmisc" "ISwR"

[6] "KernSmooth" "MCMCpack" "MNP" "MatchIt" "Matrix"

[11] "RMySQL" "ROCR" "RODBC" "RQuantLib" "Rcmdr"

[...]

[81] "sfsmisc" "sm" "snow" "strucchange" "survival"

[86] "tkrplot" "tseries" "vioplot" "zoo"

$"not installed"

[1] "AMORE" "AlgDesign" "AnalyzeFMRI"

[4] "BHH2" "BMA" "BRugs"

[7] "BSDA" "Bhat" "Biodem"

[...]

[487] "verification" "verify" "waveslim"

[490] "wavethresh" "wle" "xgobi"

[493] "xtable" "zicounts"

13.6.3 Information About a Package

Information about a package can be obtained through the library func-
tion, using the help option. The information includes the basic meta-data
about the package (including its name, version, author, and dependen-
cies).
> library(help=rpart)

Information on package "rpart"

Description:

Package: rpart

Priority: recommended

Version: 3.1 -23

Date: March 2002 version of rpart , R version 2005 -04 -15

Author: Terry M Therneau and Beth Atkinson <atkinson@mayo.edu >.

R port by Brian Ripley <ripley@stats.ox.ac.uk >.

Maintainer: Brian Ripley <ripley@stats.ox.ac.uk>

Description: Recursive partitioning and regression trees

Title: Recursive Partitioning

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.6 Libraries and Packages 181

Depends: R (>= 2.0.0)

Suggests: survival

License: use under GPL2 , or see file LICENCE

LazyData: yes

URL: S-PLUS 6.x original at

http://www.mayo.edu/hsr/Sfunc.html

Packaged: Tue Apr 19 11:21:21 2005; ripley

Built: R 2.1.0; i386 -pc -linux -gnu; 2005 -04 -20 03:10:16; unix

Index:

car.test.frame Automobile Data from ’Consumer Reports ’ 1990

cu.summary Automobile Data from ’Consumer Reports ’ 1990

kyphosis Data on Children who have had Corrective

Spinal Surgery

[...]

The package help displayed above also includes an index of what the
package contains. Each item here will generally have further help avail-
able through the help function:
> help(car.test.frame)

car.test.frame package:rpart R Documentation

Automobile Data from ’Consumer Reports ’ 1990

Description:

The ’car.test.frame ’ data frame has 60 rows and 8 columns , giving

data on makes of cars taken from the April , 1990 issue of

Consumer Reports. This is part of a larger dataset , some columns

of which are given in ’cu.summary ’.

[...]

13.6.4 Testing Package Availability

If a function you write depends on the functionality of some package,
such as gplots, use the stopifnot function to exit if the package is not
available:
myfun <- function ()

{

stopifnot(require(gplots))

[...]

}

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

182 R: The Language

Also, the .packages can be used to list all packages that have been in-
stalled on your system:
> .packages(all=TRUE)

[1] "acepack" "ada" "amap"

[4] "arules" "bitops" "butler"

[..]

[73] "tcltk" "tools" "utils"

[76] "mapdata"

And a call to the library function with no arguments will list all packages
installed, and a one line description:
> library ()

Packages in library ’/usr/lib/R/library ’:

base The R Base Package

datasets The R Datasets Package

graphics The R Graphics Package

[...]

Packages in library ’/usr/local/lib/R/site -library ’:

acepack ace() and avas() for selecting regression

transformations

ada Performs boosting algorithms for a binary

response

[...]

XML Tools for parsing and generating XML within R

and S-Plus.

xtable Export tables to LaTeX or HTML

13.6.5 Packages and Namespaces

Detaching a package does not unload its namespace from R. Unloading
a namespace does not de-register its methods. As Gabor Grothendieck
points out on r-help on 26 Mar 2007:
> search ()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

> loadedNamespaces ()

[1] "base" "graphics" "grDevices" "methods" "stats" "utils"

> as.Date (1) # error as there is no numeric method for as.Date

Error in as.Date.default (1) : do not know how to convert ’1’ to class "Date"

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.7 Basic Programming in R 183

> library(zoo)

> search ()

[1] ".GlobalEnv" "package:zoo" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

> loadedNamespaces ()

[1] "base" "graphics" "grDevices" "grid" "lattice" "methods"

[7] "stats" "utils" "zoo"

> as.Date (1) # zoo defines a numeric method for as.Date

[1] "1970 -01 -02"

> detach ()

> unloadNamespace("zoo")

<environment: namespace:zoo >

> search ()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

> loadedNamespaces ()

[1] "base" "graphics" "grDevices" "grid" "lattice" "methods"

[7] "stats" "utils"

> # zoo is gone from attached package list and loadedNamespaces

> # but numeric method for as.Date from zoo is still registered

> as.Date (1)

[1] "1970 -01 -02"

13.7 Basic Programming in R

13.7.1 Folders and Files

> getwd () # Identify the current default working directory

> setwd("h:/work/") # Change the current default working directory

> file.exists("filename") # Returns TRUE if the file exists

> unlink("filename") # Deletes the file or directory

> fname <- file.choose () # An interactive file chooser.

> choose.dir() #

> dir <- tclvalue(tkchooseDirectory ()) # GUI which requires library(tcltk).

MS/Windows paths use the backward slash to separate components.
This is a problem since the backslash is used as a standard mechanism for
introducing special characters within strings. Thus, R requires a double
back slash or will seamlessly allow the use of the forward slash. A use-
ful utility on a MS/Windows environment, where backslashes are used
in paths, and R likes to have forward slashes, is the following (Duncan
Golicher, 5 Jan 2006, r-help):

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

184 R: The Language

setwd.clip <- function ()

{

options(warn=-1)

setwd(gsub("\\\\", "/",readLines("clipboard")))

options(warn =0)

getwd()

}

Then, simply select a path into your clipboard (Ctrl-C), then in R call
setwd.clip!

R packages supply files and we can access them in a installation indepen-
dent way using system.file:
> system.file("csv", "audit.csv", package = "rattle")

We can view the contents of files in R using file.show :
> file.show(system.file("csv", "audit.csv", package = "rattle"))

13.7.2 Flow Control

> if (!file.exists("mydata.RData") { write(myiris , file="mydata.RData") }

13.7.3 Functions

myfun <- function(arg1 , arg2=TRUE , ...)

{

[...]

}

The results of a function are returned with the return function (or else is
the result of the last evaluated statement in the function). The returned
result will be printed if the result is not assigned to a variable. To avoid
the result being printed, use the invisible function to return the result.

Anonymous functions can be used:
(function(x, y) x^2 + y^2)(0:5 , 1) # 1 2 5 10 17 2

Functions are first class objects. You can write a function to return a
function:
f <- function(y=10)

{

g <- function(x) seq(x, x+y)

return(g)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.7 Basic Programming in R 185

}

> h <- f(5)

> h(5)

[1] 5 6 7 8 9 10

> h <- f()

> h(5)

[1] 5 6 7 8 9 10 11 12 13 14 15

> get("y",env=environment(h))

[1] 10

And you can write a function to apply some given function:
chooseFun <-function(dat=1:10,fun=mean ,...) fun(dat ,...)

chooseFun ()

x<-rnorm (100)

chooseFun(x,median)

chooseFun(x,hist)

chooseFun(x,hist ,col=’gray’)

13.7.4 Apply

Suppose you have a data frame from which you wish to extract a subset
of rows, and you have a matrix to record the start and finish of the
sequences of indicies you wish to extract. Whilst a for loop is obvious,
mapply works nicely.
> x <- rbind(c(2,5), c(7,9), c(15 ,20))

> x

[,1] [,2]

[1,] 2 5

[2,] 7 9

[3,] 15 20

> unlist(mapply(seq , x[,1], x[,2]))

[1] 2 3 4 5 7 8 9 15 16 17 18 19 20

13.7.5 Methods

Sometimes you may want to know how a function is implemented. R is
also an object oriented function and so what method is called depends
on the type of the argument. This can be illustrated with the mean
function. Try to determine its implementation:
> mean

function (x, ...)

UseMethod("mean")

<environment: namespace:base >

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

186 R: The Language

The UseMethod part indicates that mean is a generic function, possibly
with many different implementations. A generic function usually has a
default method:
> mean.default

function (x, trim = 0, na.rm = FALSE , ...)

{

if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {

warning("argument is not numeric or logical: returning NA")

return(as.numeric(NA))

}

if (na.rm)

x <- x[!is.na(x)]

trim <- trim [1]

n <- length(x)

[...]

if (is.integer(x))

sum(as.numeric(x))/n

else sum(x)/n

}

<environment: namespace:base >

13.7.6 Objects

R provides an object oriented interface, with inheritance and objects with
attributes. For an object with attributes you can access the attributes
with the attr function or the @ operator:
> attr(obj , "age")

> obj@age

The get function is useful to transform a string into the name of an
object:
> ds <- 1:5

> ds

> ds

[1] 1 2 3 4 5

> "ds"

[1] "ds"

> get("ds")

[1] 1 2 3 4 5

> get(ds)

Error in get(x, envir , mode , inherits) : invalid first argument

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.7 Basic Programming in R 187

13.7.7 System

Running System Commands

You can ask the operating system to perform a command with the system
command:
> system("sleep 10") # Run OS command sleep with argument 10

> system("sleep 10", wait=FALSE) # Run OS command but don ’t wait (MS/Windows)

> system("sleep 10 &") # Run OS command but don ’t wait (GNU/Linux)

> l <- system("ls", intern=TRUE) # Run OS command and collect output

System Parameters

At times you may need or want to know about the machine on which
you are running. The R .Platform variable will give information about
the system, and can be used, for example, to conditionally run code
depending on which operating system you are on.
> .Platform

$OS.type

[1] "unix"

$file.sep

[1] "/"

\$dynlib.ext

[1] ".so"

$GUI

[1] "X11"

$endian

[1] "little"

$pkgType

[1] "source"

> if (. Platform$OS.type == "unix") system("ls")

There are other variables, but .Platform is the recommended variable to
use for programming. The variable version also lists information about
the version of R you are running.
> version

_

platform i486 -pc-linux -gnu

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

188 R: The Language

arch i486

os linux -gnu

system i486 , linux -gnu

status beta

major 2

minor 2.0

year 2005

month 09

day 28

svn rev 35702

language R

> if (version$os == "linux -gnu") system("ls")

> if (version$os == "mingw32") system("dir")

For a summary of the current R session the sessionInfo function is useful:
> sessionInfo ()

R version 2.4.1 (2006 -12 -18)

i486 -pc -linux -gnu

locale:

LC_CTYPE=en_AU;LC_NUMERIC=C;LC_TIME=en_AU;LC_COLLATE=en_AU;

LC_MONETARY=en_AU;LC_MESSAGES=en_AU;LC_PAPER=en_AU;LC_NAME=C;

LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_AU;LC_IDENTIFICATION=C

attached base packages:

[1] "stats" "graphics" "grDevices" "utils" "datasets" "methods"

[7] "base"

other attached packages:

ROCR gplots gdata gtools ada rpart

"1.0-1" "2.3.2" "2.3.1" "2.3.0" "2.0-1" "3.1-34"

ellipse rggobi mice nnet MASS Hmisc

"0.3-2" "2.1.4 -4" "1.15" "7.2-31" "7.2 -31" "3.2-1"

RGtk2 rattle rcompletion

"2.8.7" "2.1.123" "0.0-12"

Yet another source of system information is Sys.info which includes ma-
chine name and type, operating system name and version, and username.
> Sys.info()

sysname release

"Linux" "2.6.12 -1 -686 - smp"

version nodename

"#1 SMP Tue Sep 6 15:52:07 UTC 2005" "athene"

machine

login

"i686"

"gjw"

user

"gjw"

> if (Sys.info ()["sysname"] == "Linux") system("ls")

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.7 Basic Programming in R 189

Information about various limits of the machine (including things like
maximum integer) is obtained from the .Machine variable.
> .Machine

\$double.eps

[1] 2.220446e-16

$double.neg.eps

[1] 1.110223e-16

[...]

$integer.max

[1] 2147483647

$sizeof.long

[1] 4

$sizeof.longlong

[1] 8

$sizeof.longdouble

[1] 12

$sizeof.pointer

[1] 4

A call to capabilities will list optional features that have been compiled
into your version of R:
> capabilities ()

jpeg png tcltk X11 http/ftp sockets libxml fifo

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

cledit iconv NLS

TRUE TRUE TRUE

The options function in R allows numerous characteristics of the running
R session to be tuned. The options function without arguments returns
a list of options and their values. Use getOption to get a specific option
value, and options itself to set values. Options that can be set include the
prompt string (prompt and continuation prompt (continue), the terminal
width (width), number of digits to show when printing (digits, and many
more. In this example we list some of the options then change width,
storing its old value, evaluate some other functions, then restore the
original value:
> options ()

$OutDec

[1] "."

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

190 R: The Language

$X11colortype

[1] "true"

[...]

$verbose

[1] FALSE

$warn

[1] 0

$warnings.length

[1] 1000

$width

[1] 80

> getOption("width")

[1] 80

>ow <- options(width =120)

[...]

> options(ow)

Other useful functions include:
> R.home() # Location of R installation : /usr/lib/R

> Sys.sleep (5) # Sleep for 5 seconds.

> proc.time() # shows how much time is currently consumed

> Rprof("Rprof.out") # Profile the execution of R expressions

> system.time ([...]) # Execute a command and report the time taken

> on.exit ([...]) # Execute commands on exit or interruption

> username <- as.vector(Sys.info ()["login"])

13.7.8 Misc

> ?plot # The ? is a shortcut for help ().

> identical(x,y) # Test if data is identical .

> sample (2:12 , 100, replace=TRUE) # Random sample with replacement .

> x <- 1:20

> w <- 1 + sqrt(x)

> q()

13.7.9 Internet

You can check whether you have access to an Internet connection using
the nsl function, checking for a specific hostname:

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.8 Memory Management 191

> nsl("www.r-project.org")

[1] "137.208.57.37"

> if(is.null(suppressWarnings(nsl("www.r-project.org")))) print("Connected?")

13.8 Memory Management

13.8.1 Memory Usage

Large datasets often present challenges for R on memory limited ma-
chines. While you may be able to load a large dataset, processing it
and modelling may lead to an error indicating the memory could not be
allocated.

To maximise R’s capabilities on large datasets, be sure to run a 64bit
operating system on a 64 bit platform (e.g., Debian GNU/Linux) on
64 bit hardware (e.g., AMD64) with plenty of RAM (e.g., 16GB). Such
capable machines are quite affordable.

Selecting and subsetting required datasets off a database (e.g., through
the RODBC package) or through other means (e.g., using Python) will
generally be faster.

On MS/Windows you may need to set the memory size using the command-
line flag --max-mem-size. The amount of memory currently in use and
allocated to the R process, is given by the memory.size function.

The example below indicates that some 470MB is in use, altogether about
1GB has been allocated.
> memory.size() # Current memory in use: 470 MB

[1] 477706008

> memory.size(TRUE) # Current memory allocated: 1GB

[1] 1050681344

The memory limit currently in force in R is reported by the memory.limit
function which can also be used to set the limit.
> memory.limit() # Current memory limit: 1GB

[1] 1073741824

> memory.limit (2073741824) # New memory limit: 2GB

NULL

> memory.limit()

[1] 2684354560

http://www.togaware.com/linux/survivor
http://en.wikipedia.org/wiki/AMD64

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

192 R: The Language

A suggested process is to work with a subset of all the data loaded in
memory, using a dataset small enough to make this viable. Explore the
data, explore for the choice of models, and prototype the final analysis
using this smaller dataset. For the final full analyses one may need to
allow R to run overnight with enough RAM.

A data frame of 150,000 rows and some 55 columns will be about 500MB
of RAM.

Also, note the difference between data frames and arrays/matrices. For
example, rbind’ing data frames is much more expensive than rbind’ing
arrays/matrices. However, an array/matrix must have all data of the
same data type in each column while data frames can have different data
types in different columns. A number of functions are written to handle
either data frames or matrices (e.g., rpart) and it is best, if possible,
to use a matrix in these cases. The coercion back to a data frame can
always be done afterwards.

Note that to convert a data frame to a matrix you can use as.matrix :
> m <- as.matrix(dframe)

However, if there are any character columns, all the data is converted to
character.

To obtain an estimate of the amount of memory being used by an object
in R use the object.size function:
> object.size(ds) # Object ds is using 181 MB

[1] 181694428

The following function can be used to explore memory requirements:
sizes <- function(rows , cols =1)

{

testListLength <- 1000

cellSize <- object.size(seq(0.5, testListLength/2, 0.5))/testListLength

cells <- rows * cols

required <- cells * cellSize

if (required > 1e12)

result <- sprintf("%dTB", required %/% 1e12)

else if (required > 1e9)

result <- sprintf("%dGB", required %/% 1e9)

else if (required > 1e6)

result <- sprintf("%dMB", required %/% 1e6)

else if (required > 1e3)

result <- sprintf("%dKB", required %/% 1e3)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.8 Memory Management 193

else

result <- sprintf("%dBytes", required)

return(result)

}

For example, on a 32bit machine, a 1 million row dataset with 400
columns might require about 3GB of memory!

13.8.2 Garbage Collection

When doing timings of commands it is important to know that garbage
collection plays a role. R adjusts its garbage collection triggers accoring
to your usage. When you first start using large objects the trigger levels
will grow and generally things will speed up.

You can use gcinfo to start seeing the adjustments in action:
> gcinfo(TRUE)

[1] FALSE # The setting was previously FALSE

For the system.time function use the gcFirst.

The gc function will cause a garbage collection to take place, and lists
useful information about memory usage (the primary purpose for calling
the gc function). Ncells is the number of so called cons cells used (each
cell is 28 or 56 bytes on 32 or 64 bit systems, and is used for storing
fixed sized objects), and this is converted in the function’s to Mb for
us. Vcells is the number of vector cells used (each cell is 8 bytes, and is
used for storing variable sized objects). The final two columns show the
maximum amount of memory that has been used since the last call to
gc(reset=TRUE).
> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 177949 4.8 407500 10.9 350000 9.4

Vcells 72431 0.6 786432 6.0 332253 2.6

> survey <- read.csv("survey.csv")

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 212685 5.7 741108 19.8 514436 13.8

Vcells 366127 2.8 1398372 10.7 1387692 10.6

> rm(survey)

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 179940 4.9 741108 19.8 514436 13.8

Vcells 72773 0.6 1118697 8.6 1387692 10.6

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

194 R: The Language

Here, after reading the datafile survey.csv (which is 4100478 bytes, or
4MB, in size as a text file), XXXX

13.8.3 Errors

When an error occurs the message may not always be as insightful as one
would like. The traceback function can be used to review the sequence
of function calls that lead to the error:
> fun1 <- function(v){fun2(v)}

> fun2 <- function(v){x.no.name + y.other.name}

> fun1 (10)

Error in fun2(v) : object "x.no.name" not found

> traceback ()

2: fun2(v)

1: fun1 (10)

13.9 Frivolous

Ralso provides many packages to do other interesting things! Here’s a
brief collection that are recorded here for the curious!

13.9.1 Sudoku

Solve a sudoku puzzle with the sudoku package! Into a file place the
following representation of a sudoku puzzle:
2--f-c-8----ab7 -

e---a-6-f-03--d-

--305b-f--2496--

-7------b---5-f1

-------e9-d----6

-0fec -89-----1-b

6----532--7--9-8

-9--d--0----7a4-

-6dc ----3--7--a-

7-0--e--46b----9

1-e-----5d-9fc3 -

4----3-ae -------

93-1---c------e-

--72e4 --8-6dbf --

-e--8a-3-1-5---c

-a45 ----7-9-8--0

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.9 Frivolous 195

Then:
> install.packages("sudoku")

> library(sudoku)

> library(help=sudoku)

> sud <- readSudoku("sudoku.txt")

> solveSudoku("sudoku.txt", map=c(0:9, letters))

2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

[1,] 2 4 6 f 0 c e 8 d 9 5 1

a

[2,] e b 5 9 a 1 6 7 f 8 0 3

c

[3,] c 1 3 0 5 b d f a 7 2 4

9

[4,] 8 7 a d 3 9 2 4 b e c 6

5

[5,] 5 8 1 7 4 f a e 9 b d 0

3

[6,] a 0 f e c 7 8 9 6 4 3 2

d

[7,] 6 d c 4 b 5 3 2 1 a 7 f

e

[8,] 3 9 2 b d 6 1 0 c 5 e 8

7

[9,] b 6 d c 9 8 4 1 3 2 f 7

0

[10,] 7 5 0 3 f e c d 4 6 b a

1

[11,] 1 2 e a 7 0 b 6 5 d 8 9

f

[12,] 4 f 9 8 2 3 5 a e 0 1 c

6

[13,] 9 3 8 1 6 d 0 c 2 f a b

4

[14,] 0 c 7 2 e 4 9 5 8 3 6 d

b

[15,] f e b 6 8 a 7 3 0 1 4 5

2

[16,] d a 4 5 1 2 f b 7 c 9 e

8

[,14] [,15] [,16]

[1,] b 7 3

[2,] 4 d 2

[3,] 6 8 e

[4,] 0 f 1

[5,] 2 c 6

[6,] 1 5 b

[7,] 9 0 8

[8,] a 4 f

[9,] e a 5

[10,] 8 2 9

[11,] c 3 4

[12,] 7 b d

[13,] 5 e 7

[14,] f 1 a

[15,] d 9 c

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

196 R: The Language

[16,] 3 6 0

Another one. The original pattern is:
+-------+-------+-------+

| 1 . . | . . 7 | . 9 . |

| . 3 . | . 2 . | . . 8 |

| . . 9 | 6 . . | 5 . . |

+-------+-------+-------+

| . . 5 | 3 . . | 9 . . |

| . 1 . | . 8 . | . . 2 |

| 6 . . | . . 4 | . . . |

+-------+-------+-------+

| 3 . . | . . . | . 1 . |

| . 4 . | . . . | . . 7 |

| . . 7 | . . . | 3 . . |

+-------+-------+-------+

As a text file for R:
1----7-9-

-3--2---8

--96--5--

--53--9--

-1--8---2

6----4---

3------1-

-4------7

--7---3--

And the solution!
> z <- readSudoku("sudoku2.txt")

> z

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 0 0 0 0 7 0 9 0

[2,] 0 3 0 0 2 0 0 0 8

[3,] 0 0 9 6 0 0 5 0 0

[4,] 0 0 5 3 0 0 9 0 0

[5,] 0 1 0 0 8 0 0 0 2

[6,] 6 0 0 0 0 4 0 0 0

[7,] 3 0 0 0 0 0 0 1 0

[8,] 0 4 0 0 0 0 0 0 7

[9,] 0 0 7 0 0 0 3 0 0

> solveSudoku(z)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 6 2 8 5 7 4 9 3

[2,] 5 3 4 1 2 9 6 7 8

[3,] 7 8 9 6 4 3 5 2 1

[4,] 4 7 5 3 1 2 9 8 6

[5,] 9 1 3 5 8 6 7 4 2

[6,] 6 2 8 7 9 4 1 3 5

[7,] 3 5 6 4 7 8 2 1 9

[8,] 2 4 1 9 3 5 8 6 7

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

13.10 Further Resources 197

[9,] 8 9 7 2 6 1 3 5 4

13.10 Further Resources

There are extensive resources available to assist in learning and using R.

13.10.1 Using R

13.10.2 Specific Purposes

While we concentrate on data mining in this book, R can serve many
purposes and there are specialised packages and web resources available.

Survey Analysis

The survey package provides facilities in R for analysing data from com-
plex surveys. As reported on its web page, it supports: means, to-
tals, ratios, quantiles, contingency tables, regression models, for the
whole sample and for domains; variances by Taylor linearization or by
replicate weights (BRR, jackknife, bootstrap, or user-supplied); multi-
stage sampling with or without replacement; post-stratification, rak-
ing, GREG estimation; graphics. Further information from http://
faculty.washington.edu/tlumley/survey/.

http://faculty.washington.edu/tlumley/survey/
http://faculty.washington.edu/tlumley/survey/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

198 R: The Language

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 14

Data

R supports multiple paradigms, including functional and object-oriented
programming. Every object in R has a class. Functions in R then operate
on objects of particular classes.

14.1 Data Types

The basic types of objects in R include logical, integer, double,
complex, and character. We obtain the type of an object using the
typeof function:
> typeof(TRUE)

[1] "logical"

> typeof (5+4)

[1] "double"

> typeof(letters)

[1] "character"

> typeof(typeof)

[1] "closure"

The last example here illustrates the fact that functions in R are also first
class objects—that is, they are just like any other data type. Functions
have a type called a closure, which is a type that wraps up the func-
tion’s definition and the environment in which the function was created.
The other special types include NULL, symbol, environment, promise,
language, special, builtin, expression, and list.

http://en.wikipedia.org/wiki/Closure_(computer_science)

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

200 Data

The mode of an object is another indication of the type of the object.
For example, objects of type integer and double are of mode numeric.
> mode(x)

> storage.mode(x)

> class(x) # The object class for method dispatch

Normally we build up an object to have some structure, like a vector,
an array, a matrix, or a data frame. The basic building block of a data
structure in R is a vector of objects of some type. Indeed, an object of
type double will in fact be a vector of numbers.

R will keep track of objects you have created:
> ls() # List all objects you have created.

> rm(list=ls(all=TRUE)) # Remove all of your objects.

In the following sections we introduce each of the main types of objects
and illustrate typical operations for manipulating the objects.

14.1.1 Numbers

Numbers in R can be integer, double, or complex. The actual type
is generally determined by R based on context and defaults. Numbers
do tend to be double unless they are in some way restricted to being
integers, or you wish to store complex numbers.
> typeof (1) # "double"

> typeof (1.3) # "double"

> typeof (1:2) # "integer" - this is a vector of two integers 1 and 2

> typeof ((1:2)[1]) # "integer" - this is the first element of the vector

> typeof (2+5i) # "complex" - complex numbers have real and imaginary parts

The basic numeric operators include:
\verb |+| Addition \verb|-| Subtraction \verb|*| Multiplication

\verb|/| Division

\verb |^| Exponentiation \verb |:| Sequence \verb|%/%| Integer division

\verb|%%| Remainder

See the documentation for Arithmetic for details:
> ?Arithmetic

Typical numeric functions include:

http://en.wikipedia.org/wiki/Complex_number

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.1 Data Types 201

> 1:5 # 1 2 3 4 5

> round (1234.56) # 1235

> trunc (1234.56) # 1234

14.1.2 Strings

R provides the usual string type and string manipulation functions:
> chartr("a-m", "m-z", "abcdef") # "mnopqr"

> grep

> nchar

> sub

> substr

> tolower("ABCdef") # "abcdef"

> toupper("ABCdef") # "ABCDEF"

> pmatch("png", c("jpeg", "png", "gif")) # 2

R provides some useful predefined variables, including:
> letters # a b c d [...] z

> LETTERS # A B C D [...] Z

Building Strings

A typical usage of paste is to build a label vector to be used in a plot.
The labels may want to include both the variable values being plotted
and perhaps the percentage of observations having that value.
> labels <- c("A", "B", "C", "D")

> per <- c(25, 10, 15, 45)

> paste(labels , rep(" (", 4), per , rep("%)" ,4), sep="")

[1] "A (25%)" "B (10%)" "C (15%)" "D (45%)"

> sprintf("%s (%d%%)", labels , per)

[1] "A (25%)" "B (10%)" "C (15%)" "D (45%)"

Splitting Strings

strsplit is used to split a string into substrings:
> unlist(strsplit("abc def ghi jkl", " "))

[1] "abc" "def" "ghi" "jkl"

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

202 Data

> unlist(strsplit("abc ,def:ghi.jkl", "\\.| ,|:"))

[1] "abc" "def" "ghi" "jkl"

The split pattern is a regular expression (hence the \\. is required to
quote the full stop). For details on regular expressions see ?regexp

Substitution

Remove all decimal points from a string representing a real number using
sub with either limiting the replacement to digits, or else substituting any
characters:
> sub("\\.[[: digit :]]*$", "", "12345.67")

[1] "12345"

> sub("[.].*", "", "12345.67")

[1] "12345"

In the second example the “.” does not need to be escaped since it
appears in a character class.

Trim Whitespace

A simple function to trim whitespace from the beginning and end of a
string, which you could then use to more simply split a string into a
vector, uses gsub:
> trim.ws <- function(text)

+ gsub("^[[: blank :]]*", "", gsub("[[: blank :]]*$", "", text))

> s <- " a b c "

> strsplit(trim.ws(s), " +")

[1] "a" "b" "c"

Evaluating Strings

A string can be evaluated as R Code.
> s <- "wine$Alcohol <14"

> eval(parse(text=s))

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.1 Data Types 203

14.1.3 Logical

Objects of type logical take on the values TRUE or FALSE. The basic
logical operators include:

! Not < Less than <= Less than or equal to
== Equal to > Greater than >= Greater than or equal to
& And | Or && || Non vectorised versions

> 5 == 4 # FALSE

> 5 != 4 # TRUE

> ! 1 - 1 # TRUE since 1-1 is 0 and is coerced to FALSE

> TRUE * 2 # 2 since TRUE is coerced to 1.

The single logical connectives & and | operates on vectors, whilst the
double connective returns a single result, and does a minimal amount of
comparison to get the result.
> c(TRUE , TRUE , FALSE) & c(TRUE , FALSE , FALSE)

[1] TRUE FALSE FALSE

> c(TRUE , TRUE , FALSE) && c(TRUE , FALSE , FALSE)

[1] TRUE

The double form is usually what you want in an if statement.

14.1.4 Dates and Times

To calculate the differences between times use difftime.

When importing data from a CSV file, for example, dates are simply read
as factors. These can easily be converted to date objects using as.Date:
> ds <- read.csv("authors.csv")

> ds$Notified

[1] 2005/06/05 2005/06/05

> as.Date(ds$Notified , format="%Y/%m/%d")

[1] NA "2005 -06 -05" "2005 -06 -05"

The default format is "%Y-%m-%d". See the help for strftime for an ex-
planation of the format. Any extra text found in the string after the text
has been consumed by the format string will simply be ignored. But
if the format is not found at the beginning of the string then a NA is
returned.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

204 Data

> ds <- c("2005 -05 -22 12:35:00", "2005 -05 -23 abc","abc 2005 -05 -24")

> ds

[1] "2005 -05 -22 12:35:00" "2005 -05 -23 abc" "abc 2005 -05 -24"

> class(ds)

[1] "character"

> ds <- as.Date(ds)

> ds

[1] "2005 -05 -22" "2005 -05 -23" NA

> class(ds)

[1] "Date"

To compare date values use as.Date:
> ds > as.Date("2005 -05 -22")

[1] FALSE TRUE NA

To view the methods associated with the Date class:
> methods(class = "Date")

[1] as.character.Date as.data.frame.Date as.POSIXct.Date Axis.Date*

[5] c.Date cut.Date -.Date [<-.Date

[9] [.Date [[. Date +.Date diff.Date

[13] format.Date hist.Date* is.numeric.Date julian.Date

[17] Math.Date mean.Date months.Date Ops.Date

[21] plot.Date* print.Date quarters.Date rep.Date

[25] round.Date seq.Date summary.Date Summary.Date

[29] trunc.Date weekdays.Date

Non -visible functions are asterisked

To aggregate by month, some alternatives:
> library(chron)

> dts=seq.dates("1/1/01","12/31/03")

> rnum=rnorm (1: length(dts))

> df=data.frame(date=dts ,obs=rnum)

> aggregate(df[,2],list(year=years(df[,1]),month=months(df[,1])),sum)

> library(zoo)

> aggregate(zoo(rnum , dts), as.yearmon , sum)

> aggregate(rnum , list(dts = as.yearmon(dts)), sum)

Extract the year from a vector of dates:
> dates <- c("26 Jan 1974", "April 3, 2002", "23 June , 1999", "2007")

> gsub(".*([1 -9][0 -9]{3}).*", "\\1", dates)

[1] "1974" "2002" "1999" "2007"

> as.POSIXlt(’2005-7-1’)

[1] "2005 -07 -01"

> unlist(as.POSIXlt(’2005-7-1’))

sec min hour mday mon year wday yday isdst

0 0 0 1 6 105 5 181 0

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.2 Data Structures 205

14.1.5 Space

14.2 Data Structures

14.2.1 Vectors

The most basic data structure is a simple vector, a list-like data structure
that stores values which are all of the same data type or class. You can
either directly create a vector using the R function c (for combine), or else
have R create a random list of numbers for you, using, for example runif
(which will generate a sequence of random numbers uniformly distributed
between the supplied limits).
> v <- c(1, 2, 3, 4, 5)

> v

[1] 1 2 3 4 5

> class(v)

[1] "numeric"

> v <- runif(20, 0, 100)

> v

[1] 69.717291 98.491863 98.541503 72.558488 85.607629 35.441444 59.622427

[8] 40.191194 8.311273 24.215177 77.378846 55.563735 71.554547 97.522348

[15] 2.186403 52.528335 69.281037 44.634309 2.063750 47.125579

The vector function will create a vector of a specific mode (logical, by
default):
> vector(length =10)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> vector(mode="numeric", length =10)

[1] 0 0 0 0 0 0 0 0 0 0

Various sequences of numbers can be generated to produce a vector using
the seq function:
> seq (10) # [1] 1 2 3 4 5 6 7 8 9 10

> seq(1, 10) # [1] 1 2 3 4 5 6 7 8 9 10

> seq(length =10) # [1] 1 2 3 4 5 6 7 8 9 10

> seq(2, 10, 2) # [1] 2 4 6 8 10

> seq(10, 2, -2) # [1] 10 8 6 4 2

> seq(length = 0) # numeric (0)

> seq(0) # [1] 1 0

> seq(0, 1, by=.1)

> seq(0, 1, length =11)

> 1:10 # [1] 1 2 3 4 5 6 7 8 9 10

R will operate on vectors whenever they are given as arguments.
> c(2, 4, 6, 8, 10)/2 # [1] 1 2 3 4 5

> c(2, 4, 6, 8, 10)/c(1, 2, 3, 4, 5) # [1] 2 2 2 2 2

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

206 Data

> log(c(0.1, 1, 10, 100), 10) # [1] -1 0 1 2

In vector operations, short vectors are recycled when additional values
are required, but the longer vector’s length must be a multiple of the
shorter vector’s length.
> c(1, 2, 3, 4) + c(1, 2) # [1] 2 4 4 6

> c(1, 2, 3, 4, 5) + c(1, 2)

[1] 2 4 4 6 6

Warning message:

longer object length

is not a multiple of shorter object length in:

c(1, 2, 3, 4, 5) + c(1, 2)

14.2.2 Arrays

An array is a vector that in addition has attributes associated with it.
Attributes are used in R to record additional information about an object.
Consider the simple example of a sequence of numbers (which is a simple
vector by default):
> seqv <- 1:20

> is.vector(seqv)

[1] TRUE

> is.array(seqv)

[1] FALSE

> seqa <- as.array (1:20)

> is.array(seqa)

[1] TRUE

> is.vector(seqa)

[1] FALSE

> attributes(seqv)

NULL

> attributes(seqa)

$dim

[1] 20

> seqv@dim

Error: cannot get a slot ("dim") from an object of type "integer"

> seqa@dim

[1] 20

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.2 Data Structures 207

14.2.3 Lists

14.2.4 Sets

> a <- 1:9

> b <- c(4,5)

> setdiff(a, b) # [1] 1 2 3 6 7 8 9

> union(a, b) # [1] 1 2 3 4 5 6 7 8 9

> intersect(a, b) # [1] 4 5

> setequal(a, b) # [1] FALSE

14.2.5 Matricies

A dataset is usually more copmlex than a simple vector. Indeed, often
we have several vectors making up the dataset, and refer to this as a
matrix. A matrix is a data structure containing items all of the same
data type. We construct a matrix with the matrix and c functions. Rows
and columns of a matrix can have names, and the functions colnames and
rownames will list the current names. However, you can also assign a
new list of names to these functions!
> ds <- matrix(c(52, 37, 59, 42, 36, 46, 38, 21, 18, 32, 10, 67),

nrow=3, byrow=T)

> colnames(ds) <- c("Low", "Medium", "High","VHigh")

> rownames(ds) <- c("Married","Prev.Married","Single")

> ds

Low Medium High VHigh

Married 52 37 59 42

Prev.Married 36 46 38 21

Single 18 32 10 67

Of course, manually creating datasets in this way is only useful for small
data collections. A slightly easier approach is to manually modify and
add to the dataset using a simple spreadsheet-like interface through the
edit function or through the fix function which will also assign the results
of the edit back to the variable being edited. Note that normally the edit
function returns , and thus prints to the screen if it is not assigned, the
datasets. To avoid the dataset being printed to the screen, when you do
not assign edit to a variable because all you wanted to do was browse
the dataset, use the invisible function.
> ds <- edit(ds)

> fix(ds)

> invisible(edit(ds))

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

208 Data

The cbind function combines each of its arguments, column-wise (the c
in the name is for column), into a single data structure:
> age <- c(35, 23, 56, 18)

> gender <- c("m", "m", "f", "f")

> people <- cbind(age , gender)

> people

age gender

[1,] "35" "m"

[2,] "23" "m"

[3,] "56" "f"

[4,] "18" "f"

Because the resulting matrix must have elements all of the same data
type, we see that the variable age has been transformed into the char-
acter data type (since gender could not be so convincingly converted to
numeric).

The rbind function similarly combines its argument, but in a row-wise
manner. The result will be the same as if we transpose the matrix with
the t function:
> t(people)

[,1] [,2] [,3] [,4]

age "35" "23" "56" "18"

gender "m" "m" "f" "f"

> people <- rbind(age , gender)

> people

[,1] [,2] [,3] [,4]

age "35" "23" "56" "18"

gender "m" "m" "f" "f"

14.2.6 Data Frames

A data frame is essentially a list of named vectors, where, unlike a matrix,
the different vectors (or columns) need not all be of the same data type.
A data frame is analogous to a database table, in that each column has
a single data type, but different columns can have different data types.
This is distinct from a matrix in which all elements must be of the same
data type.
> age <- c(35, 23, 56, 18)

> gender <- c("m", "m", "f", "f")

> people <- data.frame(Age=age , Gender=gender)

> people

Age Gender

1 35 m

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.2 Data Structures 209

2 23 m

3 56 f

4 18 f

The columns of the data frame have names, and the names can be as-
signed as in the above example. The names can also be changed at any
time by assignment to the output of the function call to colnames:
> colnames(people)

[1] "Age" "Gender"

> colnames(people)[2] <- "Sex"

> colnames(people)

[1] "Age" "Sex"

> people

Age Sex

1 35 m

2 23 m

3 56 f

4 18 f

If we have the datasets we wish to combine as a single list of datasets,
we can use the do.call function to apply rbind to that list so that each
element of the list becomes one argument to the rbind function:
j <- list() # Generate a list of data frames

for (i in letters [1:26])

{

j[[i]] <- data.frame(rep(i,25), matrix(rnorm (250), nrow =25))

}

j[[1]]

allj <- do.call("rbind", j) # Combine list of data frames into one.

You can reshape data in a data frame using unstack :
> ds <- data.frame(type=c(’x’, ’y’, ’x’, ’x’, ’x’, ’y’, ’y’, ’x’, ’y’, ’y’),

value=c(10, 5, 2, 6, 4, 8, 3, 6, 6, 8))

> ds

type value

1 x 10

2 y 5

3 x 2

4 x 6

5 x 4

6 y 8

7 y 3

8 x 6

9 y 6

10 y 8

> unstack(ds, value ~ type)

x y

1 10 5

2 2 8

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

210 Data

3 6 3

4 4 6

5 6 8

To even assign the values to variables of the same names as the types
you could use attach:
> attach(unstack(ds , value ~ type))

> x

[1] 10 2 6 4 6

> y

[1] 5 8 3 6 8

Accessing Columns

When accessing a column name of a data frame with the $ notation you
can directly use the column name. Using the [notation you will need to
quote the name.
> people[,"Age"]

> people$Age

> people [["Age"]]

> subset(people , select=Age)

This also illustrates a use of subset.

Removing Columns

To retain only those columns that begin with INPUT_:
> new.audit <- audit[, grep("^INPUT_", names(audit))]

14.2.7 General Manipulation

Factors

> ds <- data.frame(age=c(34, 56, 23, 72, 48),

risk=c("high", "low", "high", "low", "high"))

> ds

age risk

1 34 high

2 56 low

3 23 high

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.2 Data Structures 211

4 72 low

5 48 high

> levels(ds$risk)

[1] "high" "low"

By default levels within a factor are not ordered:
> ds$age[1] < ds$age[2]

[1] TRUE

> ds$risk [1] < ds$risk [2]

[1] NA

Warning message:

< not meaningful for factors in: Ops.factor(ds$risk[1], ds$risk [2])

We can order the levels using the ordered function:
> ds$risk <- ordered(ds$risk)

> levels(ds$risk)

[1] "high" "low"

> ds$risk [1] < ds$risk [2]

[1] TRUE

Saying that high is less than low is probably not what we wanted. The
ordering used is the same as what levels returns.

You can change the names of the levels by assigning to the levels call:
> levels(ds$risk) <- c("upper", "lower")

> ds

age risk

1 34 upper

2 56 lower

3 23 upper

4 72 lower

5 48 upper

Elements

> letters # a b c [...] z

> letters [10] # "j"

> letters [10:15] # "j" "k" "l" "m" "n" "o"

> letters[c(1, 2, 4, 8, 16)] # "a" "b" "d" "h" "p"

> letters [-(10:26)] # "a" "b" "c" "d" "e" "f" "g" "h" "i"

An operator (or function) can be applied to a vector to return a vector.
This is particularly useful for boolean operators, returning a vector of
boolean values which can then be used to select specific elements of a
vector:

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

212 Data

> letters > "j" # FALSE FALSE FALSE [...] TRUE

> letters[letters > "j"] # "k" "l" "m" "n" [...] "y" "z"

> letters[letters > "w" | letters < "e"] # "a" "b" "c" "d" "x" "y" "z"

Here’s a useful trick to ensure we don’t divide by zero, which would
otherwise give an infinite answer (Inf):
> x <- c(0.28, 0.55, 0, 2)

> y <- c(0.53, 1.34, 1.2, 2.07)

> sum(((x-y)^2/x))

[1] Inf

> sum(((x-y)^2/x)[x!=0]) # Exclude the zeros

[1] 1.360392

We could also generate random subsets of our data.
> subdataset <- dataset[sample(seq(1, nrow(dataset)), 1000) ,]

We can select elements meeting set inclusion conditions. Here we first
select a subset of rows from a data frame having particular colours.
> ds[ds$colour %in% c("green", "blue"),]

> ds[ds$colour %in% names(which(table(ds$colour) > 11)) ,]

Rows and Columns

A number of operators are available to extract data from matrices. The
single open square bracket [is used to one or more elements from a
matrix, while the double open square bracket returns just the specific
element specified, requiring all relevant subscripts to be supplied.
> ds[1:20 ,] # Rows 1 to 20.

> ds[,5:10] # Columns 5 to 10.

> ds[,c(3,5,8,9)] # Columns 3, 5, 8, and 9.

> lst [[1]] # First element of list lst.

The [operator can select multiple elements from an object whilst [[and
$ select just a single element.

Finding Index of Elements

To obtain a list of row indicies for a matrix or data frame for those rows
meeting some criteria we can use the which function:
> which(iris$Sepal.Length == 6.2)

[1] 69 98 127 149

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.2 Data Structures 213

Conditions can be combined, in which case it becomes useful to use
the with function, which specifies a dataset with which to evaluate the
expression:
> with(iris , which(Sepal.Length < 6.2 & Sepal.Width > 4))

[1] 16 33 34

Similarly for a matrix:
> A <- matrix(c(1:19, 10), 4, 5)

> A

[,1] [,2] [,3] [,4] [,5]

[1,] 1 5 9 13 17

[2,] 2 6 10 14 18

[3,] 3 7 11 15 19

[4,] 4 8 12 16 10

> which(A == 11, arr.ind = TRUE)

row col

[1,] 3 3

> which(A == 14, arr.ind = TRUE)

row col

[1,] 2 4

> which(A == 10, arr.ind = TRUE)

row col

[1,] 2 3

[2,] 4 5

Partitions

We us the split function to partition the data into the three groups
defined by Type.

Head and Tail

R provides two functions for quickly looking at some subset of the data
(whether this be vectors, matrices, data frames, or even functions). These
mimic traditional Unix and GNU commands head and tail. The head
function returns the top few (6 by default) rows of a data frame.
> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

214 Data

Similarly, tail returns the bottom few (6 by default) rows of a data frame:
> tail(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

145 6.7 3.3 5.7 2.5 virginica

146 6.7 3.0 5.2 2.3 virginica

147 6.3 2.5 5.0 1.9 virginica

148 6.5 3.0 5.2 2.0 virginica

149 6.2 3.4 5.4 2.3 virginica

150 5.9 3.0 5.1 1.8 virginica

Reverse a List

Use rev to reverse an object:
> rev(letters) # "z" "y" "x" ... "c" "b" "a"

Sorting

To sort a matrix on two columns us the order function:
x <- rep(rbinom(5, size=4, prob =.5), 6)

y <- rnorm (30)

df <- data.frame(x=x, y=y)

df <- df[order(dfx, dfy),]

To reverse sort on the second sort column:
df <- df[order(df$x, -df$y),]

For dealing with missing values in a sort, see http://www.ats.ucla.
edu/STAT/r/faq/sort.htm.

Unique Values

Use the unique function.
> x <- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 3)

> unique(x)

[1] 1 2 3

http://www.ats.ucla.edu/STAT/r/faq/sort.htm
http://www.ats.ucla.edu/STAT/r/faq/sort.htm

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.3 Loading Data 215

14.3 Loading Data

Data can be sourced from many diverse repositories. Data is often stored
today in relational databases like Oracle, MySQL, and SQLite, and ac-
cessed by the structured query language (SQL). It could be stored in
systems like SAS and many other alternative proprietary systems. Many
such systems provide access to the data in a number of forms and have
particularly well tuned and efficient procedures for accessing the data.
Such access is fine for many applications, but the user tends to be limited
to the functionality provided by the particular application environment.

R provides a wealth of tools for importing data. In this section we
overview the functions used to access common data formats. For a more
complete exposition see R D (2005).

Data warehouses

OLTP systems such as billing systems

Special databases, such as marketing and sales

Excel, Access

Flat files

External data sources, e.g., demographic data, market survey data

Describe output variable and input variables.
> library(help="foreign")

14.3.1 Interactive Responses

> grids <- as.integer(readline("Please enter number of grids: "))

Please enter number of grids: 30

> grids

[1] 30

14.3.2 Interactive Data Entry

To interactively load some data into a vector we can use the scan function
which can, for example, read data you type until it finds an empty line:

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

216 Data

> ds <- scan()

1: 54 56 57 59

5: 63 64 66 68

9:

Read 8 items

> ds

[1] 54 56 57 59 63 64 66 68

Alternatively, we may have a simple list of numbers in one of our windows
on the screen and simply wish to load this into R. For example, select
the list of numbers below, assuming we are reading this document on the
screen (e.g., we hold down the left mouse button while highlighting the
list of numbers):
54 56 57 59 63 64 66 68 68 72 72 75 76 81 84 88 106

In the R console window specify the filename to be the special name,
clipboard , and the selected numbers will be read. For example:
> ds <- scan("clipboard")

Read 17 items

> ds

[1] 54 56 57 59 63 64 66 68 68 72 72 75 76 81 84 88 106

All of the above read the data into a vector. An alternative is to load data
into a data frame. Similar approaches are possible. Suppose we have this
height and weight data for 30 eleven year old girls attending Heaton Mid-
dle School, Bradford UK (http://www.sci.usq.edu.au/staff/dunn/Datasets/Books/Hand/Hand-
R/height-R.html, Hand 96).
Height Weight

135 26

146 33

153 55

154 50

139 32

131 25

149 44

137 31

143 36

146 35

141 28

136 28

154 36

151 48

155 36

133 31

149 34

141 32

164 47

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.3 Loading Data 217

146 37

149 46

147 36

152 47

140 33

143 42

148 32

149 32

141 29

137 34

135 30

We can also place the data into a string within R and read the data from
directly from the string:
lines <- "Height

54

56

57

59

63

64

66

68

68

72

72

75

76

81

84

88

106

"

ds <- read.table(textConnection(lines), header = TRUE)

14.3.3 Available Datasets

R provides many datasets that can serve to illustrate much of its function-
ality. We will use a number of the datasets here for this same purpose.
You can get a list of available datasets with the data function:
> data()

Data sets in package ’datasets ’:

AirPassengers Monthly Airline Passenger Numbers 1949 -1960

BJsales Sales Data with Leading Indicator

BJsales.lead (BJsales)

Sales Data with Leading Indicator

BOD Biochemical Oxygen Demand

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

218 Data

CO2 Carbon Dioxide uptake in grass plants

ChickWeight Weight versus age of chicks on different diets

[...]

warpbreaks The Number of Breaks in Yarn during Weaving

women Average Heights and Weights for American Women

The Iris Dataset

The iris dataset is available in a standard installation of R and is a
dataset used in many statistical text books.

14.3.4 CSV Data Used In The Book

A very convenient, simple, and universally recognised data format is the
trivial text data file with one record of data per line within the file and
each line containing comma separated fields. Such a format is referred
to as comma separated values (or CSV for short). Such a simple format
overs many advantages over proprietary formats, including the straight-
forward ability to share the data easily amongst many applications. Also,
for many processing tasks where all of the data is touched, access to
such a simply format is considerably faster than through, for example
database querying. While the sophisticated database administrator can
certainly explore and tune and index a database to provide targeted, effi-
cient and fast access for particular queries, simple progression through a
CSV file requires much less sophistication, generally without sacrificing
performance, and often with improved performance.

Another advantage is that the steps written to process a CSV data file,
using R to implement the processing, can simply and freely be transferred
from platform to platform, whether it be GNU/Linux or MS/Windows.
Thus the investment in processing and delivering results from the data
are enhanced.

Comma Separated Value (CSV) files can be read and written in R using
read.csv and write.table. Our first example obtains a small (12K) CSV file
from the Internet(Blake and Merz, 1998) using the download.file function.
The data is then loaded into R, with the appropriate column names
added (since the dataset doesn’t come with the names). We then save
the dataset to a new CSV file (with the right headers) using write.table,

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.3 Loading Data 219

as well as to a binary R data file using save. The resulting data files will
be used in the examples throughout the book.

These datasets will be used throughout the book to illustrate various
techniques and approaches to data cleaning, variable selection, and mod-
elling.

The Wine Dataset

The wine dataset contains the results of a chemical analysis of wines
grown in a specific area of Italy. Three types of wine are represented
in the 178 samples, with the results of 13 chemical analyses recorded
for each sample. Note that we transform the Type into a categorical
variable, but this information is only recovered in the binary R dataset,
and not the CSV dataset.
UCI <- "ftp://ftp.ics.uci.edu/pub"

REPOS <- "machine -learning -databases"

wine.url <- sprintf("%s/%s/wine/wine.data", UCI , REPOS)

wine <- read.csv(wine.url , header=F)

colnames(wine) <- c(’Type’, ’Alcohol ’, ’Malic’, ’Ash’,

’Alcalinity ’, ’Magnesium ’, ’Phenols ’,

’Flavanoids ’, ’Nonflavanoids ’,

’Proanthocyanins ’, ’Color ’, ’Hue’,

’Dilution ’, ’Proline ’)

wine$Type <- as.factor(wine$Type)

write.table(wine , "wine.csv", sep=",", row.names=FALSE)

save(wine , file="wine.Rdata", compress=TRUE)

}

R code source: get-wine.R.

At a later time you can simply read in the CSV dataset or else load in
the R dataset:
> wine <- read.csv("wine.csv")

OR

> load("wine.RData")

> dim(wine)

[1] 178 14

> str(wine)

‘data.frame’: 178 obs. of 14 variables:

$ Type : Factor w/ 3 levels "1" ,"2" ,"3": 1 1 1 1 1 1 1 1 1 1 ...

$ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ...

$ Malic : num 1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...

$ Ash : num 2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...

$ Alcalinity : num 15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...

\$ Magnesium : int 127 100 101 113 118 112 96 121 97 98 ...

$ Phenols : num 2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...

http://rattle.togaware.com/code/get-wine.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

220 Data

$ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...

$ Nonflavanoids : num 0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...

$ Proanthocyanins: num 2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...

$ Color : num 5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...

$ Hue : num 1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...

$ Dilution : num 3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...

$ Proline : int 1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...

Note that R provides a useful interactive file chooser through the function
file.choose. This will prompt for a file name, and provides tab completion.
> ds <- read.csv(file.choose ())

The Cardiac Arrhythmia Dataset

The Arrhythmia dataset will be used to illustrate issues with data clean-
ing.

The dataset is of moderate size (392Kb), with 452 entities. This dataset
has 280 variables, one being an output variable with 16 values. Of the
input variables some 40 of them are categorical. Although a meta-data
file on the repository lists the variables, we may not want to give them
all names just now (too many to do by hand). We select a few to give
other than the default R names to them. As with other data from the
UCI repository ? is used for missing values and we deal with that when
we read the downloaded data into R.
> UCI <- "ftp://ftp.ics.uci.edu/pub"

> REPOS <- "ml-repos/machine -learning -databases"

> cardiac.url <- sprintf("%s/%s/arrhythmia/arrhythmia.data", UCI , REPOS)

> download.file(cardiac.url , "cardiac.data")

> cardiac <- read.csv("cardiac.data", header=F, na.strings="?")

> summary(cardiac)

V1 V2 V3 V4

Min. : 0.00 Min. :0.0000 Min. :105.0 Min. : 6.00

1st Qu .:36.00 1st Qu .:0.0000 1st Qu .:160.0 1st Qu.: 59.00

Median :47.00 Median :1.0000 Median :164.0 Median : 68.00

Mean :46.47 Mean :0.5509 Mean :166.2 Mean : 68.17

3rd Qu .:58.00 3rd Qu .:1.0000 3rd Qu .:170.0 3rd Qu.: 79.00

Max. :83.00 Max. :1.0000 Max. :780.0 Max. :176.00

[...]

> str(cardiac)

‘data.frame’: 452 obs. of 280 variables:

$ V1 : int 75 56 54 55 75 13 40 49 44 50 ...

$ V2 : int 0 1 0 0 0 0 1 1 0 1 ...

$ V3 : int 190 165 172 175 190 169 160 162 168 167 ...

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.3 Loading Data 221

$ V4 : int 80 64 95 94 80 51 52 54 56 67 ...

$ V5 : int 91 81 138 100 88 100 77 78 84 89 ...

$ V6 : int 193 174 163 202 181 167 129 0 118 130 ...

$ V7 : int 371 401 386 380 360 321 377 376 354 383 ...

$ V8 : int 174 149 185 179 177 174 133 157 160 156 ...

$ V9 : int 121 39 102 143 103 91 77 70 63 73 ...

$ V10 : int -16 25 96 28 -16 107 77 67 61 85 ...

[...]

$ V278: num 23.3 20.4 12.3 34.6 25.4 13.5 14.3 15.8 12.5 20.1 ...

$ V279: num 49.4 38.8 49 61.6 62.8 31.1 20.5 19.8 30.9 25.1 ...

$ V280: int 8 6 10 1 7 14 1 1 1 10 ...

We will now give a names to a few columns, then save it to a cleaner
CSV file and a binary RData file where ? will be NA, and all columns
will have names, some that we have given, and the rest as given by R.
> colnames(cardiac)[1:4] <- c("Age", "Gender", "Height", "Weight")

> write.table(cardiac , "cardiac.csv", sep=",", row.names=F)

> save(cardiac , file="cardiac.RData", compress=TRUE)

> dim(cardiac)

[1] 452 280

> str(cardiac)

‘data.frame’: 452 obs. of 280 variables:

$ Age : int 75 56 54 55 75 13 40 49 44 50 ...

$ Gender: int 0 1 0 0 0 0 1 1 0 1 ...

\$ Height: int 190 165 172 175 190 169 160 162 168 167 ...

$ Weight: int 80 64 95 94 80 51 52 54 56 67 ...

$ V5 : int 91 81 138 100 88 100 77 78 84 89 ...

[...]

The Adult Survey Dataset

The survey dataset is a little larger (3.8MB) and illustrates many more
of the options to the read.csv function. The data was extracted from
the US Census Bureau database, and is again available from the UCI
Machine Learning Repository.
UCI <- "ftp://ftp.ics.uci.edu/pub"

REPOS <- "machine -learning -databases"

survey.url <- sprintf("%s/%s/adult/adult.data", UCI , REPOS)

survey <- read.csv(survey.url , header=F, strip.white=TRUE ,

na.strings="?",

col.names=c("Age", "Workclass", "fnlwgt",

"Education", "Education.Num", "Marital.Status",

"Occupation", "Relationship", "Race", "Sex",

"Capital.Gain", "Capital.Loss",

"Hours.Per.Week", "Native.Country",

"Salary.Group"))

write.table(survey , "survey.csv", sep=",", row.names=F)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

222 Data

save(survey , file="survey.Rdata", compress=TRUE)

}

R code source: get-survey.R.

> dim(survey)

[1] 32561 15

> str(survey)

‘data.frame’: 32561 obs. of 15 variables:

$ Age : int 39 50 38 53 28 37 49 52 31 42 ...

$ Workclass : Factor w/ 8 levels "Federal -gov",..: 7 6 4 4 4 4 4 6 4 4 ...

$ fnlwgt : int 77516 83311 215646 234721 338409 284582 160187 ...

$ Education : Factor w/ 16 levels "10th","11th",..: 10 10 12 2 10 13 7 ...

$ Education.Num : int 13 13 9 7 13 14 5 9 14 13 ...

$ Marital.Status: Factor w/ 7 levels "Divorced ",..: 5 3 1 3 3 3 4 3 5 3 ...

$ Occupation : Factor w/ 14 levels "Adm -clerical ",..: 1 4 6 6 10 4 8 ...

$ Relationship : Factor w/ 6 levels "Husband","Not -in-family ",..: 2 1 2 1 ...

$ Race : Factor w/ 5 levels "Amer -Indian -Eskimo ",..: 5 5 5 3 3 5 ...

$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 1 1 1 2 1 2 ...

$ Capital.Gain : int 2174 0 0 0 0 0 0 0 14084 5178 ...

$ Capital.Loss : int 0 0 0 0 0 0 0 0 0 0 ...

$ Hours.Per.Week: int 40 13 40 40 40 40 16 45 50 40 ...

$ Native.Country: Factor w/ 41 levels "Cambodia","Canada ",..: 39 39 39 39 ...

$ Salary.Group : Factor w/ 2 levels "<=50K",">50K": 1 1 1 1 1 1 1 2 2 2 ...

Once again, the dataset can be read in from the CSV file or else loaded
as an R dataset:
> survey <- read.csv("survey.csv")

OR

> load("survey.RData")

14.4 Saving Data

All R objects can be saved using the save function and then restored at a
later time using the load function. The data will be saved into a .RData
file. To illustrate this we make use of a standard dataset called iris.

We create a random sample of 20 entities from the dataset. This is done
by randomly sampling 20 numbers between 1 and the number of rows
(nrow) in the iris dataset, using the sample function. The list of numbers
generated by sample is then used to index the iris dataset, to select the
sample of rows, by supplying this list of rows as the first argument in
the square brackets. The second argument in the square brackets is left
blank, indicating that all columns are required in our new dataset. We

http://rattle.togaware.com/code/get-survey.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.4 Saving Data 223

then save the dataset to file using the save function which compresses
the data for storage:
> rows <- sample (1: nrow(iris), 20)

> myiris <- iris[rows ,]

> dim(myiris)

[1] 20 5

> save(myiris , file="myiris.RData", compress=TRUE)

At a later date you can load your dataset back into R with the load
function:
> load("myiris.RData")

> dim(myiris)

[1] 20 5

Using the compress option will reduce disk space required to store the
dataset.

You can save any objects in an R binary file. For example, suppose you
have built a model and want to save it for later exploration:
> library(rpart)

> iris.rp <- rpart(Species ~ ., data=iris)

> save(iris.rp , file="irisrp.RData", compress=TRUE)

At a later stage, perhaps on a fresh start of R, you can load the model:
> load("irisrp.RData")

> iris.rp

n= 150

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)

2) Petal.Length < 2.45 50 0 setosa (1.00000000 0.00000000 0.00000000) *

3) Petal.Length >=2.45 100 50 versicolor (0.00000000 0.50000000 0.50000000)

6) Petal.Width < 1.75 54 5 versicolor (0.00000000 0.90740741 0.09259259) *

7) Petal.Width >=1.75 46 1 virginica (0.00000000 0.02173913 0.97826087) *

To identify what is saved into an RData file you can attach the file and
then get a listing of its contents:
attach("irisrp.RData")

ls(2)

...

detach (2)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

224 Data

Reading Direct from URL

> audit <- read.csv("http://rattle.togaware.com/audit.csv")[,c(2:10 ,13)]

> myrpart <- rpart(Adjusted ~ ., data=audit , method="class")

14.4.1 Formatted Output

The format.df function of the Hmisc package will format a data frame
or matrix as a LATEX table. Also see latex in Hmisc.

Use format for sophisticated formatting of numbers, such as inserting
commas in thousands, etc. Also for formatting strings.

14.4.2 Automatically Generate Filenames

To generate a series of filenames, all with the same base name but hav-
ing a sequence of numbers, as might be the case when you generate a
sequence of plots and want to save each to a different file, the traditional
R approach is to use formatC :
paste("df", formatC (1:10 , digits=0, wid=3, format=d, flag="0"), ".dat", sep="")

[1] "df001.dat" "df002.dat" "df003.dat" "df004.dat" "df005.dat" "df006.dat"

[7] "df007.dat" "df008.dat" "df009.dat" "df010.dat"

Even easier though is to use the newer sprintf. Here’s a couple of al-
ternatives. The first assumes a fixed number of digits for the increasing
number, whilst the second uses only the number of digits actually re-
quired, by finding out the number of digits using nchar :
> n <- 10

> sprintf("df%03d.dat", 1:10)

[1] "df001.dat" "df002.dat" "df003.dat" "df004.dat" "df005.dat" "df006.dat"

[7] "df007.dat" "df008.dat" "df009.dat" "df010.dat"

> sprintf("plot%0*d", nchar(n), 1:n)

[1] "plot01" "plot02" "plot03" "plot04" "plot05" "plot06" "plot07" "plot08"

[9] "plot09" "plot10"

> n <- 100

> sprintf("plot%0*d", nchar(n), 1:n)

[1] "plot001" "plot002" "plot003" "plot004" "plot005" "plot006" "plot007"

[...]

[99] "plot099" "plot100"

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.5 Using SQLite 225

14.5 Using SQLite

SQLite (from www.sqlite.org) is an open source database package that
is well supported in R. It has the advantage that it requires no setup or
administration (other than installing the package) and is an embedded
system so that there is less of a connection overhead. You are able to
manage very large datasets in SQLite without needing to load all the
data into memory, unlike R itself, so that you are able to manipulate the
data using SQL then load in just the data you need.

For small dataset SQLite is a good choice, but for very large datasets,
MySQL still performs very well.

There is also a project under way as part of the Google Summer of Code
project, that aims to create a package that will store data frames and
matrices into sqlite databases, initially called sqlite data frames (sdf).
These sdf’s will behave like ordinary data frames so that existing R
functions will work. This will enable R users to work with very large
datasets much more readily, with no user effort.

For now, SQLite allows the easy import and export of data to text files.
library(RSQLite)

con <- dbConnect(SQLite(), "foo3.db")

dbGetQuery(con , "pragma cache_size")

cache_size

1 2000

dbGetQuery(con , "pragma cache_size =2500")

NULL

dbGetQuery(con , "pragma cache_size")

cache_size

1 2500

As an example, first create an empty SQLite database (outside of R) and
import a CSV (comma separated value) file, tell sqlite to use commas,
not ’—’:
$ sqlite3 -separator , audit.db

sqlite > create table audit(ID INTEGER , Age INTEGER , Employment TEXT ,

Education TEXT , Marital TEXT , Occupation TEXT ,

Income REAL , Sex TEXT , Deductions REAL ,

Hours INTEGER , Accounts TEXT ,

Adjustment REAL , Adjusted INTEGER);

sqlite > .tables

audit

sqlite > .import audit.csv audit

sqlite > select count(*) from audit;

www.sqlite.org
http://code.google.com/soc/gnu/appinfo.html?csaid=7211BC2F22A5A01E

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

226 Data

2001

sqlite > delete from audit where ID=’"ID"’;

sqlite > select count(*) from audit;

2000

sqlite > .quit

Now in R in the same directory:
library(DBI)

library(RSQLite)

driver <-dbDriver("SQLite")

connect <-dbConnect(driver , dbname = "audit.db")

dbWriteTable(connect , "audit", audit , overwrite = T, row.names = F)

dbListTables(connect)

[1] "audit"

query01 <- dbSendQuery(connect , statement = "select * from audit");

data01 <- fetch(query01 , n = 10)

contents(data01)

sqliteCloseResult(query01)

sqliteCloseConnection(connect)

sqliteCloseDriver(driver)

14.6 ODBC Data

The RODBC package provides direct access, through ODBC to database
entities.

14.6.1 Database Connection

The basic usage of RODBC will connect to a known ODBC object using
the odbcConnect function and query the database for the tables it exports
using sqlTables:
> library(RODBC)

> channel <- odbcConnect("DWH")

This may pop up a window to enter username and password

> tables <- sqlTables(channel)

> columns <- sqlColumns(channel , "clients")

You can then retrieve the full contents of a table with sqlFetch:

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.6 ODBC Data 227

> ds <- sqlFetch(channel , "tablename")

Or else you can send a SQL query to the database:
> ds <- sqlQuery(channel , "SELECT * FROM clients WHERE age > 35")

Some ODBC drivers, such as the Netezza ODBC driver, have a pre-fetch
option that interacts poorly with applications connecting through the
driver. With a pre-fetch option the driver appears to report fewer rows
being available than actually available. It seems that the number of rows
reported is in fact the pre-fetch limited number of rows. For the Netezza
ODBC driver, for example, the default is 256 rows. This confuses the
application connecting to ODBC (in this case, R through the RODBC).
The symptom is that we only receive 256 rows from the table. Inter-
nally, the application is probably using either the SQLExtendedFetch or
SQLFetchScroll ODBC functions.

There are a number of solutions to this issue. One from the applications
side is to set believeNRows to FALSE. This will then retrieve all the
rows from the table. Another solution is at the driver configuration
level. For example, in connecting through the Netezza ODBC driver
a configuration option is available where you can change the default
Prefetch Count value.

An example of the issue is illustrated below:
> channel <- odbcConnect("netezza")

> orders <- sqlQuery(channel , "SELECT * FROM orders LIMIT 500")

> dim(orders)

[1] 256 9

> orders <- sqlQuery(channel , "select * from orders limit 500",

believeNRows=FALSE)

> dim(orders)

[1] 500 9

> odbcCloseAll ()

We can reopen the driver and in the resulting GUI configuration set the
Prefetch Count to perhaps 10,000. Then:
> channel <- odbcConnect("netezza")

> orders <- sqlQuery(channel , "SELECT * FROM orders LIMIT 500")

> dim(orders)

[1] 500 9

> orders <- sqlQuery(channel , "SELECT * FROM orders LIMIT 50000")

> dim(orders)

[1] 10000 9

> orders <- sqlQuery(channel , "SELECT * FROM orders LIMIT 50000",

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

228 Data

believeNRows=FALSE)

> dim(orders)

[1] 50000 9

>

Note that we would not want to default beleiveNRows to FALSE since,
for example, with a Teradata query this increase the query time by some
3 times!

For an SQLite database, edit .odbc.ini
[audit]

Description=SQLite test audit database for Rattle

Driver=SQLite3

Database=/home/kayon/projects/rattle/audit.db

optional lock timeout in milliseconds

Timeout =2000

14.6.2 Excel

The simplest way to transfer data from Excel, or any spreadsheet in fact,
is to save the data in CSV (Comma Separated Value) format, usually into
a file with extension .csv. This is supported in all spreadsheet applica-
tions and is effective in that if we are fluent with data manipulation in
Excel, then we can get our data into shape using Excel, and then load it
into Rattle for data mining.

Alternatively, on MS/Windows Excel spreadsheetscan be directly ac-
cessed and manipulated through ODBCusing odbcConnectExcel. Avail-
able sheets can be listed with sqlTables and individual sheets can be
queried through the sqlQuery function or else imported with sqlFetch.
To use a spreadsheet as a database though, the first row of the spread-
sheet must be the column names! If not, we will find that we end up
reading from the second row of our data.

In this example we open a connection to a spreadsheet and then give a
sample query:
> library(RODBC)

> channel <- odbcConnectExcel("h:/audit.xls")

> ds <- sqlQuery(channel , "SELECT * FROM ‘Sheet1$‘

WHERE Type = "TOC"

AND Valve="5010 -05"")

> odbcClose(channel)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.7 Clipboard Data 229

To simply fetch the full contents of a single sheet of a spreedsheet we can
use the sqlFetch query:
library(RODBC)

channel <- odbcConnectExcel("h:/audit.xls")

ds <- sqlFetch(xlsConnect , "Sheet1")

odbcClose(xlsConnect)

On MS/Windows you can also use the xlsReadWrite package to directly
access and manipulate an Excel spreadsheet. For example, to read a
spreadsheet we can use read.xls:
library(xlsReadWrite)

ds <- read.xls("audit.xls", colNames=TRUE , sheet=6,

colClasses=c("factor","integer","double"))

14.6.3 Access

MS/Access databases, on MSWindows, can be directly accessed through
ODBC with an odbcConnectAccess. A database can be querired for a
list of all tables available, using sqlTables, and imported with sqlFetch or
sqlQuery. We can then directly save the table as an R object fo simpler
loading into R at a later time:
> library(RODBC)

> channel <- odbcConnectAccess("h:/sample.mdb")

> sqlTables(channel)$TABLE_NAME

> clients <- sqlFetch(channel , "Clients")

> odbcClose(channel)

> save(clients , file="clients.RData")

14.7 Clipboard Data

Suppose you are reviewing a small sample of data on the screen in any
application (e.g., browsing a web site with some sample data). You want
to load the data into R. This can be easily accomplished by selecting
or highlighting the data with the mouse and telling R to read from the
clipboard.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

230 Data

As an example, visit one of the UCI Machine Learning Repository datasets,
such as: http://www.ics.uci.edu/~mlearn/databases/autos/imports-85.
data. Highlight the first few rows of the data and then run the following
read.table function with the file function identifying the clipboard to be
read from:
> autos <- read.csv(file("clipboard"), header=FALSE)

> autos

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

V13 V14

1 3 ? alfa -romero gas std two convertible rwd front 88.6 168.8 64.1 48.8 2548

2 3 ? alfa -romero gas std two convertible rwd front 88.6 168.8 64.1 48.8 2548

3 1 ? alfa -romero gas std two hatchback rwd front 94.5 171.2 65.5 52.4 2823

V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26

1 dohc four 130 mpfi 3.47 2.68 9 111 5000 21 27 13495

2 dohc four 130 mpfi 3.47 2.68 9 111 5000 21 27 16500

3 ohcv six 152 mpfi 2.68 3.47 9 154 5000 19 26 16500

You can also use scan, for example, to read data from the clipboard into
a vector or list:
> x <- scan("clipboard", what="")

Read 7 items

> x

[1] "Age" "Gender" "Salary" "Home" "Vehicle" "Address" "Married"

To try this out yourself, select the list of strings and run the scan func-
tion.

You can also write to the clipboard:
> write.table(ds, "clipboard", sep="\t", row.names=FALSE)

14.8 Map Data

R provides a set of tools for reading geographic (map) data, particu-
larly ESRI shapefiles, and plotting and manipulating such data. Maps
for many countries are available, particularly the US, Europe, and New
Zealand. Limited Australian map data is also freely available.
download.file("http://www.vdstech.com/mapdata/australia.zip", "australia.zip")

system("unzip australia.zip; rm australia.zip")

R code source: get-australia.R.

http://www.ics.uci.edu/~mlearn/databases/autos/imports-85.data
http://www.ics.uci.edu/~mlearn/databases/autos/imports-85.data
http://en.wikipedia.org/wiki/Shapefile
http://rattle.togaware.com/code/get-australia.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.8 Map Data 231

The data can be read in with readShapePoly and displayed with plot.
Australia has a few outlying islands which we crop from the main focus
of the map here using xlim and ylim.

library(maptools)

aus <- readShapePoly("australia.shp")

plot(aus , lwd=2, border="grey", xlim=c(115 ,155) , ylim=c(-35,-20))

dev.off()

R code source: map-australia-plot.R.

The class of the resulting object (aus) is SpatialPolygonsDataFrame.
Such an object has a collection of slots. For example, the data slot
includes meta information about the region recorded in the data frame.
> aus@data

FIPS_ADMIN GMI_ADMIN ADMIN_NAME FIPS_CNTRY CNTRY_NAME

0 AS01 AUS -ACT Australian Capital Territory AS Australia

1 AS02 AUS -NSW New South Wales AS Australia

2 AS03 AUS -NTR Northern Territory AS Australia

3 AS04 AUS -QNS Queensland AS Australia

http://rattle.togaware.com/code/map-australia-plot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

232 Data

4 AS05 AUS -SAS South Australia AS Australia

5 AS06 AUS -TSM Tasmania AS Australia

6 AS07 AUS -VCT Victoria AS Australia

7 AS08 AUS -WAS Western Australia AS Australia

REGION CONTINENT POP_ADMIN SQKM_ADMIN SQMI_ADMIN

TYPE_ENG

0 Australia/New Zealand Australia 292475 2342.295 904.36 Territory

1 Australia/New Zealand Australia 6338919 803110.812 310081.09

State

2 Australia/New Zealand Australia 161294 1352365.000 522148.09 Territory

3 Australia/New Zealand Australia 3107362 1733475.000 669294.69

State

4 Australia/New Zealand Australia 1445153 985308.500 380427.59

State

5 Australia/New Zealand Australia 472122 68131.477 26305.56

State

6 Australia/New Zealand Australia 4354611 227781.406 87946.40

State

7 Australia/New Zealand Australia 1655588 2533628.000 978233.81

State

TYPE_LOC

0 Territory

1 State

2 Territory

3 State

4 State

5 State

6 State

7 State

The bounding box of the plot is available using bbox.
> bbox(aus)

min max

r1 112.90721 159.10190

r2 -54.75389 -10.05139

14.9 Other Data Formats

14.9.1 Fixed Width Data

Suppose we have a fixed-width data file with fields of 10 and 5 characters
each.
> lines <- readLines("mydata.dat")

> dframe <- data.frame(salary = as.numeric(substr(lines , 1, 10),

age = as.numeric(substr(lines , 11, 15))

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

14.10 Documenting a Dataset 233

14.9.2 Global Positioning System

In some situations in analysing data you may actually be collecting the
data directly for analysis by R from some external device, possibly con-
nected through the computer’s serial port. One such example is using a
global positioning system. On a GNU/Linux system this might be con-
nected to your serial device and in R (after ensuring you have read access
to the serial port /dev/ttyS0) you can read your current position.
> gps <- scan(file="/dev/ttyS0", n=1, what="character")

Read 1 items

> gps

[1] "@051226122125S0341825E01500808G006 +00350 E0000N0000D0000"

> columns <- c("tag", "date", "time", "latitude", "longitude",

"quality", "level", "movelong", "movelat", "movevert")

> widths <- c(1, 6, 6, 8, 9, 4, 6, 5, 5, 5)

> gps.data <- read.fwf("/dev/ttyS0", widths , col.names=columns , n=1,

colClasses="character")

> gps.data

tag date time latitude longitude quality level movelong movelat movevert

1 @ 050221 122125 S0341825 E01500808 G006 +00350 E0000 N0000

D0000

This tells me that the location is 34degrees, 18.25minutes south, 150de-
grees, 8.08minutes east. The quality is good with a 6meter positional
error. This is 35m above sea level, and not moving.

14.10 Documenting a Dataset

R provides support for documenting a dataset through .Rd files that R
will format. You can create a template based on a particular dataset
using the prompt function:
> load("survey.RData")

> prompt(survey)

Created file named ’survey.Rd’.

Edit the file and move it to the appropriate directory.

14.11 Common Data Problems

Data size - too much data, too little relevant.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

234 Data

Data sufficiency - current data warehouses don’t contain all necessary
customer data.

Data integrity - data in different sources don’t always match.

Data accessibility - DBAs control the data access.

Data understandability - data dictionary, metadata.

Data quality - Errors, missing values.

Data reliability - out-of-date data, unreliable data.

Integration of external data sources.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 15

Graphics in R

As well as being a package of choice for many Statisticians, R is capable
of producing excellent graphics in many formats, including PostScript,
PDF, PNG (for vector images and text), and JPG (for colorful images).

Example code presented in the following chapters will illustrate the gen-
eration of publication quality PDF (portable document format) graph-
ics that can be viewed with many viewers, including Adobe’s Acrobat.
However, R supports many output formats, including PNG (portable
network graphics, supported by many web browsers and importable into
many word processors), JPG, and PostScript. Another format supported
is XFIG. Such output is editable with the xfig graphics editor, allowing
further annotations and modifications to be made to the automatically
generated plot. The XFIG graphics can then be converted to an even
larger collection of graphics formats, including PDF. For the graphics
actually presented here in the book R has been used, in fact, to generate
XFIG output which is then converted to PDF. Thus the code examples
here, generating PDF directly, may give slightly different layouts to the
figures that actually appear here.

A highly interoperable approach is to generate graphs in FIG format
which can then be loaded into the xfig application, for example, for fur-
ther editing. This allows, for example, minor changes to be made to fine
tune the graphics, but at the cost of losing the ability to automatically

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

236 Graphics in R

regenerate the plot from the original R code. For LATEX processing the
rubber package (under Debian GNU/Linux) will automatically convert
them to the appropriate EPS or PDF format. Of course, xfig can also
generate PNG and JPG and many other formats.

The basic concept of R’s graphics model is that a plot is built up bit by
bit. Each latter component of the plot overlays earlier components. A
plot also has two components. The plotting area is identified by through
the usr parameter, as 4 numbers x1, x2, y1, and y2. You can retrieve
the current plotting region (which is defined by the first component of a
plot) with:
> plot(rnorm (10))

> par("usr")

[1] 0.640000 10.360000 -1.390595 1.153828

The whole figure itself will encompass the plotting region and the region
around the plot used to add axis information and labels. Outside of
the figure region is the device region. Normally, adding components to
a plot, outside of the plotting region, will have no effect—they will be
cropped. To ensure they do not get cropped, set the graphic parameter
xpd to TRUE:
> par(xpd=TRUE)

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.1 Basic Plot 237

15.1 Basic Plot

R’s plot function provides the basic interface to the sophisticated graphics
system. Given any object plot will endeavour to determine how to display
the object. Other components of the graphic can then be built up using
a variety of functions. As new components are added, they lay on top of
what is already on the graphic, possibly occluding other components.

Standard types of plots include scatterplots, boxplots, barplots, histograms,
and piecharts. Each can be quite simply generated through high level
calls to R functions.

The simplest of plots is the scatterplot which displays the location of
points on a two dimensional plot. Here we attach the common iris
dataset and choose two variables to plot : Petal.Length and Petal.Width.
The attach function allows the column names to be used without the nor-
mal iris$ prefix (by adding the dataset to the search path). A detach
removes the object from the search pathThe resulting scatterplot illus-
trates some degree of correlation between these two variables, in that,
generally speaking, for larger petal lengths, the petal width is also larger.
We can also see two clear groups or clusters in this data: a cluster of
entities with a petal length less than 2 and width less than about 0.6, and
another group with petal length greater than about 3 and petal width
greater than about 0.9.

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

P
et

al
.W

id
th

attach(iris)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

238 Graphics in R

plot(Petal.Length , Petal.Width)

detach ()

R code source: rplot-iris-scatter.R.

If the dataset is only being used by the plot function and nowhere else
then we could use with:
with(iris , plot(Petal.Length , Petal.Width))

Of course, we could simply use the full path to each column of data to
be plotted:
plot(iris$Petal.Length , iris$Petal.Width))

http://rattle.togaware.com/code/rplot-iris-scatter.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.2 Controlling Axes 239

15.2 Controlling Axes

You can build up various features of a plot bit by bit. For example,
you can specify how much of a box to add around the plot with the box
function. In fact, you can use any of the following box line options to
draw different extents of the box. The sides are number from 1 for the
lower side, then clockwise.

"o" gives you all four sides (1:4)
"l" gives you left and lower (2 and 1)
"7" gives you upper and right (3:4)
"c" gives you all except right (1:2, 3)
"u" gives you all except upper (1:2, 4)
"]" gives you all except left (1, 3:4)

The plot function here requests that the axes not be drawn, and the
chosen box is then drawn on top of the current plot.

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

Petal.Length

P
et

al
.W

id
th

attach(iris)

plot(Petal.Length , Petal.Width , axes=FALSE)

box(bty=’7’)

R code source: rplot-iris-topbox.R.

http://rattle.togaware.com/code/rplot-iris-topbox.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

240 Graphics in R

15.3 Arrow Axes

The par function in R can be used to fine tune characteristics of a plot.
Here we add arrows to the axes. For many more arrow options see the
p.arrows function in the sfsmisc package.

In the example here, par("usr") is used to identify the bounds of the
plot, and these are then employed to draw axes with arrows. The arrows
function takes a starting point and an ending point for the line to be
drawn. The code=2 selects the type of arrow head to draw and the
xpd=TRUE ensures the arrows are not cropped to the default size of the
plot (the plot region).

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

Petal.Length

P
et

al
.W

id
th

attach(iris)

plot(Petal.Length , Petal.Width , axes=FALSE)

u <- par("usr")

arrows(u[1], u[3], u[2], u[3], code=2, xpd=TRUE)

arrows(u[1], u[3], u[1], u[4], code=2, xpd=TRUE)

R code source: rplot-iris-arrows.R.

http://rattle.togaware.com/code/rplot-iris-arrows.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.4 Legends and Points 241

15.4 Legends and Points

The legend function is used to add a legend to a plot. A specific coordi-
nate can be given as the first two arguments, or else a symbolic location,
such as topleft and center, can be given. The pch option specifies a plot-
ting symbol, and the first 25 (1:25) are shown on the plot below. Other
symbols are available in the 32:255 range. The lty is used to specify line
types. The col is used to specify colours.

● ●

2 4 6 8 10

2
4

6
8

10

1:10

● ● ● ●

●

● topleft pch 1 top pch 2 topright pch 3

left pch 6 center pch 7 right pch 8

● bottomleft pch 10 bottom pch 11 bottomright pch 12

topleft pch 4
inset pch 5

title

point (2,3) pch 9

black
red
green3
blue

cyan
magenta
yellow
gray

plot (1:10 , rep(7.5,10) , ylab="", ylim=c(1,10), xlim=c(1,10), pch=1:10, col =1:10)

points (1:10, rep(7,10), pch =11:20 , col =11:20)

points (1:5, rep(6.5,5), pch =21:25 , col =21:25)

legend("topleft", "topleft pch 1", pch=1)

legend("top" , "top pch 2", pch =2)

legend("topright", "topright pch 3", pch=3)

legend("left", "left pch 6", pch =6)

legend("center", "center pch 7", pch =7)

legend("right", "right pch 8", pch=8)

legend("bottomleft", "bottomleft pch 10", pch =10)

legend("bottom", "bottom pch 11", pch =11)

legend("bottomright", "bottomright pch 12", pch =12)

legend <- c("topleft pch 4", "inset pch 5")

legend("topleft", legend , inset=c(0.1, 0.1), pch=c(4 ,5))

legend(2, 3, legend="point (2,3) pch 9", title="title", pch=9)

plen <- length(palette ())

legend (5.5, 4.5, palette(), lty=1:plen , col=1:plen , ncol =2)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

242 Graphics in R

R code source: rplot-legends.R.

http://rattle.togaware.com/code/rplot-legends.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.4 Legends and Points 243

15.4.1 Colour

R provides a collection of predefined colours which you can use to name
colours, where appropriate. The list of colours is obtained from the colour
function:
> colours ()

[1] "white" "aliceblue" "antiquewhite"

[4] "antiquewhite1" "antiquewhite2" "antiquewhite3"

[7] "antiquewhite4" "aquamarine" "aquamarine1"

[10] "aquamarine2" "aquamarine3" "aquamarine4"

[13] "azure" "azure1" "azure2"

[16] "azure3" "azure4" "beige"

[19] "bisque" "bisque1" "bisque2"

[...]

[646] "wheat" "wheat1" "wheat2"

[649] "wheat3" "wheat4" "whitesmoke"

[652] "yellow" "yellow1" "yellow2"

[655] "yellow3" "yellow4" "yellowgreen"

There’s plenty of colours there to choose from!

The col option of a plot is used to change any default colours used by a
plot. You can supply a list of integers which will index the output of a
call to the palette function. The default palette is:
> palette ()

[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"

[8] "gray"

You can generate a contiguous colour palette using cm.colors.
> cm.colors (10)

[1] "#80 FFFF" "#99 FFFF" "#B2FFFF" "#CCFFFF" "#E6FFFF" "#FFE6FF" "#FFCCFF"

[8] "#FFB2FF" "#FF99FF" "#FF80FF"

Similarly, to generate a sequence of colours from a rainbow:
> rainbow (10)

[1] "#FF0000" "#FF9900" "#CCFF00" "#33 FF00" "#00 FF66" "#00 FFFF" "#0066FF"

[8] "#3300 FF" "#CC00FF" "#FF0099"

To generate a sequence of six grays you can use the gray function:
> gray(seq(0.1, 0.9, len =6))

[1] "#1 A1A1A" "#424242" "#6 B6B6B" "#949494" "#BDBDBD" "#E6E6E6"

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

244 Graphics in R

15.5 Symbols

See demo(Hershey).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.6 Multiple Plots 245

15.6 Multiple Plots

Use layout.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

246 Graphics in R

15.7 Other Graphic Elements

Place onto a plot text in a rect box with background shading, using
strwidth to determine the rectangles coordinates:
text <- "Some Text"; x <- 10; y <- 10

xpad <- 0.1; ypad <- 1.0; bg="wheat"

w <- strwidth(text) + xpad*strwidth(text)

h <- strheight(text) + ypad*strheight(text)

rect(x-w/2, y-h/2, x+w/2, y+h/2, col=bg)

text(x, y, text)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.8 Maths in Labels 247

15.8 Maths in Labels

A large collection of mathematical symbols are available for adding to
plots.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

248 Graphics in R

15.9 Making an Animation

Create 10 files of jpg
frames <- 10

for(i in 1: frames)

{

jpeg(sprintf("ani_%02d.jpg", i))

plot (1:10 , 1:10, col=i)

dev.off()

}

Then use ImageMagick to transform to an animated gif:
system("convert -delay 10 ani_??. jpg animation.gif")

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.10 Animated Mandelbrot 249

15.10 Animated Mandelbrot

The following example, suggested by Jaroslaw Tuszynski (author of the
caTools package), illustrates the use of complex numbers constructed
using complex, as well as the writing of multiple images to a gif file to
construct an animated gif. Some 160,000 (400 by 400) complex numbers
are generated and stored in a matrix. A list of 20 arrays is then built,
each being 400 by 400. The magic is then done in the for loop, 20 times,
to generate 20 images. All images are written to a single gif file using
write.gif. The final image (X[,,k]) is also displayed using image. We
use tim.colors from fields to select a pleasing rainbow colour sequence,
but replace the first with transparent to achieve a clear background.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

library(fields) # for tim.colors

library(caTools) # for write.gif

m <- 400 # grid size

C <- complex(real=rep(seq(-1.8,0.6, length.out=m), each=m),

imag=rep(seq(-1.2,1.2, length.out=m), m))

C <- matrix(C, m, m)

Z <- 0

X <- array(0, c(m, m, 20))

for (k in 1:20)

{

Z <- Z^2+C

X[,,k] <- exp(-abs(Z))

}

col <- tim.colors (256)

col [1] <- "transparent"

write.gif(X, "graphics/rplot -mandelbrot.gif", col=col , delay =100)

image(X[,,k], col=col) # show final image in R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

250 Graphics in R

R code source: rplot-mandelbrot.R.

http://rattle.togaware.com/code/rplot-mandelbrot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.11 Adding a Logo to a Graphic 251

15.11 Adding a Logo to a Graphic

library(pixmap)

From the addlogo example

x <- read.pnm(system.file("pictures/logo.ppm", package="pixmap")[1])

fg <- matrix(c(0,1,0,1,0,.05,0,.05), ncol=4, byrow=TRUE)

split.screen(fg)

screen (1)

plot(rnorm (100))

screen (2)

addlogo(x,c(0,1),c(0 ,1))

15.12 Graphics Devices Setup

R produces its graphics on a graphics device. By default, a screen-
based graphics device is usually opened when any new plot is generated.
Generally, a user will interactively create the graphic they are interested
in, as a series of R function calls, and then either request this to be saved
to a particular file format, or else will repeat the same sequence of R
function calls, but with a different graphics device (associated with a
specific file format and filename). The default graphics device tends to
be x11 on Unix and GNU/Linux, windows on MS/Windows, and quartz
on the Macintosh OS X.

15.12.1 Screen Devices

A new graphics device is created with any one of x11, windows, and
quartz. Once a graphics device is opened, all further graphics commands
relate to that device, until it is closed with the dev.off function. The
graphics.off function closes all devices.
> x11()

> plot(rnorm (50))

> x11()

> plot(rnorm (10))

> dev.off()

X11

2

> dev.off()

null device

1

On screen devices you can sometimes print the plots directly from the
right mouse button menu (depending on the operating system and the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

252 Graphics in R

GUI). Once you have a plot drawn on a screen device you can always
save the current plot to PDF with:
dev.print(pdf , file="rplot.pdf")

15.12.2 Multiple Devices

At any one time, any number of graphics devices may be present, but
only one is active. To list all open devices use dev.list. To identify the
active device use dev.cur, and to make a device current use dev.set. The
functions dev.next and dev.prev makes the next or previous device active.
> plot(iris$Sepal.Length)

> x11()

> plot(iris$Sepal.Width)

> dev.list()

X11 X11

2 3

> dev.cur()

X11

3

> dev.set(2)

X11

2

> dev.cur()

X11

2

This allows two plots to be displayed separately.

15.12.3 File Devices

In order to save the graphics to a file the following file devices are pro-
vided:
> bitmap("sample.png") # GhostScript to generate any format

> bmp("sample.bmp") # MS/Windows only

> fig("sample.fig") # Vector based and editable with xfig

> jpeg("sample.jpg") # Bitmap

> pdf("sample.pdf") # Vector based Portable Document Format

> png("sample.png") # Bitmap

> postscript("sample.eps") # Vector based

> win.metafile("sample.emf") # MS/Windows only

Once created, you can start building the elements of the graphic you
wish to produce (and there are plenty of examples of building a variety

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.12 Graphics Devices Setup 253

of graphics throughout this book). Once complete, close the specific
graphic device with:
> dev.off()

Each device tends to have a collection of options that fine tune the ca-
pabilities of the device. Refer to the on-line documentation for details:
> ?pdf

To generate a an older tiff format (now largely superseded by the png
format for graphics that include vectors and text), perhaps as 24-bit
RGB output (8 bits per component), you can use the bitmap device:
> bitmap("sample.tiff", type="tiff24nc")

Any output device supported by GostScript is available. GhostScript
needs to be installed, but once installed you can get a list of supported
output devices:
$ gs --help

[...]

Available devices:

alc1900 alc2000 alc4000 alc4100 alc8500 alc8600 alc9100 ap3250 appledmp

atx23 atx24 atx38 bbox bit bitcmyk bitrgb bj10e bj10v bj10vh bj200 bjc600

bjc800 bjc880j bjccmyk bjccolor bjcgray bjcmono bmp16 bmp16m bmp256

bmp32b bmpa16 bmpa16m bmpa256 bmpa32b bmpamono bmpasep1 bmpasep8 bmpgray

bmpmono bmpsep1 bmpsep8 ccr cdeskjet cdj1600 cdj500 cdj550 cdj670 cdj850

cdj880 cdj890 cdj970 cdjcolor cdjmono cfax cgm24 cgm8 cgmmono chp2200 cif

cljet5 cljet5c cljet5pr coslw2p coslwxl cp50 cups declj250 deskjet

devicen dfaxhigh dfaxlow dj505j djet500 djet500c dl2100 dnj650c epl2050

epl2050p epl2120 epl2500 epl2750 epl5800 epl5900 epl6100 epl6200 eps9high

eps9mid epson epsonc epswrite escp escpage faxg3 faxg32d faxg4 fmlbp fmpr

fs600 gdi hl1240 hl1250 hl7x0 hpdj1120c hpdj310 hpdj320 hpdj340 hpdj400

hpdj500 hpdj500c hpdj510 hpdj520 hpdj540 hpdj550c hpdj560c hpdj600

hpdj660c hpdj670c hpdj680c hpdj690c hpdj850c hpdj855c hpdj870c hpdj890c

hpdjplus hpdjportable ibmpro ijs imagen inferno iwhi iwlo iwlq jetp3852

jj100 jpeg jpeggray la50 la70 la75 la75plus laserjet lbp310 lbp320 lbp8

lex2050 lex3200 lex5700 lex7000 lips2p lips3 lips4 lips4v lj250 lj3100sw

lj4dith lj4dithp lj5gray lj5mono ljet2p ljet3 ljet3d ljet4 ljet4d

ljet4pjl ljetplus ln03 lp1800 lp1900 lp2000 lp2200 lp2400 lp2500 lp2563

lp3000c lp7500 lp7700 lp7900 lp8000 lp8000c lp8100 lp8200c lp8300c

lp8300f lp8400f lp8500c lp8600 lp8600f lp8700 lp8800c lp8900 lp9000b

lp9000c lp9100 lp9200b lp9200c lp9300 lp9400 lp9500c lp9600 lp9600s

lp9800c lq850 lx5000 lxm3200 lxm5700m m8510 mag16 mag256 md1xMono md2k

md50Eco md50Mono md5k mgr4 mgr8 mgrgray2 mgrgray4 mgrgray8 mgrmono miff24

mj500c mj6000c mj700v2c mj8000c ml600 necp6 npdl nullpage oce9050 oki182

oki4w okiibm omni oprp opvp paintjet pam pbm pbmraw pcl3 pcx16 pcx24b

pcx256 pcx2up pcxcmyk pcxgray pcxmono pdfwrite pgm pgmraw pgnm pgnmraw

photoex picty180 pj pjetxl pjxl pjxl300 pkm pkmraw pksm pksmraw plan9bm

png16 png16 png16m png16m png256 png256 pngalpha pngalpha pnggray pnggray

pngmono pngmono pnm pnmraw ppm ppmraw pr1000 pr1000_4 pr150 pr201 psdcmyk

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

254 Graphics in R

psdrgb psgray psmono psrgb pswrite pxlcolor pxlmono r4081 rpdl samsunggdi

sgirgb sj48 spotcmyk st800 stcolor sunhmono t4693d2 t4693d4 t4693d8

tek4696 tiff12nc tiff24nc tiffcrle tiffg3 tiffg32d tiffg4 tifflzw

tiffpack uniprint x11 x11alpha x11cmyk x11cmyk2 x11cmyk4 x11cmyk8

x11gray2 x11gray4 x11mono xcf xes

[...]

That’s a pretty impressive collection of output devices!

Note that the win.metafile device requires the MS/Windows libraries.
On a GNU/Linux system, to generate the MS/Windows Metafile for-
mat, you will need to install and run a version of R under, for example,
the GNU/Linux wine package. This was discussed in Section 13.1.3,
page 165.

The graphics included in this book are generated as pdf using scalable
vector graphics. We could have generated png files for inclusion in web
pages or even convert pdf files to png using the Debian GNU/Linux
convert program:

$ convert rplot -basic.pdf rplot -basic.png

15.12.4 Multiple Plots

On any device, a sequence of graphics may be produced. For a screen
device, for example, each call of the plot function will effectively wipe the
active screen device and start drawing a new graphic. Multiple plots to
the same device, without wiping the screen, can be achieved by setting
the new option to true for each plot :
> plot(a)

> par(new=TRUE)

> plot(b)

> par(new=TRUE)

> plot(c)

On a MS/Windows device there is the opportunity to interactively cycle
through the sequence of graphics, after turning on the Recording option
of the History menu of the graphics Window. You can then use the Page
Up and Page Down keys (or the menu) to cycle through the sequence of
graphics. This is not available on the X11 screen device under Unix and
GNU/Linux.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.13 Graphics Parameters 255

When displaying on a file device, multiple plots equate to multiple pages.
Some file devices, such as postscript and pdf support multiple pages.
Many print devices support the production of multiple files for multiple
plots, through setting onefile=FALSE and the file name to something
like file="plot%03d".

15.12.5 Copy and Print Devices

From a MS/Windows screen device you can choose from the right mouse
button menu to Copy the graphics to the Clipboard as a MS/Metafile
or Bitmap format, or else to save the graphics to a file as a Metafile or
PostScript file. You can also directly print the graphic from the same
menu. This functionality is not available on the X11 screen device under
Unix and GNU/Linux.

Having interactively generated a graphic you can copy the graphic to
any other device with the dev.copy function. R accomplishes this by
keeping a so called display list which tracks the graphics operations used
to draw the graphic. When a copy is requested, or the graphics needs to
be redrawn, these graphics commands are executed.
> dev.set(3)

> dev.copy(pdf , file="currentplot.pdf")

> dev.off()

The recording of the graphics operations is enabled only for screen de-
vices. The recording to the display list can be turned off, if memory is
at a premium:
> dev.control("inhibit")

15.13 Graphics Parameters

The par function in R applies various options to the current graphics
device. It can not be set until the device has been created. It is used
to change or add to the appearance of a plot, or to obtain information
about a plot. For example, the usr option returns the coordinates of the
plotting region:

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

256 Graphics in R

> plot(rnorm (50))

> par("usr")

[1] -0.960000 51.960000 -3.245599 2.852000

This is useful when you want to place additional objects on the plot—it
will tell you the extent of the coordinates currently in use.

When using the lattice package note that instead of par we use trel-
lis.par.get and trellis.par, as in:
> library(lattice)

> mt <- trellis.par.get("par.main.text")

> mt$cex <- 0.7

> trellis.par.set("par.main.text", mt)

The output of trellis.par.get without arguments lists all the possible op-
tions. Calling show.settings can also help.

15.13.1 Plotting Region

The xpd specifies whether anything plotted outside the plotting region
should be displayed (default is FALSE).
par("usr") # Returns coordinates of plot region.

par(usr=c(0 ,600 ,0 ,800)) # Set the plot region.

par(xpd=TRUE) # Do not clip to the plot region.

15.13.2 Locating Points on a Plot

You may sometimes want to know specific locations on a plot, for example
to place some text at specific points. To find the locations the interactive
function locator is most useful. Execute the function and then left mouse
click on the plot at the points you wish to locate, followed by a right
mouse click to finish. A list of x and y points will be displayed in the R
window.

15.13.3 Scientific Notation and Plots

By default, if the numbers labelling the axes of a plot will end up taking
more digits than the scientific notation, then scientific notation will be

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

15.13 Graphics Parameters 257

used. You can add a penalty to the determination of when scientific
notation will be used by using the scipen option. Setting to a large
positive number will ensure scientific notation will not be used, while
setting it to a large negative number will ensure scientific notation will
always be used:
> options(scipen =99)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

258 Graphics in R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 16

Understanding Data

A key task in any data mining project
is exploratory data analysis (often ab-
breviated as EDA). This task generally
involves getting the basic statistics of a
dataset and using graphical tools to visu-
ally investigate the data’s characteristics.
Visual data exploration can help in un-
derstanding the data, in error correction, and in variable selection and
variable transformation.

Statistics is the fundamental tool in understanding data. Statistics is
essentially about uncertainty—to understand and thereby to make al-
lowance for it. It also provides a framework for understanding the dis-
coveries made in data mining. Discoveries need to be statistically sound
and statistically significant—any uncertainty associated with the mod-
elling needs to be understood.

Visualising data has been an area of study within statistics for many
years. A vast array of tools are available for presenting data visually.
The whole topic deserves a book in its own right, and indeed there are
many, including Cleveland (1993) and Tufte.

In this chapter we introduce some of the basic statistical concepts that
a data miner needs to know. We then provide a gallery of graphical
approaches to visualise and understand our data. Many of the plots

http://en.wikipedia.org/wiki/Exploratory_data_analysis

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

260 Understanding Data

we present here could have just as easily, or perhaps initially even more
easily, been produced using a spreadsheet application. However there are
significant advantages in programmatically generating the plots. There
could be tens, or even hundreds, of plots you would like to generate.
Doing this by hand in a spreadsheet is cumbersome and error prone.
Also, any plots produced from the first data extraction are just the start.
As the data is refined and new datasets generated, manually regenerating
plots is not a productive exercise. Using R to extract and manipulate the
data and to plot the data is a cost effective exercise, using open source
software (on either GNU/Linux or MSWindows platforms).

After loading data, as discussed in Chapter 3, we can start our explo-
ration of the data itself. In addition to textual summaries, building on
the basic graphics capabilities introduced in Section 15, page 235, we
provide an overview of R’s extensive graphics capabilities for exploring
and understanding the data. Section 16.1 explores the basic character-
istics of a dataset, while Section 16.8 begins to provide basic statistical
summaries of the data.

16.1 Single Variable Overviews

16.1.1 Textual Summaries

We saw in Chapter ?? some of the R functions that help us get a basic
picture of the scope and type of data in any dataset. These include the
most basic of information including the number and names of columns
and rows (for data frames) and a summary of the data values them-
selves. We illustrate this again with the wine dataset (see Section 14.3.4,
page 219):
> load("wine.RData")

> dim(wine)

[1] 178 14

> nrow(wine)

[1] 178

> ncol(wine)

[1] 14

> colnames(wine)

[1] "Type" "Alcohol" "Malic" "Ash"

[5] "Alcalinity" "Magnesium" "Phenols" "Flavanoids"

[9] "Nonflavanoids" "Proanthocyanins" "Color" "Hue"

[13] "Dilution" "Proline"

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 261

> rownames(wine)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"

"12"

[13] "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23"

"24"

[...]

[157] "157" "158" "159" "160" "161" "162" "163" "164" "165" "166" "167" "168"

[169] "169" "170" "171" "172" "173" "174" "175" "176" "177" "178"

This gives us an idea of the shape of the data. We are dealing with a
relatively small dataset of 178 entities and 14 variables.

Next, we’d like to see what the data itself looks like. We can list the first
few rows of the data using head :
> head(wine)

Type Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids Nonflavanoids

1 1 14.23 1.71 2.43 15.6 127 2.80 3.06

0.28

2 1 13.20 1.78 2.14 11.2 100 2.65 2.76

0.26

3 1 13.16 2.36 2.67 18.6 101 2.80 3.24

0.30

4 1 14.37 1.95 2.50 16.8 113 3.85 3.49

0.24

5 1 13.24 2.59 2.87 21.0 118 2.80 2.69

0.39

6 1 14.20 1.76 2.45 15.2 112 3.27 3.39

0.34

Proanthocyanins Color Hue Dilution Proline

1 2.29 5.64 1.04 3.92 1065

2 1.28 4.38 1.05 3.40 1050

3 2.81 5.68 1.03 3.17 1185

4 2.18 7.80 0.86 3.45 1480

5 1.82 4.32 1.04 2.93 735

6 1.97 6.75 1.05 2.85 1450

Next we might look at the structure of the data using the str (structure)
function. This provides a basic overview of both values and their data
type:
> str(wine)

‘data.frame’: 178 obs. of 14 variables:

$ Type : Factor w/ 3 levels "1" ,"2" ,"3": 1 1 1 1 1 1 1 1 1 1 ...

$ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ...

$ Malic : num 1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...

$ Ash : num 2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...

$ Alcalinity : num 15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...

$ Magnesium : int 127 100 101 113 118 112 96 121 97 98 ...

$ Phenols : num 2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...

$ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...

$ Nonflavanoids : num 0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

262 Understanding Data

$ Proanthocyanins: num 2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...

$ Color : num 5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...

$ Hue : num 1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...

$ Dilution : num 3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...

$ Proline : int 1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...

We are now starting to get an idea of what the data itself looks like. The
categorical variable Type would appear to be something that we might
want to model—the output variable. The remaining variables are all
numeric variables, a mixture of integers and real numbers.

The final step in the first look at the data is to get a summary of each
variable using summary :
> summary(wine)

Type Alcohol Malic Ash Alcalinity

1:59 Min. :11.03 Min. :0.740 Min. :1.360 Min. :10.60

2:71 1st Qu .:12.36 1st Qu .:1.603 1st Qu .:2.210 1st Qu .:17.20

3:48 Median :13.05 Median :1.865 Median :2.360 Median :19.50

Mean :13.00 Mean :2.336 Mean :2.367 Mean :19.49

3rd Qu .:13.68 3rd Qu .:3.083 3rd Qu .:2.558 3rd Qu .:21.50

Max. :14.83 Max. :5.800 Max. :3.230 Max. :30.00

[...]

16.1.2 Multiple Line Plots

A line plot displays a line corresponding to one or more variables over
some series of data or entities. The matplot function will display multiple
lines from data in a matrix. such a plot is useful in observing changes in
variables over time or across entities.

In our example we plot just the first 50 entities in the wine dataset, and
choose four variables to plot. These kinds of plots can get very crowded if
we attempt to plot too much data. A legend is placed in an appropriate
location (at the point x = 33, y = 4.05) using the legend function, where
we also identify the colours, using col, to be the first four in the colour
pallete, and the line types, using lty, as the firsts four line types.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 263

0 10 20 30 40 50

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Entity

O
bs

er
ve

d

Ash
Phenols
Proanthocyanins
Dilution

load("wine.Rdata")

cols <- c("Ash", "Phenols", "Proanthocyanins", "Dilution")

matplot (1:50, wine [1:50 , cols], type="l", ylab="Observed", xlab="Entity")

legend (30, 4.05, cols , col=1:4, lty =1:4)

R code source: rplot-wine-matplot.R.

http://rattle.togaware.com/code/rplot-wine-matplot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

264 Understanding Data

16.1.3 Separate Line Plots

The multiple line plots can be separated into their own plots, stacked
vertically, to give a clearer view of the individual plots. We can use the
zoo package to plot sequences. These plots are especially useful for data
that is sequence oriented, such as time series plots, but even here we can
get some insights into the data.

A
sh

1.
5

2.
0

2.
5

3.
0

P
he

no
ls

1.
0

2.
0

3.
0

P
ro

an
th

oc
ya

ni
ns

0.
5

1.
5

2.
5

3.
5

0 50 100 150

1.
5

2.
5

3.
5

D
ilu

tio
n

Index

Wine

library(zoo)

load("wine.Rdata")

cols <- c("Ash", "Phenols", "Proanthocyanins", "Dilution")

zdat <- zoo(wine[,cols], 1:nrow(wine))

plot(zdat , main="Wine", col =1:4)

R code source: rplot-wine-zoo.R.

http://rattle.togaware.com/code/rplot-wine-zoo.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 265

16.1.4 Pie Chart

A pie chart partitions a circle into proportions related to some data. The
R function pie is used to produce a pie chart. A pie chart can be used to
display the proportion of entities spread across some partitioning of the
dataset. In French, they are referred to as le camembert (as in the round
cheese), and in Danish, as Lagkagediagram (traditional layer cakes).

Pie charts are a perennial favourite even though common wisdom sug-
gests avoiding them. The human eye is not well suited to differentiating
angular variations and a bar chart provides a better alternative. How-
ever, many people still enjoy the look of a pie chart

In our example, using the wine dataset, the data is partitioned on cat-
egorical variable Type. The default plot produced by pie will produce
quite a respectable looking pie chart. We add in to the basic plot the
percentage of entities in each category, including this with the labels of
the pie chart. This helps in communicating the distribution of the data
over Type.

1 (33%)

2 (40%)

3 (27%)

load("wine.Rdata")

attach(wine)

percent <- round(summary(Type) * 100 / nrow(wine))

labels <- sprintf("%s (%d%%)", levels(Type), percent)

pie(summary(Type), lab=labels)

http://en.wikipedia.org/wiki/Pie_chart

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

266 Understanding Data

R code source: rplot-wine-pie.R.

http://rattle.togaware.com/code/rplot-wine-pie.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 267

16.1.5 Fan Plot

fan.plot <-function(x,edges =200, radius=1,col=NULL ,centerpos=pi/2,

labels=NULL ,...) {

if (!is.numeric(x) || any(is.na(x) | x<=0))

stop("fan.plot: x values must be positive.")

scale the values to a half circle

x<-pi*x/sum(x)

xorder <-order(x,decreasing=TRUE)

nx <- length(x)

if (is.null(col)) col <-rainbow(nx)

else if(length(col) < nx) col <-rep(col ,nx)

oldpar <-par(no.readonly=TRUE)

par(mar=c(0,0,4,0))

plot(0,xlim=c(-1,1),ylim=c(-0.6,1),xlab="",ylab="",type="n",axes=FALSE)

lside <- -0.8

for(i in 1:nx) {

n<-edges*x[xorder[i]]/pi

t2p <-seq(centerpos -x[xorder[i]], centerpos+x[xorder[i]],length=n)

xc<-c(cos(t2p)*radius ,0)

yc<-c(sin(t2p)*radius ,0)

polygon(xc,yc,col=col[xorder[i]] ,...)

if(!is.null(labels)) {

xpos <-lside*sin(x[xorder[i]])*radius

ypos <--i/10

text(xpos ,ypos ,labels[xorder[i]])

ytop <-cos(x[xorder[i]])*radius*radius

segments(xpos ,ypos+1/20,xpos ,ytop)

lside <--lside

}

radius <-radius -0.02

}

}

fan.plot(c(20 ,38 ,3 ,17))

16.1.6 Stem and Leaf Plots

A Stem-and-leaf plot is a simple textual plot of numeric data that is
useful to get an idea of the shape of a distribution. It is similar to the
graphic histograms that we will see next, but a useful quick place to start
for smaller datasets. A stem-and-leaf plot has the advantage of showing
actual data values in the plot rather than just a bar indicating frequency.

In reviewing a stem-and-leaf plot we might look to see if there is a clear
central value, or whether the data is very spread out. We look at the
spread to see if it might be symmetric about the central value or whether

http://en.wikipedia.org/wiki/Stem_and_leaf_diagram

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

268 Understanding Data

there is a skew in one particular direction. We might also look for any
data values that are a long way from the general values in the rest of the
population.
> stem(wine$Magnesium)

The decimal point is 1 digit(s) to the right of the |

7 | 0

7 | 888

8 | 0000012444

8 | 55555566666666666777888888888888899999

9 | 0000112222233444444

9 | 55566666666777778888888889

10 | 000111111111222222233333444

10 | 55666677778888

11 | 00011122222233

11 | 5566678889

12 | 0001234

12 | 678

13 | 24

13 | 69

14 |

14 |

15 | 1

15 |

16 | 2

The stem is to the left of the bar and the leaves are to the right.

Note the change in where the decimal point is.
> stem(wine$Alcohol)

The decimal point is 1 digit(s) to the left of the |

110 | 3

112 |

114 | 1566

116 | 1245669

118 | 1224476

120 | 000478888867

122 | 01255599993346777777

124 | 22235711238

126 | 004790022779

128 | 124556783369

130 | 355555578116677

132 | 034478902469

134 | 0015889900126688

136 | 2347891123345678

138 | 23346678804

140 | 266002369

142 | 01223047889

144 |

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 269

146 | 5

148 | 3

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

270 Understanding Data

16.1.7 Histogram

A histogram allows the basic distribution of the data to be viewed. Here
we plot the histogram for magnesium and alcohol content of various
wines, and we might compare it with the previous stem-and-leaf plot
which summarises the same data. The shape is basically the same, al-
though in detail they go up and down at different points!

Histogram of Magnesium

Magnesium

F
re

qu
en

cy

80 120 160

0
10

20
30

40

Histogram of Alcohol

Alcohol

F
re

qu
en

cy

11 12 13 14 15

0
10

20
30

attach(wine)

par(mfrow=c(1, 2))

hist(Magnesium)

hist(Alcohol)

R code source: rplot-wine-hist.R.

http://rattle.togaware.com/code/rplot-wine-hist.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 271

Also, from Rattle, we have:
library(rattle)

data(audit)

hs <- hist(audit$Income , main="", xlab="", col=rainbow (10))

dens <- density(audit$Income)

rs <- max(hs$counts)/max(dens$y)

lines(dens$x, dens$y*rs, type="l")

rug(audit$Income)

title(main="Distribution of Income",

sub=paste("Rattle", Sys.time(), Sys.info ()["user"]))

R code source: rattle-audit-explore-distr-hist-income.R.

http://rattle.togaware.com/code/rattle-audit-explore-distr-hist-income.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

272 Understanding Data

16.1.8 Barplot

A barplot displays data as bars, each bar being proportional to the data
being plotted. In R a barplot is built using the barplot function. We can
use a barplot, for example, to illustrate the distribution of entities in a
dataset across some variable. With the wine dataset Type is a categorical
variable with three levels: 1, 2, and 3. A simple bar plot illustrates the
distribution of the entities across the three Types. The summary function
is used to obtain the data we wish to plot (59, 71, and 48).

We place the actual counts on the plot with the text function. The trick
here is that the barplot function returns the bar midpoints, and these
can be used to place the actual values. We add 2 to the y values to place
the numbers above the bars. Also note that xpd is set to TRUE to avoid
the highest number being chopped (because it, 71, is actually outside the
plot region).

1 2 3

Type

F
re

qu
en

cy

0
10

20
30

40
50

60
70

59

71

48

load("wine.Rdata")

attach(wine)

par(xpd=TRUE)

bp <- barplot(summary(Type), xlab="Type", ylab="Frequency")

text(bp , summary(Type)+2, summary(Type))

R code source: rplot-wine-barplot.R.

http://rattle.togaware.com/code/rplot-wine-barplot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 273

16.1.9 Trellis Histogram

Multiple plots can be placed into a single plot using the lattice pack-
age. Here we also illustrate the use of the color option of the histogram
function, setting it to FALSE to obtain a transparent background.

Alcohol

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

11 12 13 14 15

1

11 12 13 14 15

2

11 12 13 14 15

3

library(lattice)

load("wine.Rdata")

trellis.device(width=7, height=5, new=FALSE , color=FALSE)

with(wine , histogram(~ Alcohol | Type))

R code source: rplot-histogram-trellis.R.

http://rattle.togaware.com/code/rplot-histogram-trellis.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

274 Understanding Data

16.1.10 Histogram Uneven Distribution

Suppose your data has a number of outliers. The breaks option of hist
allows you to specify where the splits occur.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 275

16.1.11 Density Plot

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

density.default(x = iris$Petal.Length)

N = 150 Bandwidth = 0.5832

D
en

si
ty

plot(density(iris$Petal.Length))

R code source: rplot-iris-density.R.

Here’s an example that illustrates uniformity. The histogram shows a
lot of variance in the uniform random sample, at least for small samples,
whereas the quantile plots are more effective in showing the uniformity
(or density).
> hist(runif (100))

> hist(runif (1000))

> hist(runif (10000))

> hist(runif (100000))

> hist(runif (1000000))

> hist(runif (10000000))

> hist(runif (100000000))

> par(mfrow=c(2,2))

> for(i in c(10, 100, 1000, 10000)) {

qqplot(runif(i), qunif(seq(1/i, 1, length=i)), main=i,

xlim=c(0,1), ylim=c(0,1),

xlab="runif", ylab="Uniform distribution quantiles")

http://rattle.togaware.com/code/rplot-iris-density.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

276 Understanding Data

abline(0,1,col="lightgray")

}

Histograms are not particularly good as density estimators. However,
most of the time histograms are used as an exploratory tool useful in
assisting in understanding our data. Using small bin widths helps find
unexpected gaps and patterns in our data, and gives an initial view of
the distribution.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 277

16.1.12 Basic Histogram

A histogram illustrates the distribution of values. The following example
is the most basic of histograms.

Histogram of rnorm(200)

rnorm(200)

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
5

10
15

20
25

30
35

pdf("graphics/rplot -hist.pdf")

hist(rnorm (200))

dev.off()

R code source: rplot-hist.R.

http://rattle.togaware.com/code/rplot-hist.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

278 Understanding Data

16.1.13 Basic Histogram with Density Curve

R allows plots to be built up—this example shows a density histogram
of a set of random numbers extracted from a normal distribution with
the density curve of the same normal distribution also displayed. In
the R code we build the histogram at first without plotting it, so as to
determine the y limits (range selects the minimum and maximum values,
while h$density is the list of density values being plotted and dnorm(0)
is the maximum possible value of the density), since otherwise the curve
might push up into the title!

Histogram of Normal Distribution with Density

normal

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

ds <- rnorm (200)

pdf("graphics/rplot -hist -density.pdf")

par(xpd=T)

h <- hist(ds, plot=F)

ylim <- range(0, h$density , dnorm (0))

hist(ds , xlab="normal", ylim=ylim , freq=F,

main="Histogram of Normal Distribution with Density")

curve(dnorm , col=2, add=T)

dev.off()

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.1 Single Variable Overviews 279

R code source: rplot-hist-density.R.

http://rattle.togaware.com/code/rplot-hist-density.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

280 Understanding Data

16.1.14 Practical Histogram

Suppose we are interested in the distribution of the Alcohol content in
the wine dataset. The numeric values are grouped by hist into intervals
and the bars represent the frequency of occurrence of each interval as a
height. A rug is added to the plot, just above the x-axis, to illustrate
the density of values.

Histogram of Alcohol

Alcohol

F
re

qu
en

cy

11 12 13 14 15

0
10

20
30

pdf(’graphics/rplot -hist -colour.pdf’)

load("wine.Rdata")

attach(wine)

hist(Alcohol , col=’lightgreen ’)

rug(Alcohol)

dev.off()

R code source: rplot-hist-colour.R.

http://rattle.togaware.com/code/rplot-hist-colour.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.2 Multiple Variable Overviews 281

16.2 Multiple Variable Overviews

16.2.1 Pivot Tables

The reshape package was inspired by pivot tables. The package works
on homogeneous data only, so your data needs to be all numeric or all
character, and not a mixture of the.

The aim is to generate various aggregate summaries of the data. For
example, with the wine dataset we may like to look at the average values
of a number of input variables for each Type. The first step, using the
reshape package, is to melt the data frame, which expands the non-
identifying variables across the identifying variables:
> wine.molten <- melt(wine , id="Type")

> head(wine.molten)

Type variable value

1 1 Alcohol 14.23

2 1 Alcohol 13.20

3 1 Alcohol 13.16

4 1 Alcohol 14.37

5 1 Alcohol 13.24

6 1 Alcohol 14.20

> tail(wine.molten)

Type variable value

17312 3 Proline 660

17412 3 Proline 740

17512 3 Proline 750

17612 3 Proline 835

17712 3 Proline 840

17812 3 Proline 560

Now we can use cast to recast the data into the shape we want. Here we
reshape it by Type and list the mean of each input variable across the
values of Type:
> cast(wine.molten , Type ~ variable , mean)

Type Alcalinity Alcohol Ash Color Dilution Flavanoids

Hue

1 17.03729 13.74475 2.455593 5.528305 3.157797 2.9823729 1.0620339

2 20.23803 12.27873 2.244789 3.086620 2.785352 2.0808451 1.0562817

3 21.41667 13.15375 2.437083 7.396250 1.683542 0.7814583 0.6827083

Magnesium Malic Nonflavanoids Phenols Proanthocyanins Proline

106.3390 2.010678 0.290000 2.840169 1.899322 1115.7119

94.5493 1.932676 0.363662 2.258873 1.630282 519.5070

99.3125 3.333750 0.447500 1.678750 1.153542 629.8958

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

282 Understanding Data

We can also include the column and row totals. We will illustrate this
with a subset of the wine dataset:
> measure <- c("Alcohol", "Malic", "Ash")

> wine.molten <- melt(wine , id="Type", measure=measure)

> cast(wine.molten , Type ~ variable , mean , margins=c("grand_row", "grand_col"))

Type Alcohol Malic Ash .

1 13.74475 2.010678 2.455593 6.070339

2 12.27873 1.932676 2.244789 5.485399

3 13.15375 3.333750 2.437083 6.308194

. 13.00062 2.336348 2.366517 5.901161

In this case the row totals have no meaning but the column totals do.

Also see aggregate:
> aggregate(wine[,-1], list(Type=wine$Type), mean)

Type Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids

1 1 13.74475 2.010678 2.455593 17.03729 106.3390 2.840169 2.9823729

2 2 12.27873 1.932676 2.244789 20.23803 94.5493 2.258873 2.0808451

3 3 13.15375 3.333750 2.437083 21.41667 99.3125 1.678750 0.7814583

Nonflavanoids Proanthocyanins Color Hue Dilution Proline

1 0.290000 1.899322 5.528305 1.0620339 3.157797 1115.7119

2 0.363662 1.630282 3.086620 1.0562817 2.785352 519.5070

3 0.447500 1.153542 7.396250 0.6827083 1.683542 629.8958

Another example using reshape.
> dat <- read.table("clipboard", header=TRUE)

> dat

Q S C

1 1 A 5

2 1 B 10

3 1 C 50

4 1 D 10

5 2 A 20

6 2 E 10

7 2 C 40

8 3 D 5

9 3 F 1

10 3 G 5

11 3 B 75

> res <- reshape(dat , direction = "wide", idvar = "Q", timevar = "S")

> res

Q C.A C.B C.C C.D C.E C.F C.G

1 1 5 10 50 10 NA NA NA

5 2 20 NA 40 NA 10 NA NA

8 3 NA 75 NA 5 NA 1 5

> res[is.na(res)] <- 0

> names(

> res

Q C.A C.B C.C C.D C.E C.F C.G

1 1 5 10 50 10 0 0 0

5 2 20 0 40 0 10 0 0

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.2 Multiple Variable Overviews 283

8 3 0 75 0 5 0 1 5

Or the same, but using the reshape package:
> library(reshape)

> datm <- melt(dat , id =1:2)

> cast(datm , Q ~ S)

S A B C D E F G

Q A B C D E F G

1 5 10 50 10 NA NA NA

2 20 NA 40 NA 10 NA NA

3 NA 75 NA 5 NA 1 5

With the basics in hand we can now explore the data in a more graphical
fashion, beginning with plots that help understand individual variables
(barplot, piechart, and line plots), followed by a number of plots that
explore relationships between variables (scatterplot and correlation plot).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

284 Understanding Data

16.2.2 Scatterplot

A scatterplot presents points in 2-dimensional space corresponding to
a pair of chosen variables. R’s plot function defaults to a scatterplot.
Relationships between pairs of variables can be seen through the use of
a scatterplot and clusters and outliers can begin to be identified.

Using the wine dataset a plot is created to display Phenols versus Fla-
vanoids. To add a little more interest to the plot, a different symbol (and
for colour devices, a different colour) is used to display the three different
values of Type for each point. The symbols are set using Type as the
argument to pch, but after converting it to integers with as.integer. In a
similar fashion, the colours are chosen to replace numbers in a transfor-
mation of the Type vector by indexing into the output of palette, achieved
using lapply, and turning the result into a flat list, rather than a list of
lists, using unlist.

We can start to understand that there is somewhat of a linear relationship
between these two variables, and even more interesting is the clustering
of Types.

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5

1
2

3
4

5

wine$Phenols

w
in

e$
F

la
va

no
id

s

iType <- as.integer(wine$Type)

colours <- unlist(lapply(iType , function(x){ palette ()[x+1]}))

plot(wine$Phenols , wine$Flavanoids , col=colours , pch=iType)

dev.off()

http://en.wikipedia.org/wiki/scatterplot
http://en.wikipedia.org/wiki/Phenols
http://en.wikipedia.org/wiki/Flavanoids
http://en.wikipedia.org/wiki/Flavanoids

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.2 Multiple Variable Overviews 285

R code source: rplot-wine-scatter.R.

http://rattle.togaware.com/code/rplot-wine-scatter.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

286 Understanding Data

16.2.3 Scatterplot with Marginal Histograms

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.2 Multiple Variable Overviews 287

16.2.4 Multi-Dimension Scatterplot

For data with multiple dimensions, plot will decide on a multi-dimensional
scatterplot. This produces a scatterplot for each pair of variables, with
the variable names identified in the diagonal. Each plot is a scatterplot
of the data for the variable in the column by the variable in the row. The
upper right triangle of the scatterplot is the mirror image of the lower
left triangle of the scatterplot—with the axes swapped. Although this
results in repeated information, it is visually effective since it is possible
to scan all plots for one variable either vertically or horizontally, rather
than having to turn corners.

Once again, we use different symbols (and colour) to highlight the dis-
tribution of Type across each plot, borrowing (but not showing) the ap-
propriate code from the scatterplot example of Section 16.2.2, page 284.
The plot is also limited to just the first six variables, to avoid too much
clutter. Note that the scatterplot of Section 16.2.2 is also included.

Type

1.5 2.5

●● ●● ●●●●●●●●●●● ●●●●●● ●●●● ●●● ●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●●●●● ● ●●●●● ●●● ● ●●● ●● ●●● ●●●● ●●● ● ●● ●●●●● ●●● ●● ●● ●●●●

80 120 160

●●● ●●●● ●●●●●●● ● ●●●●● ●●●●● ●●● ●●●●● ●●● ●●● ●●● ●●●●●●●●●● ●●●●●●● ●●● ●● ●●●●●●● ● ●●●●● ●● ●●●●●●●● ●● ●●● ●● ●●●● ●●● ●● ●● ●●●●●● ●●● ●●● ●

1 3 5

1.
0

2.
0

3.
0

●● ●●● ●●●●●●●● ●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●● ●●● ●●● ●●●●●●●

1.
5

2.
5

●

●

●
●

●

●●
●

●
●●●
●●●

●●●
●●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●
●

●

●
●

●
●
●

●
●
●

●
●

●

●
●
●

●
●

Ash ●

●

●
●

●

●●
●

●
● ●●●●●

● ●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●

●

●
● ●

●

●
●

●

●●
●

●
●●●●● ●

●●
●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●
●

●
● ●

●

●
●

●

●●
●

●
●●● ● ●●

●●●
●●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
● ●

●

●
●

●

●●
●

●
●●●● ●●

●●
●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●
●

●
●

●

●

●
●

●

●●

●

●
●
●
●●

●●

●

●●

●
●●

●
●
●
●

●

●●
●

●

●

●
●
●●
●

●
●
●
●

●

●

●
●●
●

●●

●
●

●

●

●

●●

●

●●● ●

●

●
●

●

●●

●

●
●
●
●●

●●

●

●●

●
●●

●
●

●
●

●

●●
●

●

●

●
●

●●
●

●
●

●
●

●

●

●
●●

●

●●

●
●

●

●

●

●●

●

● ●●

Alcalinity
●

●

●
●

●

●●

●

●
●

●
●●

● ●

●

●●

●
● ●

●
●

●
●

●

●●
●

●

●

●
●

●●
●

●
●
●

●

●

●

●
●●

●

●●

●
●

●

●

●

●●

●

●●●
●

●

●
●

●

●●

●

●
●
●

● ●

●●

●

●●

●
● ●

●
●

●
●

●

●●
●

●

●

●
●

●●
●

●
●
●

●

●

●

●
● ●

●

●●

●
●

●

●

●

●●

●

●● ●

10
20

30

●

●

●
●

●

●●

●

●
●
●

●●

●●

●

●●

●
●●

●
●

●
●

●

●●
●

●

●

●
●
●●
●

●
●
●

●

●

●

●
●●
●

●●

●
●

●

●

●

●●

●

●●●

80
12

0
16

0

●

●●

●
●
●

●

●

●●
●
●
●●
●
●
●
●
●
●
●

●●
●●

●

●●

●
●
●
●●

●

●
●
●

●●

●
●

●
●●
●●
●●●
●

●●

●●
●●●

●
●

●

● ●

●
●

●

●

●

●●
●
●
●●
●

●
●

●
●
●

●

●●
●●

●

●●

●
●

●
●●

●

●
●

●

●●

●
●

●
●●● ●

●● ●
●

● ●

● ●● ●●

●
●

●

● ●

●
●

●

●

●

● ●
●

●
●●

●
●

●
●

●
●
●

●●
● ●

●

●●

●
●

●
●●

●

●
●

●

●●

●
●

●
● ●●

●
●● ●

●

● ●

● ●● ●●

●
●

Magnesium
●

●●

●
●

●

●

●

●●
●

●
● ●

●
●
●
●

●
●

●

●●
●●

●

●●

●
●

●
●●

●

●
●

●

●●

●
●

●
●● ●●
●●●

●

●●

●●● ●●

●
●

●

● ●

●
●

●

●

●

●●
●

●
● ●

●
●
●
●

●
●
●

●●
●●

●

●●

●
●

●
●●

●

●
●

●

●●

●
●

●
●●●●

●●●
●

●●

●●●●●

●
●

●
●
●

●

●

●

●●
●
●●

●

●

●
●

●●
●
●

●
●

●
●●●
●
●

●

●
●
●●

●

●

●
●●
●●

●
●

●

●

●
●
●

●
●
●●●
●

●

●

●
●
●
●

●

●
●

●

●

●

●

●●
●
●●

●

●

●
●

●●
●

●

●
●

●
●●● ●

●

●

●
●

●●

●

●

●
● ●

●●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●
●

● ●

●

●

●
●

● ●
●

●

●
●

●
●● ● ●
●

●

●
●

●●

●

●

●
●●

●●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

● ●
●
●●

●

●

●
●

●●
●

●

●
●

●
●●●

●
●

●

●
●
●●

●

●

●
● ●
●●

●
●

●

●

●
●
●

●
●
●●

●
●

●

●

●
●
●

●

●

Phenols

1.
0

2.
5●

●
●

●

●

●

●●
●
●●

●

●

●
●

●●
●

●

●
●

●
●●●●
●

●

●
●

●●

●

●

●
●●

●●

●
●

●

●

●
●

●

●
●

● ●
●

●

●

●

●
●
●
●

●

1.0 2.0 3.0

1
3

5

●
●
●
●

●

●

●●
●●
●

●
●

●●

●●
●
●

●●

●
●
●●
●
●

●

●

●

●●
●●●
●
●
●●
●
●
●

●

●
●
●
●●
●

●
●
●

●

●●●●
●
●

●
●

●
●

●

●

●●
●●●

●
●

●●

●●
●

●

●●

●
●

●● ●
●

●

●

●

●●
● ●●
●

●
●●
●

●
●

●

●
●

●
●●

●

●
●

●

●

●● ●● ●
●

10 20 30

●
●

●
●

●

●

● ●
● ● ●

●
●

●●

● ●
●

●

●●

●
●

● ● ●
●

●

●

●

●●
● ●●

●
●

●●
●

●
●

●

●
●

●
●●

●

●
●

●

●

●● ●●●
●

●
●
●

●

●

●

● ●
●●

●

●
●

● ●

●●
●

●

● ●

●
●

●●
●

●

●

●

●

●●
● ●●

●
●

●●
●

●
●

●

●
●
●

●●
●

●
●
●

●

●●●●
●

●

1.0 2.5

●
●
●

●

●

●

●●
●●●

●
●

●●

●●
●

●

● ●

●
●

●●
●

●

●

●

●

●●
● ●●

●
●

●●
●
●

●

●

●
●

●
●●

●

●
●

●

●

●● ●●●
●

Flavanoids

plot(wine[,c(1, 4:8)], col=colours , pch=iType)

R code source: rplot-wine-scatterm.R.

http://rattle.togaware.com/code/rplot-wine-scatterm.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

288 Understanding Data

16.2.5 Correlation Plot

A correlation measures how two variables are related and is useful for
measuring the association between the two variables. A correlation plot
shows the strength of any linear relationship between a pair of variables.
The ellipse package provides the plotcorr function for this purpose. Lin-
ear relationships between variables indicate that as the value of one vari-
able changes, so does the value of another. The degree of correlation is
measured between [−1, 1] with 1 being perfect correlation and 0 being no
correlation. The Pearson correlation coefficient is the common statistic
and R also supports Kendall’s tau and Spearman’s rho statistics for rank-
based measures of association, which are regarded as being more robust
and recommended other than for a bivariate normal distribution. The
cor function is used to calculate the correlation matrix between variables
in a numeric vector, matrix or data frame. A matrix is always symmet-
ric about the diagonal, and the diagonal consists of 1s (each variable is
perfectly correlated with itself!)

The sample R code here generates the correlations for variables in the
wine dataset (cor) and then orders the variables according to their cor-
relation with the first variable (Type: [1,]). This is sorted and ellipses
are printed with colour fill using cm.colors.

Flavanoids
Dilution

Phenols
Proline

Hue
Proanthocyanins

Alcohol
Magnesium

Ash
Color
Malic

Nonflavanoids
Alcalinity

Type

F
la

va
no

id
s

D
ilu

tio
n

P
he

no
ls

P
ro

lin
e

H
ue

P
ro

an
th

oc
ya

ni
ns

A
lc

oh
ol

M
ag

ne
si

um
A

sh
C

ol
or

M
al

ic
N

on
fla

va
no

id
s

A
lc

al
in

ity
T

yp
e

http://en.wikipedia.org/wiki/correlation

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.2 Multiple Variable Overviews 289

library(ellipse)

wine.corr <- cor(wine)

ord <- order(wine.corr [1,])

xc <- wine.corr[ord , ord]

plotcorr(xc, col=cm.colors (11)[5*xc + 6])

R code source: rplot-wine-corr.R.

The correlation matrix is:
> wine.corr

Type Alcohol Malic Ash Alcalinity

Type 1.00000000 -0.32822194 0.43777620 -0.049643221 0.51785911

Alcohol -0.32822194 1.00000000 0.09439694 0.211544596 -0.31023514

Malic 0.43777620 0.09439694 1.00000000 0.164045470 0.28850040

Ash -0.04964322 0.21154460 0.16404547 1.000000000 0.44336719

Alcalinity 0.51785911 -0.31023514 0.28850040 0.443367187 1.00000000

Magnesium -0.20917939 0.27079823 -0.05457510 0.286586691 -0.08333309

Phenols -0.71916334 0.28910112 -0.33516700 0.128979538 -0.32111332

Flavanoids -0.84749754 0.23681493 -0.41100659 0.115077279 -0.35136986

Nonflavanoids 0.48910916 -0.15592947 0.29297713 0.186230446 0.36192172

Proanthocyanins -0.49912982 0.13669791 -0.22074619 0.009651935 -0.19732684

Color 0.26566757 0.54636420 0.24898534 0.258887259 0.01873198

Hue -0.61736921 -0.07174720 -0.56129569 -0.074666889 -0.27395522

Dilution -0.78822959 0.07234319 -0.36871043 0.003911231 -0.27676855

Proline -0.63371678 0.64372004 -0.19201056 0.223626264 -0.44059693

Magnesium Phenols Flavanoids Nonflavanoids

Type -0.20917939 -0.71916334 -0.8474975 0.4891092

Alcohol 0.27079823 0.28910112 0.2368149 -0.1559295

Malic -0.05457510 -0.33516700 -0.4110066 0.2929771

Ash 0.28658669 0.12897954 0.1150773 0.1862304

Alcalinity -0.08333309 -0.32111332 -0.3513699 0.3619217

Magnesium 1.00000000 0.21440123 0.1957838 -0.2562940

Phenols 0.21440123 1.00000000 0.8645635 -0.4499353

Flavanoids 0.19578377 0.86456350 1.0000000 -0.5378996

Nonflavanoids -0.25629405 -0.44993530 -0.5378996 1.0000000

Proanthocyanins 0.23644061 0.61241308 0.6526918 -0.3658451

Color 0.19995001 -0.05513642 -0.1723794 0.1390570

Hue 0.05539820 0.43368134 0.5434786 -0.2626396

Dilution 0.06600394 0.69994936 0.7871939 -0.5032696

Proline 0.39335085 0.49811488 0.4941931 -0.3113852

Proanthocyanins Color Hue Dilution

Proline

Type -0.499129824 0.26566757 -0.61736921 -0.788229589 -0.6337168

Alcohol 0.136697912 0.54636420 -0.07174720 0.072343187

0.6437200

Malic -0.220746187 0.24898534 -0.56129569 -0.368710428 -0.1920106

Ash 0.009651935 0.25888726 -0.07466689 0.003911231

0.2236263

Alcalinity -0.197326836 0.01873198 -0.27395522 -0.276768549 -0.4405969

Magnesium 0.236440610 0.19995001 0.05539820 0.066003936

0.3933508

Phenols 0.612413084 -0.05513642 0.43368134 0.699949365

0.4981149

http://rattle.togaware.com/code/rplot-wine-corr.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

290 Understanding Data

Flavanoids 0.652691769 -0.17237940 0.54347857 0.787193902

0.4941931

Nonflavanoids -0.365845099 0.13905701 -0.26263963 -0.503269596 -0.3113852

Proanthocyanins 1.000000000 -0.02524993 0.29554425 0.519067096

0.3304167

Color -0.025249931 1.00000000 -0.52181319 -0.428814942

0.3161001

Hue 0.295544253 -0.52181319 1.00000000 0.565468293

0.2361834

Dilution 0.519067096 -0.42881494 0.56546829 1.000000000

0.3127611

Proline 0.330416700 0.31610011 0.23618345 0.312761075

1.0000000

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.2 Multiple Variable Overviews 291

16.2.6 Colourful Correlations

You could write your own path.colors as below and obtain a more colour-
ful correlation plot. The colours are quite garish but it gives an idea of
what is possible—The reds and purples give a good indication of high
correlation (negative and positive), while the blues and greens identify
less correlation.

Flavanoids
Dilution

Phenols
Proline

Hue
Proanthocyanins

Alcohol
Magnesium

Ash
Color
Malic

Nonflavanoids
Alcalinity

Type

F
la

va
no

id
s

D
ilu

tio
n

P
he

no
ls

P
ro

lin
e

H
ue

P
ro

an
th

oc
ya

ni
ns

A
lc

oh
ol

M
ag

ne
si

um
A

sh
C

ol
or

M
al

ic
N

on
fla

va
no

id
s

A
lc

al
in

ity
T

yp
e

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

292 Understanding Data

Suggested by Duncan Murdoch

path.colors <- function(n, path=c(’cyan’, ’white’, ’magenta ’),

interp=c(’rgb’,’hsv’))

{

interp <- match.arg(interp)

path <- col2rgb(path)

nin <- ncol(path)

if (interp == ’hsv’)

{

path <- rgb2hsv(path)

Modify the interpolation so that the circular nature of hue

for (i in 2:nin)

path[1,i] <- path[1,i] + round(path[1,i-1]-path[1,i])

result <- apply(path , 1, function(x) approx(seq(0, 1,

len=nin), x, seq(0, 1, len=n))$y)

return(hsv(result [,1] %% 1, result[,2], result [,3]))

}

else

{

result <- apply(path , 1, function(x) approx(seq(0, 1,

len=nin), x, seq(0, 1, len=n))$y)

return(rgb(result [,1]/255, result [,2]/255, result [,3]/255))

}

}

pdf(’graphics/rplot -corr -wine.pdf’)

library(ellipse)

load(’wine.Rdata’)

corr.wine <- cor(wine)

ord <- order(corr.wine [1,])

xc <- corr.wine[ord , ord]

plotcorr(xc, col=path.colors (11,

c("red","green", "blue","red"),

interp="hsv")[5*xc + 6])

dev.off()

R code source: rplot-corr-wine.R.

http://rattle.togaware.com/code/rplot-corr-wine.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.2 Multiple Variable Overviews 293

16.2.7 Projection Pursuit

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

294 Understanding Data

16.2.8 RADVIZ

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.2 Multiple Variable Overviews 295

16.2.9 Parallel Coordinates

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

296 Understanding Data

16.3 Measuring Data Distributions

We now start to explore how the data in each of the variables is dis-
tributed. This might be as simple as looking at the spread of the numeric
values, or the number of entities having a specific value for a variable.
Another aspect involves measuring the central tendency of data, or de-
termining the mean and median. Yet another is a measure of the spread
or variance of the data from this central tendency. We again begin with
textual presentations of the distributions, and then graphical presenta-
tions.

16.3.1 Textual Summaries

The summary function provides the first insight into how the values for
each variable are distributed:
> summary(wine)

Type Alcohol Malic Ash Alcalinity

1:59 Min. :11.03 Min. :0.740 Min. :1.360 Min. :10.60

2:71 1st Qu .:12.36 1st Qu .:1.603 1st Qu .:2.210 1st Qu .:17.20

3:48 Median :13.05 Median :1.865 Median :2.360 Median :19.50

Mean :13.00 Mean :2.336 Mean :2.367 Mean :19.49

3rd Qu .:13.68 3rd Qu .:3.083 3rd Qu .:2.558 3rd Qu .:21.50

Max. :14.83 Max. :5.800 Max. :3.230 Max. :30.00

Magnesium Phenols Flavanoids Nonflavanoids

Min. : 70.00 Min. :0.980 Min. :0.340 Min. :0.1300

1st Qu.: 88.00 1st Qu .:1.742 1st Qu .:1.205 1st Qu .:0.2700

Median : 98.00 Median :2.355 Median :2.135 Median :0.3400

Mean : 99.74 Mean :2.295 Mean :2.029 Mean :0.3619

3rd Qu .:107.00 3rd Qu .:2.800 3rd Qu .:2.875 3rd Qu .:0.4375

Max. :162.00 Max. :3.880 Max. :5.080 Max. :0.6600

Proanthocyanins Color Hue Dilution

Min. :0.410 Min. : 1.280 Min. :0.4800 Min. :1.270

1st Qu .:1.250 1st Qu.: 3.220 1st Qu .:0.7825 1st Qu .:1.938

Median :1.555 Median : 4.690 Median :0.9650 Median :2.780

Mean :1.591 Mean : 5.058 Mean :0.9574 Mean :2.612

3rd Qu .:1.950 3rd Qu.: 6.200 3rd Qu .:1.1200 3rd Qu .:3.170

Max. :3.580 Max. :13.000 Max. :1.7100 Max. :4.000

Proline

Min. : 278.0

1st Qu.: 500.5

Median : 673.5

Mean : 746.9

3rd Qu.: 985.0

http://en.wikipedia.org/wiki/mean
http://en.wikipedia.org/wiki/median
http://en.wikipedia.org/wiki/variance

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.3 Measuring Data Distributions 297

Max. :1680.0

Next, we would like to know how the data is distributed. For categorical
variables this will be how many of each level there are. For numeric
variables this will be the mean and median, the minimum and maximum
values, and an idea of the spread of the values of the variable.

We would also like to know about missing values (referred to in R as
NAs—short for Not Available), and the summary function will also re-
port this:
> load("survey.RData")

> summary(survey)

[...]

Native.Country Salary.Group

United -States :29170 <=50K:24720

Mexico : 643 >50K : 7841

Philippines : 198

Germany : 137

Canada : 121

(Other) : 1709

NA’s : 583

We also see here that the categorical variable Native.Country has more
than five levels, and there are 1,709 entities with values for this variable
other than the five listed here. The five listed are the most frequently
occurring.

The mean provides a measure of the average or central tendency of the
data. It is denoted as µ if x1, . . . , xn is the whole population (population
mean), and X if it is a sample of the population (sample mean).

In calculating the mean of a sample from a population we generally need
at least 30 observations in the sample before it makes sense. This is
based on the central limit theorem that indicates that for n = 30 the
shape of a distribution approaches normal.

R provides the mean function to calculate the mean. The mean is also
reported as part of the output from summary. The summary func-
tion in fact will use the method associated with the data type of the
object passed. For example, if it is a data frame the function sum-
mary.data.frame will be called upon. To see the actual function def-
inition, simply type the function name at the command line (without
brackets). The actual code will be printed out. A user can then fine

http://en.wikipedia.org/wiki/mean
http://en.wikipedia.org/wiki/mean

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

298 Understanding Data

tune the function, if desired.

A quick trick to roughly get the mode of a dataset is to use the denisity.
mode <- function (n)

{

n <- as.numeric(n)

n.density <- density(n)

round(n.density$x[which(n.density$y==max(n.density$y))])

}

You can then simply write your own functions to summarise the data
using sapply :
> sapply(wine ,

function(x)

{

x <- as.numeric(x)

res <- c(mean(x), median(x), mode(x), mad(x), sd(x))

names(res) <- c("mean", "median", "mode", "mad", "sd")

res

})

Type Alcohol Malic Ash Alcalinity Magnesium Phenols

mean 1.938202 13.0006180 2.336348 2.366517 19.494944 99.74157 2.295112

median 2.000000 13.0500000 1.865000 2.360000 19.500000 98.00000 2.355000

mode 2.000000 14.0000000 2.000000 2.000000 19.000000 90.00000 3.000000

mad 1.482600 1.0081680 0.770952 0.237216 3.039330 14.82600 0.748713

sd 0.775035 0.8118265 1.117146 0.274344 3.339564 14.28248 0.625851

Flavanoids Nonflavanoids Proanthocyanins Color Hue

Dilution

mean 2.0292697 0.3618539 1.5908989 5.058090 0.9574494 2.6116854

median 2.1350000 0.3400000 1.5550000 4.690000 0.9650000 2.7800000

mode 3.0000000 0.0000000 1.0000000 3.000000 1.0000000 3.0000000

mad 1.2379710 0.1260210 0.5633880 2.238726 0.2446290 0.7709520

sd 0.9988587 0.1244533 0.5723589 2.318286 0.2285716 0.7099904

Proline

mean 746.8933

median 673.5000

mode 553.0000

mad 300.2265

sd 314.9075

In the following sections we provide graphic presentations of the mean
and standard variation.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.3 Measuring Data Distributions 299

16.3.2 Boxplot

A boxplot (Tukey, 1977) (also known as a box-and-whisker plot) provides
a graphical overview of how data is distributed over the number line.
R’s boxplot function displays a graphical representation of the textual
summary of data. The skewness of the distribution of the data becomes
clear.

A boxplot shows the median (the second quartile or the 50th percentile)
as the thicker line within the box (Ash = 2.36). The top and bottom ex-
tents of the box (2.558 and 2.210 respectively) identify the upper quartile
(the third quartile or the 75th percentile) and the lower quartile (the first
quartile and the 25th percentile). The extent of the box is known as the
interquartile range (2.558 − 2.210 = 0.348). The dashed lines extend to
the maximum and minimum data points that are no more than 1.5 times
the interquartile range from the median. Outliers (points further than
1.5 times the interquartile range from the median) are then individually
plotted (at 3.23, 3.22, and 1.36). Our plot here adds faint horizontal
lines to more easily read off the various values.

●

●

●

1.
5

2.
0

2.
5

3.
0

Ash

load("wine.Rdata")

attach(wine)

boxplot(Ash , xlab="Ash")

abline(h=seq(1.4, 3.2, 0.1), col="lightgray", lty="dotted")

R code source: rplot-wine-boxplot-single.R.

http://en.wikipedia.org/wiki/boxplot
http://en.wikipedia.org/wiki/median
http://en.wikipedia.org/wiki/quartile
http://en.wikipedia.org/wiki/percentile
http://en.wikipedia.org/wiki/Interquartile_range
http://rattle.togaware.com/code/rplot-wine-boxplot-single.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

300 Understanding Data

Multiple Boxplots

The default boxplot function in fact will plot multiple boxplots.

By comparing a number of variables we can see that some have quite a
bit more spread than others, and their medians have different relative
positions within the box.

We include the code here to generate a PDF version of the plot primarily
to demonstrate how we can increase the width of the plot for a more
pleasing presentation.

We could have presented the plot horizontally by setting the horizontal
option to TRUE.

pdf("graphics/rplot -wine -boxplot -multi.pdf", width =9)

load("wine.Rdata")

boxplot(wine[,c(3,4,7,8,10,13)])

dev.off()

R code source: rplot-wine-boxplot-multi.R.

http://rattle.togaware.com/code/rplot-wine-boxplot-multi.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.3 Measuring Data Distributions 301

Boxplot by Class

With a boxplot it is often useful to display the distribution of one vari-
able as it relates to some other variable. An example in the wine data
would be to partition the data according to the Type, and then to ex-
plore the resulting distribution of, for example, Malic. This is achieved
with the formula notation Malic ~ Type. The boxplot then allows us
to understand any potential relationship between the input variable and
the output variable. For such plots we enable the notch display, which
indicates whether there is a significant difference between the medians.
In the case here the median for Type 3 is significantly different from the
other two, but the other two are not significantly different from each
other.

●

●

●

●

●
●
●●

●

●●
●

●

●

●●

1 2 3

1
2

3
4

5
6

Type

M
al

ic

load("wine.Rdata")

attach(wine)

boxplot(Malic ~ Type , notch=TRUE , xlab="Type", ylab="Malic")

R code source: rplot-wine-boxplot-type.R.

http://rattle.togaware.com/code/rplot-wine-boxplot-type.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

302 Understanding Data

Tuning a Boxplot

Here we illustrate how we can refine exactly what we want to draw in the
box plot. Three boxplots are produced on the single plot using par to set
mfrow to one row and three columns. We then collect the output from
the boxplot function which we might look at to determine inforamtion
about what is being plotted. In this case we might decide to set the
limits of the boxplot to be 0 and 5.2, and we note the other statistics in
the stats attribute of the output.
> boxplot.info

$stats

[,1]

[1,] 0.340

[2,] 1.200

[3,] 2.135

[4,] 2.880

[5,] 5.080

$n

[1] 178

$conf

[,1]

[1,] 1.936044

[2,] 2.333956

$out

numeric (0)

$group

numeric (0)

$names

[1] "1"

The bxp function (used internally by boxplot) is used to plot the boxplot.

We now modify the boxplot information (the stats attribute) to use
10% and 90% deciles (obtained using quantile) instead of the default 0%
and 100% deciles.
> deciles

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.340 0.607 0.872 1.324 1.738 2.135 2.460 2.689 2.980 3.233 5.080

This generates the second boxplot.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.3 Measuring Data Distributions 303

Finally, a completely different boxplot showing the mean +/- one and two
standard deviations, is produced. The structure used by bxp for recording
the information to be plotted is built from scratch, in particular the 5
stats used to specify where the limits go.

0
1

2
3

4
5

Normal boxplot

0
1

2
3

4
5

10%/90% whiskers

0
1

2
3

4
5

mean ±± 1 and 2 SDs

oldpar <- par(mfrow=c(1 ,3))

x <- wine$Flavanoids

boxplot.info <- boxplot(x, plot=FALSE)

bxp(boxplot.info , main="Normal boxplot", ylim=c(0 ,5.2))

deciles <- quantile(x, probs=seq (0 ,1 ,0.1))

boxplot.info$stats [1] <- deciles["10%"]

boxplot.info$stats [5] <- deciles["90%"]

bxp(boxplot.info , main="10%/90% whiskers", ylim=c(0 ,5.2))

boxplot.limits <- as.matrix(c(mean(x) - 2*sd(x),

mean(x) - sd(x),

mean(x),

mean(x) + sd(x),

mean(x) + 2*sd(x)))

boxplot.meansd <- list(stats = boxplot.limits ,

n = length(x),

conf = NULL ,

out = numeric (0))

bxp(boxplot.meansd , main=expression("mean" %+-% "1 and 2 SDs"), ylim=c(0 ,5.2))

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

304 Understanding Data

par(oldpar)

R code source: rplot-wine-boxplot-tuning.R.

Boxplot From ggplot

The ggplot also provide functionality to display boxplots. The qplot
function is a simple interface to generate one. Here we use the audit
dataset to explore the distribution of Age against Education.

Consultant

PSFederal

PSLocal

PSState

Private

SelfEmp

Unemployed

Volunteer

20 40 60 80

●

● ● ●●●

E
m

pl
oy

m
en

t

Age

library(rattle)

data(audit)

attach(audit)

R code source: rplot-boxplot-qplot.R.

http://rattle.togaware.com/code/rplot-wine-boxplot-tuning.R
http://rattle.togaware.com/code/rplot-boxplot-qplot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.3 Measuring Data Distributions 305

16.3.3 Violin Plot

Ash Malic Phenols Flavanoids Dilution

1
2

3
4

5
6

●

●

●

●

●

load("wine.Rdata")

library(vioplot)

attach(wine)

vioplot(Ash , Malic , Phenols , Flavanoids , Dilution ,

names=c("Ash", "Malic", "Phenols", "Flavanoids", "Dilution"))

R code source: rplot-wine-vioplot.R.

See also
> library(lattice)

> example(panel.violin)

http://rattle.togaware.com/code/rplot-wine-vioplot.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

306 Understanding Data

16.3.4 What Distribution

16.3.5 Labelling Outliers

set.seed (10)

x <- rexp (100)

out <- boxplot(x)$out

text(rep(1.1, length(out)), out , sprintf("%0.2f", out))

16.4 Miscellaneous Plots

16.4.1 Line and Point Plots

A dot plot can be extended to draw lines between the dots! We use a
simple dot plot to compare two sets of data. The points record (fictional)
percentages of patients recorded as dying within 30 days and within 6
months of some procedure. Once again, a plot is first created for death6m.
In this case we have both points and lines (type="b"), solid lines are used
(lty=1), and a small square is used to plot points (pch=0). The rest of
the plot is then constructed by adding a plot for death30, adding a box
around the plot, and adding two axes and a legend.

Month

P
er

ce
nt

ag
e

● ●
● ● ● ●

●
●

●
● ●

●

Jul−98 Sep−98 Nov−98 Jan−99 Mar−99 May−99

0
10

20
30

40
50

60
70

● Deaths before 30 days
Deaths before 6 months

pdf(’graphics/rplot -dot.pdf’)

dates <- c(’Jul -98’, ’Aug -98’, ’Sep -98’, ’Oct -98’, ’Nov -98’, ’Dec -98’,

’Jan -99’, ’Feb -99’, ’Mar -99’, ’Apr -99’, ’May -99’, ’Jun -99’)

death30 <- c(2.02 , 1.53, 2.73, 3.09, 2.37, 2.60,

3.87, 6.11, 3.23, 4.52, 4.27, 1.40)

death6m <- c(1.52 , 2.55, 3.28, 1.55, 0.95, 3.65,

4.42, 5.68, 8.29, 15.08 , 32.70, 75.52)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 307

plot(death6m , type=’b’, xlab=’Month’, ylab=’Percentage ’,

lty=1, pch=0, axes=FALSE)

lines(death30 , type=’b’, lty=2, pch =1)

box()

axis(1, at=seq(1, length(dates)), labels=dates)

axis(2, at=seq(0, 100, 10))

legend(1, 60, c(’Deaths before 30 days’, ’Deaths before 6 months ’),

lty=c(2, 1), pch=c(1, 0))

dev.off()

R code source: rplot-dot.R.

http://rattle.togaware.com/code/rplot-dot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

308 Understanding Data

16.4.2 Matrix Data

The following example illustrates the use of a matrix as the source of
the data to be plotted. The matrix has three columns, one for each of
the items of interest. The rows correspond to observations. We want to
plot the values for each item across the observations, joingin the points
with a line. Key features to note include the axis labels always being
horizontal (las=1) and each line being a solid line (lty=1).

0.10

0.12

0.14

0.16

0.18

IN
M

E
T

lowest second third fourth highest

INAS
MMA
DMA

Suggested by Chuck Cleland

pdf("graphics/rplot -matplot.pdf")

myFrame <- data.frame(lowest = c(0.107 , 0.091 , 0.126) ,

second = c(0.115 , 0.107, 0.103) ,

third = c(0.123 , 0.115 , 0.126) ,

fourth = c(0.115 , 0.142, 0.129) ,

highest = c(0.166 , 0.179 , 0.142) ,

sig = c(0.000 , 0.000, 0.031))

rownames(myFrame) <- c("INAS", "MMA", "DMA")

par(las=1)

matplot(t(myFrame [,-6]), type="l", xaxt="n", ylab="INMET",

col=c("black", "red", "blue"), lty=c(1,1,1))

axis(side=1, at=1:5, names(myFrame)[1:5])

legend(1, 0.18, rownames(myFrame), lty=c(1,1,1),

col=c("black", "red", "blue"))

dev.off()

R code source: rplot-matplot.R.

http://rattle.togaware.com/code/rplot-matplot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 309

16.4.3 Multiple Plots

Place three plots on a single plot with layout

Histogram of rnorm(100)

rnorm(100)

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
15

20

Histogram of rnorm(50)

rnorm(50)

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
5

10
15

Histogram of rnorm(60)

rnorm(60)

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
15

pdf("graphics/rplot -multi -hist.pdf")

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

hist(rnorm (100) ,col=’blue’)

hist(rnorm (50),col=’blue’)

hist(rnorm (60),col=’blue’)

dev.off()

R code source: rplot-multi-hist.R.

http://rattle.togaware.com/code/rplot-multi-hist.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

310 Understanding Data

16.4.4 Aligned Plots

The next example illustrates how to make use of information in the usr
parameter (the x and y extent of the current plot) to align columns in
three separate plots. Here we create some random data and arrange it
into a data frame for 8 years of observations. Using the mfrow option
we indicate that we want 3 rows and 1 column of plots. We plot the
first boxplot and save the value of usr. A new plot canvas is created and
it’s usr values is set to the same as the first plot so that we can specify
locations to place the following plots (using at). We also illustrate the
use of the subset function.

●

●

●

1991 1992 1993 1994 1995 1996 1997 1998

−
2

0
1

●

1992 1993 1994 1995 1996 1997 1998

−
2

0
1

●

1993 1994 1995 1996 1997 1998

−
2

0
1

dat <- rnorm (80)

years <- rep (1991:1998 , each =10)

ds <- cbind(dat , years)

par(mfrow=c(3, 1))

boxplot(dat ~ years , ds)

usr <- par("usr")

plot.new()

par(usr=usr)

boxplot(dat ~ years , subset(ds, years %in% 1992:1998) , at=2:8, add=TRUE)

plot.new()

par(usr=usr)

boxplot(dat ~ years , subset(ds, years %in% 1993:1998) , at=3:8, add=TRUE)

R code source: rplot-multi-align.R.

http://rattle.togaware.com/code/rplot-multi-align.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 311

16.4.5 Probability Scale

●

●

●
●

●
●
●
●
●●

● ●●
●●
●●

●●
●●●

●●●
●●●●●

●●●
●●●●●

●●●
●●●
●●●
●●●●

●●●
●●●

●●●
●●●
●●●●●

●●●
●●●●●

●●●●●
●●
●●
●●

●●●
●●

●
●
●

●
●
●

●

●

−2 −1 0 1 2

x

qn
or

m
(0

.0
05

 +
 0

.0
1

*
(0

:9
9)

)

0.01

0.05

0.5

0.95

0.99

pdf("graphics/rplot -proby.pdf")

x <- sort(rnorm (100))

y <- 0.5+(0:99)

p <- c(0.01, 0.05, 0.5, 0.95, 0.99)

qqplot(x, qnorm (0.005+0.01*(0:99)) , yaxt="n")

axis(2, at=qnorm(p), label=p, las =1)

dev.off()

R code source: rplot-proby.R.

http://rattle.togaware.com/code/rplot-proby.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

312 Understanding Data

16.4.6 Network Plot

A

B

CD

E

Rattle provides plotNetwork to do most of the following.
pdf("graphics/rplot -network.pdf")

library(network)

cash <- matrix(c(0, 10000 , 0, 0, 20000 ,

1000, 0, 10000, 0, 0,

5000, 0, 0, 0, 3000,

0, 1000000 , 600000 , 0, 0,

0, 50000, 0, 500000 , 0),

nrow=5, byrow=TRUE)

Label the entities

rownames(cash) <- colnames(cash) <- c("A", "B", "C", "D", "E")

Create a network

cash.net <- network(cash)

We can change the line widths to represent the magnitude of the

cash flow. We uas a log transform to get integers for the line

widths.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 313

cash.log <- log10(cash) # Log 10 to get magnitude

cash.log[cash.log==-Inf] <- 0 # Set resulting -Infinty (log10 (0)) values to 0

cash.mag <- round(cash.log) # Round them to

We can also add color to indicate the magnitude . Use heat colours

to indicate the magnitude of the cash flow , from yellow to red.

heat <- rev(heat.colors(max(cash.mag)))

cash.col <- cash.mag

for (i in 1: length(heat)) cash.col[cash.col==i] <- heat[i]

Record the magnitude of cash coming into any label and use this to

scale the entity labels.

entity.sizes <- round(log10(apply(cash , 2, sum)))

entity.sizes <- 1 + entity.sizes -min(entity.sizes)

entity.sizes <- 1 + entity.sizes/max(entity.sizes)

plot(cash.net , displaylabels=TRUE , usecurve=TRUE , mode="circle",

edge.lwd=cash.mag , edge.col=cash.col ,

label.cex=entity.sizes , label.border =0)

dev.off()

R code source: rplot-network.R.

http://rattle.togaware.com/code/rplot-network.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

314 Understanding Data

16.4.7 Sunflower Plot

A sunflower plot will plot multiple points at the same location “sunflow-
ers” with multiple leaves or petals. The sunflower function is provided to
generate such plots. Thus, overplotting is visualised instead of it simply
disappearing.
Better example of overplotting points.

> sunflowerplot(wine$Phenols , wine$Flavanoids)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 315

16.4.8 Stairs Plot

Another simple example plotting a sequence of numbers uses stairs (type="s")
to give a city landscape type of plot.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14

1
2

3
4

5
6

7
8

Days

S
er

vi
ce

s

pdf("graphics/rplot -line.pdf")

l = c(1, 2, 3, 4, 5, 4, 5, 3, 6, 2, 3, 4, 8, 2, 1)

plot(l, type="b", xlab="Days", ylab="Services")

dev.off()

R code source: rplot-line.R.

http://rattle.togaware.com/code/rplot-line.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

316 Understanding Data

16.4.9 Graphing Means and Error Bars

The simplest plot of means is achieved using the plotmeans function of
the gplots package. The example uses the wine dataset, aggregating the
data into the three classes defined by Type and plotting the mean of the
value for Phenols and Magnesium for each class.

●

●

●

90
95

10
0

10
5

Type

M
ag

ne
si

um

●

●

●

1 2 3

n=59 n=71 n=48

●

●

●

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

Type

P
he

no
ls

●

●

●

1 2 3

n=59 n=71 n=48

library("gplots")

load("wine.Rdata")

attach(wine)

pdf("graphics/rplot -line -means.pdf")

par(mfrow=c(1,2))

plotmeans(Magnesium ~ Type)

plotmeans(Phenols ~ Type)

dev.off()

R code source: rplot-line-means.R.

http://rattle.togaware.com/code/rplot-line-means.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 317

Both plots are placed onto the one plotting canvas (using par(mfrow=c(1,2))).
They are placed side-by-side which exagerates the bars around the means.
A visual inspection indicates that the three groups have quite different
means for Magnesium and for Phenols, but it is more significant for Phe-
nols.

We can evaluate this statistically using R. Comparing the means between
different subsets of a dataset is called analysis of variance or ANOVA.
Here we compare the means of Magnesium, and, separately, the means
of Phenols across the Types.
> anova(lm(Phenols ~ Type))

Analysis of Variance Table

Response: Phenols

Df Sum Sq Mean Sq F value Pr(>F)

Type 2 35.857 17.928 93.733 < 2.2e-16 ***

Residuals 175 33.472 0.191

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(lm(Magnesium ~ Type))

Analysis of Variance Table

Response: Magnesium

Df Sum Sq Mean Sq F value Pr(>F)

Type 2 4491.0 2245.5 12.430 8.963e-06 ***

Residuals 175 31615.1 180.7

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The Pr(>F) value is clearly smaller than 0.05, thus with 95% confidence
we see that the means are different.

If however we look at just Types 2 and 3, and compare the means of the
two groups:
> wine23 <- wine[Type!=1,]

> attach(wine23)

> anova(lm(Magnesium ~ Type))

Analysis of Variance Table

Response: Magnesium

Df Sum Sq Mean Sq F value Pr(>F)

Type 1 649.8 649.8 3.0141 0.08518 .

Residuals 117 25221.9 215.6

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

http://en.wikipedia.org/wiki/analysis_of_variance
http://en.wikipedia.org/wiki/ANOVA

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

318 Understanding Data

With a Pr(>F) of 0.08518, which is larger than 0.05, the means for Mag-
nesium across these two groups is not significantly different (at the 95%
level). However, it is significant at the 90% level of confidence (indicated
by the period following the number in the output, and the legend below
associating this with 0.1 - 10%).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 319

16.4.10 Bar Charts With Segments

In this example we illustrate one of the powerful features of the barchart
function (and others) in the lattice package. In addition to drawing the
two basic barcharts (one corresponging to each year of the data) we also
want to include standard deviation bars. This is achieved by drawing the
normal barcharts but adding, through the use of the panel argument,
the standard deviation plots.

First we create a data frame recording the mean sale price of an item each
month, its standard deviation, and the number of items sold. We then
attach the data frame so we can more easily refer to the column names
within the barchart call without having to prefix them with the data
frame name. We also choose a white background using trellis.par.set.

DVD Sales

Months

M
ea

n
S

al
e

P
ric

e
($

)

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12

$8.84 $8.54 $9.97

2004

5

10

15

$9.24 $8.65 $8.75 $9.5 $9.81 $9.11 $8.54 $6.81 $8.54 $9.24 $9.01

2005

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

320 Understanding Data

A barchart is then constructed to plot the Mean across Month, by Year.
The layout specifies a single column, and as many years as in the data.
The ylim ensures we have enough space to draw the standard deviation
bars. Next the StdDev is assigned to sd, and the panel function is
defined to make use of sd. This draws the actual barchart and adds
panel segments corresponding to the values in sd for the specific panel
(as identified in the subscripts argument). We also include on the
graphic the actual mean dollar amount.
Suggested by Sandeep Ghosh

library(lattice)

prices <- matrix(c(10, 2004, 8.84, 6.18, 524,

11, 2004, 8.54, 6.35, 579,

12, 2004, 9.97, 6.31, 614,

1, 2005, 9.24, 6.18, 634,

2, 2005, 8.65, 6.05, 96,

3, 2005, 8.75, 5.84, 32,

4, 2005, 9.50, 5.75, 96,

5, 2005, 9.81, 6.10, 165,

6, 2005, 9.11, 7.29, 8,

7, 2005, 8.54, 6.35, 579,

8, 2005, 6.81, 5.15, 16,

9, 2005, 8.54, 6.35, 579,

10, 2005, 9.24, 6.18, 634,

11, 2005, 9.01, 7.29, 8),

ncol=5, byrow=TRUE)

prices <- as.data.frame(prices)

colnames(prices) <- c("Month", "Year", "Mean","StdDev","Count")

prices$Month <- factor(prices$Month) # Turn Month into a categorical

prices$Year <- factor(prices$Year) # Turn Year into a categorical

attach(prices)

pdf("graphics/rplot -bar -complex.pdf")

trellis.par.set(theme = col.whitebg ())

barchart(Mean ~ Month | Year , data=prices ,

layout=c(1, length(levels(Year))),

ylim=c(0, max(Mean) + max(StdDev)),

main="DVD Sales",

xlab="Months",

ylab="Mean Sale Price ($)",

sd=StdDev ,

panel=function(x, y, ..., sd, subscripts)

{

panel.barchart(x, y, ...)

sd <- sd[subscripts]

panel.segments(as.numeric(x), y-sd, as.numeric(x), y+sd,

col="red", lwd=2)

means <- Mean[subscripts]

panel.text(as.numeric(x), rep(0.5, length(subscripts)),

paste("$", means , sep=""), cex =0.5)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 321

})

dev.off()

R code source: rplot-bar-complex.R.

http://rattle.togaware.com/code/rplot-bar-complex.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

322 Understanding Data

16.4.11 Bar Plot With Means

Plot means and error bars by a group factor.

70−74 65−69 60−64 55−59 50−54

Rural Male
Rural Female
Urban Male
Urban Female

Death Rates in Virginia

Faked 95 percent error bars

0
20

40
60

80
10

0

Mean 60.35 Mean 40.4 Mean 25.88 Mean 16.93 Mean 11.05

Suggested by Sander Oom

library("gplots")

pdf("graphics/rplot -bar -means.pdf")

hh <- t(VADeaths)[, 5:1]

mybarcol <- "gray20"

ci.l <- hh * 0.85

ci.u <- hh * 1.15

mp <- barplot2(hh , beside = TRUE ,

col = c("lightblue", "mistyrose",

"lightcyan", "lavender"),

legend = colnames(VADeaths), ylim = c(0, 100),

main = "Death Rates in Virginia", font.main = 4,

sub = "Faked 95 percent error bars", col.sub = mybarcol ,

cex.names = 1.5, plot.ci = TRUE , ci.l = ci.l, ci.u = ci.u,

plot.grid = TRUE)

mtext(side = 1, at = colMeans(mp), line = -2,

text = paste("Mean", formatC(colMeans(hh))), col = "red")

box()

dev.off()

R code source: rplot-bar-means.R.

http://rattle.togaware.com/code/rplot-bar-means.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 323

16.4.12 Multi-Line Title

R does not support multi-line expressions but you can get the same effect
by adding them separately through calls to title.

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

Index

1:
10

Golden Section
fn :: ((φφ2 −− φφ −− 1))

pdf("graphics/rplot -titles.pdf")

plot (1:10)

title("Golden Section", line =3)

title(expression(fn:(phi^2-phi -1)), line =2)

dev.off()

R code source: rplot-titles.R.

http://rattle.togaware.com/code/rplot-titles.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

324 Understanding Data

16.4.13 Mathematics

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Z ==
µµ1 −− µµ2

σσ n

D
en

si
ty

P((Z >> 1.96,, H1)) == 0.85
P((Z >> 1.96,, H0)) == 0.05

H0 :: µµ1 == µµ2 H1 :: µµ1 == µµ2 ++ δδ

Posted by Thomas Lumley 20 Aug 2005

pdf("graphics/rplot -labels.pdf")

x<-seq(-10,10, length =400)

y1<-dnorm(x)

y2<-dnorm(x,m=3)

par(mar=c(5,4,2,1))

plot(x, y2 , xlim=c(-3,8), type="n", xlab=quote(Z==frac(mu[1]-mu[2],

sigma/sqrt(n))), ylab="Density")

polygon(c(1.96 ,1.96 ,x[240:400] ,10) , c(0,dnorm (1.96 ,m=3),y2[240:400] ,0) ,

col="grey80", lty=0)

lines(x, y2)

lines(x, y1)

polygon(c(-1.96,-1.96,x[161:1] , -10) , c(0,dnorm (-1.96,m=0), y1[161:1] ,0) ,

col="grey30", lty=0)

polygon(c(1.96 , 1.96, x[240:400] , 10), c(0,dnorm (1.96,m=0),

y1[240:400] ,0) , col="grey30")

legend (4.2, .4, fill=c("grey80","grey30"),

legend=expression(P(abs(Z)>1.96, H[1])==0.85 ,

P(abs(Z)>1.96,H[0])==0.05) , bty="n")

text(0, .2, quote(H[0]:~~mu[1]==mu[2]))

text(3, .2, quote(H[1]:~~mu[1]==mu[2]+ delta))

dev.off()

R code source: rplot-labels.R.

http://rattle.togaware.com/code/rplot-labels.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 325

16.4.14 Plots for Normality

Q-Q Plot

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

326 Understanding Data

16.4.15 Basic Bar Chart

A bar chart is useful to illustrate distributions of the population. In the
following bar chart five classes of patient disease groups are identified,
and a distribution of three age groups is shown for each disease group.

Asthma Cancer Diabetes Mental Musculo

0
10

20
30

40
50

60 Age Groups

0−19
19−60
61−100

bars <- matrix(c(35, 15, 26, 25, 18,

45, 42, 48, 12, 35,

20, 63, 26, 34, 28), nrow=3, byrow=T)

rownames(bars) <- c("0-19", "19-60", "61 -100")

colnames(bars) <- c("Asthma", "Cancer", "Diabetes", "Mental", "Musculo")

col <- c("lightyellow", "mistyrose","darkkhaki")

barplot(bars , beside=TRUE , col=col)

legend("topright", rownames(bars), title="Age Groups", fill=col)

R code source: rplot-bar.R.

http://rattle.togaware.com/code/rplot-bar.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 327

16.4.16 Bar Chart Displays

We illustrate some options in drawing bar charts from the lattice package.
First a simple plot. We use NO_CONVERSION for r.data_frame so that the data
frame retains the column names and for r.barchart so that the barchart
can be printed to the device (otherwise it simply returns a data structure
of the information).

mean

m
on

th

1

2

3

4

5

6

7

8

9

10

11

12

3.0 3.2 3.4 3.6 3.8

year

3.0 3.2 3.4 3.6 3.8

year

library("lattice")

pdf(’graphics/rplot -bar -horizontal.pdf’)

dataset <- data.frame(month=c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

1, 2, 3, 4),

year=c(2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004,

2004, 2004, 2004, 2004, 2005, 2005, 2005, 2005),

mean=c(3.8, 3.2, 3.4, 3.0, 3.8, 3.2, 3.4, 3.0,

3.9, 3.2, 3.4, 3.0, 3.9, 3.2, 3.4, 3.0))

trellis.par.set(theme=col.whitebg ())

barchart(month ~ mean | year , data=dataset)

dev.off()

R code source: rplot-bar-horizontal.R.

If we add horizontal = False, layout = (1,2) to the call to the r.barchart func-
tion, we can rotate the graphics:

http://rattle.togaware.com/code/rplot-bar-horizontal.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

328 Understanding Data

mean

m
on

th

2

4

6

8

10

12

1 2 3 4 5

year

2

4

6

8

10

12

year

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 329

16.4.17 Multiple Dot Plots

Barley Yield (bushels/acre)

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

Grand Rapids

●

●

●

●

●

●

●

●

●

●

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

University Farm

●

●

●

●

●

●

●

●

●

●

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

Crookston

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

Waseca

● 1932 1931

Suggested by Michael Friendly

pdf("graphics/rplot -trellis.pdf")

library(lattice)

data(barley)

n <- length(levels(barley$year))

trellis.device(new = FALSE , theme = col.whitebg ())

dotplot(variety ~ yield | site ,

data = barley , groups = year ,

layout = c(2, 3), aspect = .5,

xlab = "Barley Yield (bushels/acre)",

key = list(points = Rows(trellis.par.get("superpose.symbol"),1:n),

text = list(levels(barley$year)), columns = n))

dev.off()

R code source: rplot-trellis.R.

http://rattle.togaware.com/code/rplot-trellis.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

330 Understanding Data

16.4.18 Alternative Multiple Dot Plots

yield

Svansota

No. 462

Manchuria

No. 475

Velvet

Peatland

Glabron

No. 457

Wisconsin No. 38

Trebi

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1932

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1931

Suggested by Sundar Dorai -Raj

library("lattice")

data(barley)

pdf("graphics/rplot -trellis -shapes.pdf")

new.theme <- function ()

{

theme <- col.whitebg ()

symb <- theme$superpose.symbol

symb$cex <- seq(0.5, 1.5, length = length(symb$cex))

theme$superpose.symbol <- symb

theme

}

trellis.par.set(theme = new.theme ())

dotplot(variety ~ yield | year , data=barley , groups=site)

dev.off()

R code source: rplot-trellis-shapes.R.

http://rattle.togaware.com/code/rplot-trellis-shapes.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 331

16.4.19 3D Plot

range(x)

ra
ng

e(
y)

z.grid

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

Suggested by Robin Hankin

pdf("graphics/rplot -3dbox.pdf")

points3d <- function(x, y, z, jj.colour="black", ...)

{

if(is.matrix(x))

{

z <- x[,3]

y <- x[,2]

x <- x[,1]

}

z.grid <- matrix(range(z), 2, 2)

persp(range(x), range(y), z.grid ,

col=NA , border=NA, ...) -> res

trans3d <- function(x,y,z, pmat)

{

tr <- cbind(x,y,z,1) %*% pmat

list(x = tr[,1]/tr[,4], y= tr[,2]/tr[,4])

}

points(trans3d(x,y,z,pm=res), col=jj.colour , ...)

}

O <- matrix(rnorm (60), 20, 3)

options(warn=-1) # Ignore two warnings from the following .

points3d(O, jj.colour="red", pch=16, theta=30, phi =40)

dev.off()

R code source: rplot-3dbox.R.

http://rattle.togaware.com/code/rplot-3dbox.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

332 Understanding Data

16.4.20 Box and Whisker Plot

A simple box plot of randomly generated data. The box in each plot
shows the median (as the line within the box) and one standard deviation
from the mean (the extremes of the box). The whiskers show the second
standard deviation, and the circles show outliers.

In this code we use R’s rnorm function to generate a standard normal
random matrix of the given shape (rows by cols). The dataset is trans-
formed to an R data frame. The x axis is labelled with an appropriate
number of letters from the alphabet.

●●

●

●

●

●

●

●

●

● ●

●
●

●
●

●●

●

●

●

V1 V3 V5 V7 V9 V11 V13 V15 V17 V19

−
4

−
2

0
2

set.seed (2)

ds <- matrix(rnorm (19 * 100), ncol = 19)

pdf("graphics/rplot -boxplot.pdf")

plot.new()

plot.window(xlim = c(0, 20), ylim = range(ds), xaxs = "i")

boxplot(as.data.frame(ds), add = TRUE , at = 1:19)

dev.off()

R code source: rplot-boxplot.R.

http://rattle.togaware.com/code/rplot-boxplot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 333

16.4.21 Box and Whisker Plot: With Means

The simple box plot is extended to include the mean of each column.
The means are calculated using scipy, and plotted as a + (pch=3).

●

●
●

●

●

●

●

●

●

● ●

−
4

−
2

0
2

4

a b c d e f g h i j k l m o p q

rows <- 100

cols <- 17

pdf("graphics/rplot -boxplot -means.pdf")

dataset <- matrix(rnorm(rows*cols), nrow=rows , ncol=cols)

means <- mean(as.data.frame(dataset))

boxplot(as.data.frame(dataset), notch=TRUE , at=1:17,

xlim=c(0, cols+1), ylim=c(-4,4), xaxt=’n’)

axis(side=1, at=1:17, labels=letters [1:17])

points (1:17 , means , pch=3)

dev.off()

R code source: rplot-boxplot-means.R.

http://rattle.togaware.com/code/rplot-boxplot-means.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

334 Understanding Data

16.4.22 Clustered Box Plot
Y

−2

0

2

4

A B C

●
●

●

●

●

●

●

●

●

●

●
●

●●

F

A B C

● ● ●

●

●

●

●●

M

pdf("graphics/rplot -bwplot.pdf")

mydata <- data.frame(Y = rnorm(3*1000),

INDFACT =rep(c("A", "B", "C"), each =1000) ,

CLUSFACT=factor(rep(c("M","F"), 1500)))

library(lattice)

trellis.device(new=FALSE , col=FALSE)

bwplot(Y ~ INDFACT | CLUSFACT , data=mydata , layout=c(2 ,1))

dev.off()

R code source: rplot-bwplot.R.

http://rattle.togaware.com/code/rplot-bwplot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 335

16.4.23 Perspective Plots

See the persp package.

demo(persp)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

336 Understanding Data

16.4.24 Star Plot

Motor Vehicle Profiles

Mazda RX4
Mazda RX4 Wag

Datsun 710
Hornet 4 Drive

Hornet Sportabout
Valiant

Duster 360
Merc 240D

Merc 230
Merc 280

Merc 280C
Merc 450SE

Merc 450SL
Merc 450SLC

Cadillac Fleetwood
Lincoln Continental

Chrysler Imperial
Fiat 128

Honda Civic
Toyota Corolla

Toyota Corona
Dodge Challenger

AMC Javelin
Camaro Z28

Pontiac Firebird
Fiat X1−9

Porsche 914−2
Lotus Europa

Ford Pantera L
Ferrari Dino

Maserati Bora
Volvo 142E

mpg

cyldisp

hp

drat wt

qsec

See http://zoonek2.free.fr/UNIX/48_R/04. html

pdf(’graphics/rplot -stars.pdf’)

data(mtcars)

palette(rainbow (12, s = 0.6, v = 0.75))

stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 1.5),

main = "Motor Vehicle Profiles", draw.segments = TRUE)

dev.off()

R code source: rplot-stars.R.

http://rattle.togaware.com/code/rplot-stars.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.4 Miscellaneous Plots 337

16.4.25 Residuals Plot

A plot of an lm (linear model) object. This provides a clear picture of
any strange behaviour from the residuals.

−4 −2 0 2 4 6

−
3

−
1

1
2

Fitted values

R
es

id
ua

ls

●

●● ●

●●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●

●

● ●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

Residuals vs Fitted

60

51

20

●

●●●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

−2 −1 0 1 2

−
3

−
1

1
2

3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

60

51

20

−4 −2 0 2 4 6

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●
●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●●

●

●

● ●
● ●

●

●

●●

●

●

●

●
●

●

●

●

●

Scale−Location
60

5120

0.00 0.01 0.02 0.03 0.04

−
4

−
2

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

● ● ●

● ●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

Cook's distance

Residuals vs Leverage

60

51

39

pdf("graphics/rplot -lm-residuals.pdf")

x <- runif (100, -3, 3)

y <- 1 + 2*x + rnorm (100)

m <- lm(y~x)

par(mfrow=c(2,2))

plot(m)

dev.off()

R code source: rplot-lm-residuals.R.

http://rattle.togaware.com/code/rplot-lm-residuals.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

338 Understanding Data

16.5 Dates and Times

R has full support for dealing with dates and times. The date() func-
tion returns the current date as a string: Wed Oct 20 06:48:06 2004.
The following example illustrates some of the basic functionality for date
handling.

2
4

6
8

10

Process Time

as
.c

ha
ra

ct
er

(x
$y

.n
am

e)

05/08 07/08 09/08 11/08 13/08 15/08 17/08

pdf("graphics/rplot -date.pdf")

Time <- c("2004 -08 -05 09:08:48", "2004 -08 -13 20:53:38",

"2004 -08 -14 13:57:23", "2004 -08 -12 16:17:41",

"2004 -08 -12 16:15:27", "2004 -08 -11 21:38:24",

"2004 -08 -12 14:28:41", "2004 -08 -18 18:04:47",

"2004 -08 -13 15:23:14", "2004 -08 -14 02:36:33")

Time <- as.POSIXct(Time)

x <- data.frame(main.name="AAA", fname=rep(c("Apple","Watermelon"),

each=5), x.name=Time , y.name =(1:10))

par(mai=c(1, .7, .5, .3))

plot(x$x.name , as.character(x$y.name), xlab="Process Time", xaxt=’n’,

pch =2)

axis.POSIXct(1, at=seq(min(x$x.name), max(x$x.name), "days"),

format="%d/%m")

fruit.class <- table(x$fname)

fcolor <- c(611 ,552 ,656 ,121 ,451 ,481 ,28 ,652 ,32 ,550 ,90 ,401 ,150 ,12 ,520 ,8)

for(j in 1: length(fruit.class))

{

fruit <- names(fruit.class)[j]

lines(smooth.spline(x[x$fname==fruit , "x.name"],

x[x$fname ==fruit , "y.name"]),

col=colors ()[fcolor[j]], cex = 0.5, lwd =5)

}

dev.off()

R code source: rplot-date.R.

http://rattle.togaware.com/code/rplot-date.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.5 Dates and Times 339

16.5.1 Simple Time Series

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

340 Understanding Data

16.5.2 Multiple Time Series

Time

z

1962 1964 1966 1968 1970

−
4

−
2

0
2

4
6

8

z <- ts(matrix(rt(200*8, df=3), 200, 8), start=c(1961 ,1), frequency =12)

z <- window(z[, 1:3], end=c(1969 , 12))

plot(z, plot.type="single", lty=1:3, col =4:2)

R code source: rplot-time-multi.R.

http://rattle.togaware.com/code/rplot-time-multi.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.5 Dates and Times 341

16.5.3 Plot Time Series

This example creates a time series dataset recording two observations at
each time step. The date and times are converted to chron objects, and
then a zoo series is created, which is then plotted.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Index

zo
bs

06/23 06/24 06/25 06/26 06/27

year <- c(rep (2005 ,10))

doy <- c(rep(173,5), rep (174 ,5))

time <- c(15 ,30 ,45 ,100 ,115 ,15 ,30 ,45 ,100 ,115)

obs1 <- c(0.022128 ,0.035036 ,0.051632 ,0.071916 ,0.081136 ,

0.07837 ,0.083902 ,0.126314 ,0.080214 ,0.117094)

obs2 <- c(0.533074667 ,0.887982667 ,1.284938 ,1.845450333 ,2.145839333 ,

2.145126667 ,2.392422 ,3.60253 ,2.330776333 ,3.5277)

obs <- cbind(year , doy , time , obs1 , obs2)

library(chron)

library(zoo)

datetimes <- chron(paste(1, 1, obs[,1], sep="/"), obs[,3]/24) + obs[,2] - 1

zobs <- zoo(obs[,4:5], datetimes)

plot(zobs , plot.type = "single")

R code source: rplot-time-basic.R.

http://rattle.togaware.com/code/rplot-time-basic.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

342 Understanding Data

16.5.4 Plot Time Series with Axis Labels

With the same data as previously, here we control the axis labels. We
tell the plot not to include axes (xaxt="n"). Then we add days to the x
axis, and then we add tick marks for the hours within the day.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Index

zo
bs

Jun 23 Jun 24 Jun 25 Jun 26 Jun 27

plot(zobs , plot.type="single", xaxt="n")

days <- seq(min(floor(datetimes)), max(floor(datetimes)))

axis(1, days , format(as.Date(days), "%b %d"), tcl =-0.6)

hours <- seq(min(datetimes), max(datetimes), by=1/24)

axis(1, hours , FALSE , tcl=-0.4)

R code source: rplot-time-basic-labels.R.

16.5.5 Grouping Time Series for Box Plot

> observer.time <- strptime (1:365 , format="%j") # Generate dates

> observer.measure <- rnorm (365)

> ds <- data.frame(time = observer.time , measure = observer.measure)

http://rattle.togaware.com/code/rplot-time-basic-labels.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.6 Using gGobi 343

Figure 16.1: An ordered monthly box plot.

> observer.months <- ordered(months(ds$time),

levels = c("January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November",

"December"))

> boxplot(ds$measure ~ observer.months)

16.6 Using gGobi

Gobi is an excellent free and open source tool for visualising data, sup-
porting brushing.

Run the ggobi function. Load a CSV file (select the Reader Type in the
File→Open dialogue). Then under the Display menu choose a variety of
displays.

16.6.1 Quality Plots Using R

We can save the plots generated by GGobi into an R script file and then
have R generate the plots for you. This allows the plots to be regenerated
as publication quality graphics.

The DescribeDisplay package is required for this:

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

344 Understanding Data

> install.packages("DescribeDisplay")

> library(DescribeDisplay)

Then, within GGobi choose from the Tools menu to Save Display Descrip-
tion. This will prompt you for a filename into which GGobi will write an
R script to recreate the current graphic. We can load this script into R
with the dd load function and generate a plot in the usual way:
> pd <- dd_load("ggobi -saved -display -description.R")

> pdf("ggobi -rplot -deductions -outliers")

> plot(pd)

> dev.off()

> ggplot(pd)

The resulting plot saved to a pdf file is:

Deductions Outliers

●●● ● ● ●●●●● ● ●●● ●●●● ●● ●●● ●● ●● ● ●●● ● ●●● ●●● ●● ● ●● ●● ●●● ●● ●●

●

●● ●●●● ● ●

●

● ●● ● ●● ●●● ● ● ●● ●●●● ●● ●● ●● ●●●● ●● ● ●●● ●●●● ●● ●●● ● ●●●● ●●● ●●●● ● ●●●

●

●●● ●●●●●

●

●●● ●● ●●● ●● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●●● ● ● ●● ● ●● ●

●

●●

●

●● ●● ●

●

●●● ● ●● ●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ● ●●●●●● ●● ● ●●● ●● ●●● ● ● ●●●

●

●●●

●

●●●

●

●●●●● ● ●● ●● ●● ●●● ●

●

●

●

● ●● ●● ●● ●● ●●●●●● ●●● ●

●

●●● ●●● ●● ●●● ●● ●●

●

●● ● ●●● ●● ●●●● ●●●●●●● ●●● ●● ●●● ●●●● ●● ● ●● ●●●● ● ●● ●● ●● ●●● ●●● ● ●●● ●● ● ●● ●●● ●● ●●● ●●● ●● ●●● ●●●●●● ●●●● ●● ●●● ●●●●● ●●

●

●● ●●● ●● ●●●● ●● ●●●●●● ●● ●●● ● ●● ●●● ●●● ●

●

●● ● ●●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●●●●●● ●● ●●● ●● ●● ●●● ● ●● ●●

●

● ● ● ●●

●

● ●

●

●●● ● ●●● ● ● ●●● ●●●

●

●●● ●

●

●●● ●●●●● ● ●● ●●●● ●● ●● ● ●● ● ●● ● ●● ● ● ●●●●● ●● ● ●●● ●●● ● ● ●●● ●●● ● ●

●

●●●●●●● ●● ●● ●● ● ●●●

●

● ●●● ●●● ●●●

●

●● ●● ●● ●●●●● ●● ●● ●● ●

●

●

●●● ●●● ●●● ●

●

●

●● ●● ●●●● ●●● ●● ●●● ● ●●● ●●

●

●● ●● ●● ●

●

●●

●

●

●● ●● ●●● ●● ●●● ●● ●● ● ●

●

●●● ● ●●●● ● ●●●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●●● ●● ●●●● ●●● ●

●

●● ● ● ●●●●

●

●● ●

●

● ●●●● ●● ●● ●● ●● ●●● ● ●● ●●● ●●●● ●●● ●● ●●● ●● ● ●●●● ● ●●● ● ●●● ●●

●

●● ●●● ●●● ●● ●●● ● ●

●

●●●● ●● ●● ●

●

● ●●● ● ●●● ●●● ● ● ●●● ●●●● ●●● ●● ●● ●● ●●●●● ● ● ●●● ●●●

●

●

●

● ●● ●● ● ●● ●●● ●● ● ●● ●● ●● ● ●●●● ●● ●● ● ●●● ● ●●

●

●● ● ●● ●● ● ●●●●● ● ●●● ●●● ●● ● ●● ●● ● ●● ●● ● ● ●●●●● ●● ● ●●● ● ● ●●● ●● ● ● ●●●● ●● ● ● ●● ● ●●●● ●●● ● ●● ● ●● ●● ● ●●

●

● ●

●

●● ●●● ● ● ●●● ●●●●● ● ●● ● ●● ● ●●● ●● ● ●● ●● ●● ●● ● ●● ● ●●● ● ●●● ●●●●●● ●● ● ●●●● ●● ●●● ●● ● ●

●

●

●

● ●●

●

● ●●● ● ●● ●● ●●

●

● ●●●●●● ● ●● ● ●●●● ●● ●● ●● ● ●●

●

● ●● ● ●● ●●● ●

●

● ● ●

●

●● ●● ●● ●● ●●●● ● ●● ● ●●●

●

●●● ●●● ●●● ●● ● ●● ●● ●●●●● ●●● ●● ●● ●● ● ●●● ●● ● ●● ●●● ● ●●● ● ●● ●● ●●●● ●● ●● ●● ●●●● ●●●

●

●● ● ●● ● ●● ●● ● ●●●

●

● ●●● ●●● ● ●●● ● ●●● ●●●●● ●● ●● ● ●●●● ● ●● ●●● ●● ●● ●

●

●● ● ●● ● ●●●●● ●● ●● ● ● ●● ●●● ● ●● ●●●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ● ●●● ●●● ● ● ●● ●●● ●●

●

●●

●

● ● ● ●●

●

●●●

●

●● ●●● ●● ●● ● ●●●● ● ●● ●● ●●●●● ●●● ●● ●●●● ●●●● ●● ● ● ●●● ● ●● ● ●●●●● ●●●● ● ●●

●

●

●

●● ●● ● ● ●

●

●● ● ●●● ●●● ● ●

●

● ●● ● ●● ●●● ●●●●●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ● ●●●● ●● ●● ●●● ●

●

●● ●●● ●●● ● ●● ● ●● ● ●● ● ●●●● ●●

●

●● ●●● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ● ●● ● ●● ●● ●●● ● ●●● ●

●

●● ●● ●● ● ● ● ●● ●●● ● ●● ●● ● ●●●● ●●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ● ●● ●●● ●

●

●

●

●

●● ● ●●

●

●● ● ●● ●●● ● ●● ● ● ●● ●● ● ●●●●●● ● ●●●● ● ●● ●●● ●● ● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ●

●

●●● ● ●●●●● ●●● ● ●● ●● ● ● ●●●● ● ● ●●●● ● ●●●●● ● ●● ●● ● ●●●

●

● ●●● ●● ● ● ●● ●● ●●●● ● ●●● ●● ●●● ●●● ●●● ●● ● ●● ● ●● ● ●● ●● ●●● ● ●● ●● ● ●● ●●● ●● ●● ●●● ●● ●● ●

●

● ●● ● ●●● ●●● ● ●

●

●●● ●● ●● ●● ● ●●●● ●

●

● ● ●● ● ●●●● ●● ●●● ●● ● ●●●

●

●● ●● ●●● ● ● ●● ●●●●● ●●● ●● ●● ●●

●

●●●

●

● ●●● ● ●● ● ●● ● ●●● ●●● ●● ● ●● ●● ●●● ●● ●● ● ●● ●●●● ●●●

●

●

●● ●● ● ●● ●● ●●●● ●●● ●● ●●

●

● ● ●●● ●●

●

●● ●● ●●●● ● ●● ●●● ●● ●●● ● ●● ●●●●● ●●●● ●●● ●●● ● ● ●●● ●● ●●●● ●

●

● ● ●●●●●

Age

Deductions

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.7 Textual Summaries 345

16.7 Textual Summaries

We saw in Chapter 3 some of the R functions that help us get a basic
picture of the scope and type of data in any dataset. These include the
most basic of information including the number and names of columns
and rows (for data frames) and a summary of the data values them-
selves. We illustrate this again with the wine dataset (see Section 14.3.4,
page 219):
> load("wine.RData")

> dim(wine)

[1] 178 14

> nrow(wine)

[1] 178

> ncol(wine)

[1] 14

> colnames(wine)

[1] "Type" "Alcohol" "Malic" "Ash"

[5] "Alcalinity" "Magnesium" "Phenols" "Flavanoids"

[9] "Nonflavanoids" "Proanthocyanins" "Color" "Hue"

[13] "Dilution" "Proline"

> rownames(wine)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"

"12"

[13] "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23"

"24"

[...]

[157] "157" "158" "159" "160" "161" "162" "163" "164" "165" "166" "167" "168"

[169] "169" "170" "171" "172" "173" "174" "175" "176" "177" "178"

This gives us an idea of the shape of the data. We are dealing with a
relatively small dataset of 178 entities and 14 variables.

Next, we’d like to see what the data itself looks like. We can list the first
few rows of the data using head :
> head(wine)

Type Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids Nonflavanoids

1 1 14.23 1.71 2.43 15.6 127 2.80 3.06

0.28

2 1 13.20 1.78 2.14 11.2 100 2.65 2.76

0.26

3 1 13.16 2.36 2.67 18.6 101 2.80 3.24

0.30

4 1 14.37 1.95 2.50 16.8 113 3.85 3.49

0.24

5 1 13.24 2.59 2.87 21.0 118 2.80 2.69

0.39

6 1 14.20 1.76 2.45 15.2 112 3.27 3.39

0.34

Proanthocyanins Color Hue Dilution Proline

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

346 Understanding Data

1 2.29 5.64 1.04 3.92 1065

2 1.28 4.38 1.05 3.40 1050

3 2.81 5.68 1.03 3.17 1185

4 2.18 7.80 0.86 3.45 1480

5 1.82 4.32 1.04 2.93 735

6 1.97 6.75 1.05 2.85 1450

Next we might look at the structure of the data using the str (structure)
function. This provides a basic overview of both values and their data
type:
> str(wine)

‘data.frame’: 178 obs. of 14 variables:

$ Type : Factor w/ 3 levels "1" ,"2" ,"3": 1 1 1 1 1 1 1 1 1 1 ...

$ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ...

$ Malic : num 1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...

$ Ash : num 2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...

$ Alcalinity : num 15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...

$ Magnesium : int 127 100 101 113 118 112 96 121 97 98 ...

$ Phenols : num 2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...

$ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...

$ Nonflavanoids : num 0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...

$ Proanthocyanins: num 2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...

$ Color : num 5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...

$ Hue : num 1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...

$ Dilution : num 3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...

$ Proline : int 1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...

We are now starting to get an idea of what the data itself looks like. The
categorical variable Type would appear to be something that we might
want to model—the output variable. The remaining variables are all
numeric variables, a mixture of integers and real numbers.

The final step in the first look at the data is to get a summary of each
variable using summary :
> summary(wine)

Type Alcohol Malic Ash Alcalinity

1:59 Min. :11.03 Min. :0.740 Min. :1.360 Min. :10.60

2:71 1st Qu .:12.36 1st Qu .:1.603 1st Qu .:2.210 1st Qu .:17.20

3:48 Median :13.05 Median :1.865 Median :2.360 Median :19.50

Mean :13.00 Mean :2.336 Mean :2.367 Mean :19.49

3rd Qu .:13.68 3rd Qu .:3.083 3rd Qu .:2.558 3rd Qu .:21.50

Max. :14.83 Max. :5.800 Max. :3.230 Max. :30.00

[...]

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.7 Textual Summaries 347

16.7.1 Stem and Leaf Plots

A Stem-and-leaf plot is a simple textual plot of numeric data that is
useful to get an idea of the shape of a distribution. It is similar to the
graphic histograms that we will see next, but a useful quick place to start
for smaller datasets. A stem-and-leaf plot has the advantage of showing
actual data values in the plot rather than just a bar indicating frequency.

In reviewing a stem-and-leaf plot we might look to see if there is a clear
central value, or whether the data is very spread out. We look at the
spread to see if it might be symmetric about the central value or whether
there is a skew in one particular direction. We might also look for any
data values that are a long way from the general values in the rest of the
population.
> stem(wine$Magnesium)

The decimal point is 1 digit(s) to the right of the |

7 | 0

7 | 888

8 | 0000012444

8 | 55555566666666666777888888888888899999

9 | 0000112222233444444

9 | 55566666666777778888888889

10 | 000111111111222222233333444

10 | 55666677778888

11 | 00011122222233

11 | 5566678889

12 | 0001234

12 | 678

13 | 24

13 | 69

14 |

14 |

15 | 1

15 |

16 | 2

The stem is to the left of the bar and the leaves are to the right.

Note the change in where the decimal point is.
> stem(wine$Alcohol)

The decimal point is 1 digit(s) to the left of the |

110 | 3

112 |

114 | 1566

http://en.wikipedia.org/wiki/Stem_and_leaf_diagram

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

348 Understanding Data

116 | 1245669

118 | 1224476

120 | 000478888867

122 | 01255599993346777777

124 | 22235711238

126 | 004790022779

128 | 124556783369

130 | 355555578116677

132 | 034478902469

134 | 0015889900126688

136 | 2347891123345678

138 | 23346678804

140 | 266002369

142 | 01223047889

144 |

146 | 5

148 | 3

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.7 Textual Summaries 349

16.7.2 Histogram

A histogram allows the basic distribution of the data to be viewed. Here
we plot the histogram for magnesium and alcohol content of various
wines, and we might compare it with the previous stem-and-leaf plot
which summarises the same data. The shape is basically the same, al-
though in detail they go up and down at different points!

attach(wine)

par(mfrow=c(1, 2))

hist(Magnesium)

hist(Alcohol)

R code source: rplot-wine-hist.R.

http://rattle.togaware.com/code/rplot-wine-hist.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

350 Understanding Data

16.7.3 Barplot

A barplot displays data as bars, each bar being proportional to the data
being plotted. In R a barplot is built using the barplot function. We can
use a barplot, for example, to illustrate the distribution of entities in a
dataset across some variable. With the wine dataset Type is a categorical
variable with three levels: 1, 2, and 3. A simple bar plot illustrates the
distribution of the entities across the three Types. The summary function
is used to obtain the data we wish to plot (59, 71, and 48).

We place the actual counts on the plot with the text function. The trick
here is that the barplot function returns the bar midpoints, and these
can be used to place the actual values. We add 2 to the y values to place
the numbers above the bars. Also note that xpd is set to TRUE to avoid
the highest number being chopped (because it, 71, is actually outside the
plot region).
load("wine.Rdata")

attach(wine)

par(xpd=TRUE)

bp <- barplot(summary(Type), xlab="Type", ylab="Frequency")

text(bp , summary(Type)+2, summary(Type))

R code source: rplot-wine-barplot.R.

16.7.4 Density Plot

plot(density(iris$Petal.Length))

R code source: rplot-iris-density.R.

http://rattle.togaware.com/code/rplot-wine-barplot.R
http://rattle.togaware.com/code/rplot-iris-density.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.7 Textual Summaries 351

16.7.5 Basic Histogram

A histogram illustrates the distribution of values. The following example
is the most basic of histograms.

pdf("graphics/rplot -hist.pdf")

hist(rnorm (200))

dev.off()

R code source: rplot-hist.R.

http://rattle.togaware.com/code/rplot-hist.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

352 Understanding Data

16.7.6 Basic Histogram with Density Curve

R allows plots to be built up—this example shows a density histogram
of a set of random numbers extracted from a normal distribution with
the density curve of the same normal distribution also displayed. In
the R code we build the histogram at first without plotting it, so as to
determine the y limits (range selects the minimum and maximum values,
while h$density is the list of density values being plotted and dnorm(0)
is the maximum possible value of the density), since otherwise the curve
might push up into the title!

ds <- rnorm (200)

pdf("graphics/rplot -hist -density.pdf")

par(xpd=T)

h <- hist(ds, plot=F)

ylim <- range(0, h$density , dnorm (0))

hist(ds , xlab="normal", ylim=ylim , freq=F,

main="Histogram of Normal Distribution with Density")

curve(dnorm , col=2, add=T)

dev.off()

R code source: rplot-hist-density.R.

http://rattle.togaware.com/code/rplot-hist-density.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.7 Textual Summaries 353

16.7.7 Practical Histogram

Suppose we are interested in the distribution of the Alcohol content in
the wine dataset. The numeric values are grouped by hist into intervals
and the bars represent the frequency of occurrence of each interval as a
height. A rug is added to the plot, just above the x-axis, to illustrate
the density of values.

pdf(’graphics/rplot -hist -colour.pdf’)

load("wine.Rdata")

attach(wine)

hist(Alcohol , col=’lightgreen ’)

rug(Alcohol)

dev.off()

R code source: rplot-hist-colour.R.

16.7.8 Correlation Plot

A correlation measures how two variables are related and is useful for
measuring the association between the two variables. A correlation plot
shows the strength of any linear relationship between a pair of variables.
The ellipse package provides the plotcorr function for this purpose. Lin-
ear relationships between variables indicate that as the value of one vari-
able changes, so does the value of another. The degree of correlation is
measured between [−1, 1] with 1 being perfect correlation and 0 being no
correlation. The Pearson correlation coefficient is the common statistic
and R also supports Kendall’s tau and Spearman’s rho statistics for rank-
based measures of association, which are regarded as being more robust
and recommended other than for a bivariate normal distribution. The
cor function is used to calculate the correlation matrix between variables
in a numeric vector, matrix or data frame. A matrix is always symmet-
ric about the diagonal, and the diagonal consists of 1s (each variable is
perfectly correlated with itself!)

The sample R code here generates the correlations for variables in the
wine dataset (cor) and then orders the variables according to their cor-
relation with the first variable (Type: [1,]). This is sorted and ellipses
are printed with colour fill using cm.colors.

http://rattle.togaware.com/code/rplot-hist-colour.R
http://en.wikipedia.org/wiki/correlation

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

354 Understanding Data

library(ellipse)

wine.corr <- cor(wine)

ord <- order(wine.corr [1,])

xc <- wine.corr[ord , ord]

plotcorr(xc, col=cm.colors (11)[5*xc + 6])

R code source: rplot-wine-corr.R.

The correlation matrix is:
> wine.corr

Type Alcohol Malic Ash Alcalinity

Type 1.00000000 -0.32822194 0.43777620 -0.049643221 0.51785911

Alcohol -0.32822194 1.00000000 0.09439694 0.211544596 -0.31023514

Malic 0.43777620 0.09439694 1.00000000 0.164045470 0.28850040

Ash -0.04964322 0.21154460 0.16404547 1.000000000 0.44336719

Alcalinity 0.51785911 -0.31023514 0.28850040 0.443367187 1.00000000

Magnesium -0.20917939 0.27079823 -0.05457510 0.286586691 -0.08333309

Phenols -0.71916334 0.28910112 -0.33516700 0.128979538 -0.32111332

Flavanoids -0.84749754 0.23681493 -0.41100659 0.115077279 -0.35136986

Nonflavanoids 0.48910916 -0.15592947 0.29297713 0.186230446 0.36192172

Proanthocyanins -0.49912982 0.13669791 -0.22074619 0.009651935 -0.19732684

Color 0.26566757 0.54636420 0.24898534 0.258887259 0.01873198

Hue -0.61736921 -0.07174720 -0.56129569 -0.074666889 -0.27395522

Dilution -0.78822959 0.07234319 -0.36871043 0.003911231 -0.27676855

Proline -0.63371678 0.64372004 -0.19201056 0.223626264 -0.44059693

Magnesium Phenols Flavanoids Nonflavanoids

Type -0.20917939 -0.71916334 -0.8474975 0.4891092

Alcohol 0.27079823 0.28910112 0.2368149 -0.1559295

Malic -0.05457510 -0.33516700 -0.4110066 0.2929771

Ash 0.28658669 0.12897954 0.1150773 0.1862304

Alcalinity -0.08333309 -0.32111332 -0.3513699 0.3619217

Magnesium 1.00000000 0.21440123 0.1957838 -0.2562940

Phenols 0.21440123 1.00000000 0.8645635 -0.4499353

Flavanoids 0.19578377 0.86456350 1.0000000 -0.5378996

Nonflavanoids -0.25629405 -0.44993530 -0.5378996 1.0000000

Proanthocyanins 0.23644061 0.61241308 0.6526918 -0.3658451

Color 0.19995001 -0.05513642 -0.1723794 0.1390570

Hue 0.05539820 0.43368134 0.5434786 -0.2626396

Dilution 0.06600394 0.69994936 0.7871939 -0.5032696

Proline 0.39335085 0.49811488 0.4941931 -0.3113852

Proanthocyanins Color Hue Dilution

Proline

Type -0.499129824 0.26566757 -0.61736921 -0.788229589 -0.6337168

Alcohol 0.136697912 0.54636420 -0.07174720 0.072343187

0.6437200

Malic -0.220746187 0.24898534 -0.56129569 -0.368710428 -0.1920106

Ash 0.009651935 0.25888726 -0.07466689 0.003911231

0.2236263

Alcalinity -0.197326836 0.01873198 -0.27395522 -0.276768549 -0.4405969

Magnesium 0.236440610 0.19995001 0.05539820 0.066003936

0.3933508

Phenols 0.612413084 -0.05513642 0.43368134 0.699949365

0.4981149

http://rattle.togaware.com/code/rplot-wine-corr.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.7 Textual Summaries 355

Flavanoids 0.652691769 -0.17237940 0.54347857 0.787193902

0.4941931

Nonflavanoids -0.365845099 0.13905701 -0.26263963 -0.503269596 -0.3113852

Proanthocyanins 1.000000000 -0.02524993 0.29554425 0.519067096

0.3304167

Color -0.025249931 1.00000000 -0.52181319 -0.428814942

0.3161001

Hue 0.295544253 -0.52181319 1.00000000 0.565468293

0.2361834

Dilution 0.519067096 -0.42881494 0.56546829 1.000000000

0.3127611

Proline 0.330416700 0.31610011 0.23618345 0.312761075

1.0000000

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

356 Understanding Data

16.7.9 Colourful Correlations

You could write your own path.colors as below and obtain a more colour-
ful correlation plot. The colours are quite garish but it gives an idea of
what is possible—The reds and purples give a good indication of high
correlation (negative and positive), while the blues and greens identify
less correlation.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.8 Measuring Data Distributions 357

Suggested by Duncan Murdoch

path.colors <- function(n, path=c(’cyan’, ’white’, ’magenta ’),

interp=c(’rgb’,’hsv’))

{

interp <- match.arg(interp)

path <- col2rgb(path)

nin <- ncol(path)

if (interp == ’hsv’)

{

path <- rgb2hsv(path)

Modify the interpolation so that the circular nature of hue

for (i in 2:nin)

path[1,i] <- path[1,i] + round(path[1,i-1]-path[1,i])

result <- apply(path , 1, function(x) approx(seq(0, 1,

len=nin), x, seq(0, 1, len=n))$y)

return(hsv(result [,1] %% 1, result[,2], result [,3]))

}

else

{

result <- apply(path , 1, function(x) approx(seq(0, 1,

len=nin), x, seq(0, 1, len=n))$y)

return(rgb(result [,1]/255, result [,2]/255, result [,3]/255))

}

}

pdf(’graphics/rplot -corr -wine.pdf’)

library(ellipse)

load(’wine.Rdata’)

corr.wine <- cor(wine)

ord <- order(corr.wine [1,])

xc <- corr.wine[ord , ord]

plotcorr(xc, col=path.colors (11,

c("red","green", "blue","red"),

interp="hsv")[5*xc + 6])

dev.off()

R code source: rplot-corr-wine.R.

16.8 Measuring Data Distributions

We now start to explore how the data in each of the variables is dis-
tributed. This might be as simple as looking at the spread of the numeric
values, or the number of entities having a specific value for a variable.
Another aspect involves measuring the central tendency of data, or de-
termining the mean and median. Yet another is a measure of the spread
or variance of the data from this central tendency. We again begin with
textual presentations of the distributions, and then graphical presenta-
tions.

http://rattle.togaware.com/code/rplot-corr-wine.R
http://en.wikipedia.org/wiki/mean
http://en.wikipedia.org/wiki/median
http://en.wikipedia.org/wiki/variance

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

358 Understanding Data

16.8.1 Textual Summaries

The summary function provides the first insight into how the values for
each variable are distributed:
> summary(wine)

Type Alcohol Malic Ash Alcalinity

1:59 Min. :11.03 Min. :0.740 Min. :1.360 Min. :10.60

2:71 1st Qu .:12.36 1st Qu .:1.603 1st Qu .:2.210 1st Qu .:17.20

3:48 Median :13.05 Median :1.865 Median :2.360 Median :19.50

Mean :13.00 Mean :2.336 Mean :2.367 Mean :19.49

3rd Qu .:13.68 3rd Qu .:3.083 3rd Qu .:2.558 3rd Qu .:21.50

Max. :14.83 Max. :5.800 Max. :3.230 Max. :30.00

Magnesium Phenols Flavanoids Nonflavanoids

Min. : 70.00 Min. :0.980 Min. :0.340 Min. :0.1300

1st Qu.: 88.00 1st Qu .:1.742 1st Qu .:1.205 1st Qu .:0.2700

Median : 98.00 Median :2.355 Median :2.135 Median :0.3400

Mean : 99.74 Mean :2.295 Mean :2.029 Mean :0.3619

3rd Qu .:107.00 3rd Qu .:2.800 3rd Qu .:2.875 3rd Qu .:0.4375

Max. :162.00 Max. :3.880 Max. :5.080 Max. :0.6600

Proanthocyanins Color Hue Dilution

Min. :0.410 Min. : 1.280 Min. :0.4800 Min. :1.270

1st Qu .:1.250 1st Qu.: 3.220 1st Qu .:0.7825 1st Qu .:1.938

Median :1.555 Median : 4.690 Median :0.9650 Median :2.780

Mean :1.591 Mean : 5.058 Mean :0.9574 Mean :2.612

3rd Qu .:1.950 3rd Qu.: 6.200 3rd Qu .:1.1200 3rd Qu .:3.170

Max. :3.580 Max. :13.000 Max. :1.7100 Max. :4.000

Proline

Min. : 278.0

1st Qu.: 500.5

Median : 673.5

Mean : 746.9

3rd Qu.: 985.0

Max. :1680.0

Next, we would like to know how the data is distributed. For categorical
variables this will be how many of each level there are. For numeric
variables this will be the mean and median, the minimum and maximum
values, and an idea of the spread of the values of the variable.

We would also like to know about missing values (referred to in R as
NAs—short for Not Available), and the summary function will also re-
port this:
> load("survey.RData")

> summary(survey)

[...]

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.8 Measuring Data Distributions 359

Native.Country Salary.Group

United -States :29170 <=50K:24720

Mexico : 643 >50K : 7841

Philippines : 198

Germany : 137

Canada : 121

(Other) : 1709

NA’s : 583

We also see here that the categorical variable Native.Country has more
than five levels, and there are 1,709 entities with values for this variable
other than the five listed here. The five listed are the most frequently
occurring.

The mean provides a measure of the average or central tendency of the
data. It is denoted as µ if x1, . . . , xn is the whole population (population
mean), and X if it is a sample of the population (sample mean).

In calculating the mean of a sample from a population we generally need
at least 30 observations in the sample before it makes sense. This is
based on the central limit theorem that indicates that for n = 30 the
shape of a distribution approaches normal.

R provides the mean function to calculate the mean. The mean is also
reported as part of the output from summary. The summary func-
tion in fact will use the method associated with the data type of the
object passed. For example, if it is a data frame the function sum-
mary.data.frame will be called upon. To see the actual function def-
inition, simply type the function name at the command line (without
brackets). The actual code will be printed out. A user can then fine
tune the function, if desired.

A quick trick to roughly get the mode of a dataset is to use the denisity.
mode <- function (n)

{

n <- as.numeric(n)

n.density <- density(n)

round(n.density$x[which(n.density$y==max(n.density$y))])

}

You can then simply write your own functions to summarise the data:
> sapply(wine ,

function(x)

{

x <- as.numeric(x)

http://en.wikipedia.org/wiki/mean
http://en.wikipedia.org/wiki/mean

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

360 Understanding Data

res <- c(mean(x), median(x), mode(x), mad(x), sd(x))

names(res) <- c("mean", "median", "mode", "mad", "sd")

res

})

Type Alcohol Malic Ash Alcalinity Magnesium Phenols

mean 1.938202 13.0006180 2.336348 2.366517 19.494944 99.74157 2.295112

median 2.000000 13.0500000 1.865000 2.360000 19.500000 98.00000 2.355000

mode 2.000000 14.0000000 2.000000 2.000000 19.000000 90.00000 3.000000

mad 1.482600 1.0081680 0.770952 0.237216 3.039330 14.82600 0.748713

sd 0.775035 0.8118265 1.117146 0.274344 3.339564 14.28248 0.625851

Flavanoids Nonflavanoids Proanthocyanins Color Hue

Dilution

mean 2.0292697 0.3618539 1.5908989 5.058090 0.9574494 2.6116854

median 2.1350000 0.3400000 1.5550000 4.690000 0.9650000 2.7800000

mode 3.0000000 0.0000000 1.0000000 3.000000 1.0000000 3.0000000

mad 1.2379710 0.1260210 0.5633880 2.238726 0.2446290 0.7709520

sd 0.9988587 0.1244533 0.5723589 2.318286 0.2285716 0.7099904

Proline

mean 746.8933

median 673.5000

mode 553.0000

mad 300.2265

sd 314.9075

In the following sections we provide graphic presentations of the mean
and standard variation.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.8 Measuring Data Distributions 361

16.8.2 Boxplot

A boxplot (Tukey, 1977) (also known as a box-and-whisker plot) provides
a graphical overview of how data is distributed over the number line.
R’s boxplot function displays a graphical representation of the textual
summary of data. The skewness of the distribution of the data becomes
clear.

A boxplot shows the median (the second quartile or the 50th percentile)
as the thicker line within the box (Ash = 2.36). The top and bottom ex-
tents of the box (2.558 and 2.210 respectively) identify the upper quartile
(the third quartile or the 75th percentile) and the lower quartile (the first
quartile and the 25th percentile). The extent of the box is known as the
interquartile range (2.558 − 2.210 = 0.348). The dashed lines extend to
the maximum and minimum data points that are no more than 1.5 times
the interquartile range from the median. Outliers (points further than
1.5 times the interquartile range from the median) are then individually
plotted (at 3.23, 3.22, and 1.36). Our plot here adds faint horizontal
lines to more easily read off the various values.

load("wine.Rdata")

attach(wine)

boxplot(Ash , xlab="Ash")

abline(h=seq(1.4, 3.2, 0.1), col="lightgray", lty="dotted")

R code source: rplot-wine-boxplot-single.R.

http://en.wikipedia.org/wiki/boxplot
http://en.wikipedia.org/wiki/median
http://en.wikipedia.org/wiki/quartile
http://en.wikipedia.org/wiki/percentile
http://en.wikipedia.org/wiki/Interquartile_range
http://rattle.togaware.com/code/rplot-wine-boxplot-single.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

362 Understanding Data

Multiple Boxplots

The default boxplot function in fact will plot multiple boxplots.

By comparing a number of variables we can see that some have quite a
bit more spread than others, and their medians have different relative
positions within the box.

We include the code here to generate a PDF version of the plot primarily
to demonstrate how we can increase the width of the plot for a more
pleasing presentation.

We could have presented the plot horizontally by setting the horizontal
option to TRUE.

pdf("graphics/rplot -wine -boxplot -multi.pdf", width =9)

load("wine.Rdata")

boxplot(wine[,c(3,4,7,8,10,13)])

dev.off()

R code source: rplot-wine-boxplot-multi.R.

http://rattle.togaware.com/code/rplot-wine-boxplot-multi.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.8 Measuring Data Distributions 363

Boxplot by Class

With a boxplot it is often useful to display the distribution of one vari-
able as it relates to some other variable. An example in the wine data
would be to partition the data according to the Type, and then to ex-
plore the resulting distribution of, for example, Malic. This is achieved
with the formula notation Malic ~ Type. The boxplot then allows us
to understand any potential relationship between the input variable and
the output variable. For such plots we enable the notch display, which
indicates whether there is a significant difference between the medians.
In the case here the median for Type 3 is significantly different from the
other two, but the other two are not significantly different from each
other.

load("wine.Rdata")

attach(wine)

boxplot(Malic ~ Type , notch=TRUE , xlab="Type", ylab="Malic")

R code source: rplot-wine-boxplot-type.R.

16.8.3 Box and Whisker Plot

A simple box plot of randomly generated data. The box in each plot
shows the median (as the line within the box) and one standard deviation
from the mean (the extremes of the box). The whiskers show the second
standard deviation, and the circles show outliers.

In this code we use R’s rnorm function to generate a standard normal
random matrix of the given shape (rows by cols). The dataset is trans-
formed to an R data frame. The x axis is labelled with an appropriate
number of letters from the alphabet.set.seed (2)

ds <- matrix(rnorm (19 * 100), ncol = 19)

pdf("graphics/rplot -boxplot.pdf")

plot.new()

plot.window(xlim = c(0, 20), ylim = range(ds), xaxs = "i")

boxplot(as.data.frame(ds), add = TRUE , at = 1:19)

dev.off()

R code source: rplot-boxplot.R.

http://rattle.togaware.com/code/rplot-wine-boxplot-type.R
http://rattle.togaware.com/code/rplot-boxplot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

364 Understanding Data

16.8.4 Box and Whisker Plot: With Means

The simple box plot is extended to include the mean of each column.
The means are calculated using scipy, and plotted as a + (pch=3).

rows <- 100

cols <- 17

pdf("graphics/rplot -boxplot -means.pdf")

dataset <- matrix(rnorm(rows*cols), nrow=rows , ncol=cols)

means <- mean(as.data.frame(dataset))

boxplot(as.data.frame(dataset), notch=TRUE , at=1:17,

xlim=c(0, cols+1), ylim=c(-4,4), xaxt=’n’)

axis(side=1, at=1:17, labels=letters [1:17])

points (1:17 , means , pch=3)

dev.off()

R code source: rplot-boxplot-means.R.

http://rattle.togaware.com/code/rplot-boxplot-means.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.8 Measuring Data Distributions 365

16.8.5 Clustered Box Plot

pdf("graphics/rplot -bwplot.pdf")

mydata <- data.frame(Y = rnorm(3*1000),

INDFACT =rep(c("A", "B", "C"), each =1000) ,

CLUSFACT=factor(rep(c("M","F"), 1500)))

library(lattice)

trellis.device(new=FALSE , col=FALSE)

bwplot(Y ~ INDFACT | CLUSFACT , data=mydata , layout=c(2 ,1))

dev.off()

R code source: rplot-bwplot.R.

http://rattle.togaware.com/code/rplot-bwplot.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

366 Understanding Data

16.9 Further Resources

Useful on-line statistical resources include:

• Wikipedia has a growing collection of statistical entries.

• NIST

• StatSoft

• Tufts

• R Graph Gallery

http://wikipedia.org/
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.statsoftinc.com/textbook/stathome.html
http://www.tufts.edu/~gdallal/LHSP.HTM
http://addictedtor.free.fr/graphiques/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

16.10 Map Displays 367

16.10 Map Displays

Map displays often provide further insights into patterns that vary ac-
cording to region. In this plot we illustrate some basic colouring of a
map. This can be used to translate a variable into a colour which is then
plot for the state. We use the rainbow function to generate the bright
colours to use to colour the states.

library(maptools)

aus <- readShapePoly("australia.shp")

plot(aus , lwd=2, border="grey", xlim=c(115 ,155) , ylim=c(-35,-20))

colours <- rainbow (8)

Must be a better way than this

nsw <- aus; nsw@plotOrder <- as.integer(c(2)); plot(nsw ,col=colours [2],add=TRUE)

act <- aus; act@plotOrder <- as.integer(c(1)); plot(act ,col=colours [1],add=TRUE)

nt <- aus; nt@plotOrder <- as.integer(c(3)); plot(nt, col=colours [3],add=TRUE)

qld <- aus; qld@plotOrder <- as.integer(c(4)); plot(qld ,col=colours [4],add=TRUE)

sa <- aus; sa@plotOrder <- as.integer(c(5)); plot(sa, col=colours [5],add=TRUE)

tas <- aus; tas@plotOrder <- as.integer(c(6)); plot(tas ,col=colours [6],add=TRUE)

vic <- aus; vic@plotOrder <- as.integer(c(7)); plot(vic ,col=colours [7],add=TRUE)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

368 Understanding Data

R code source: map-australia-states.R.

16.11 Further Resources

Useful on-line statistical resources include:

• Wikipedia has a growing collection of statistical entries.

• NIST

• StatSoft

• Tufts

• R Graph Gallery

http://rattle.togaware.com/code/map-australia-states.R
http://wikipedia.org/
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.statsoftinc.com/textbook/stathome.html
http://www.tufts.edu/~gdallal/LHSP.HTM
http://addictedtor.free.fr/graphiques/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 17

Preparing Data

Data is fundamental to data mining, but quality data is fundamental
to quality data mining. The data preparation step in a data mining
project involves assessing and improving the data quality—transforming
and cleaning and subsetting the data to suit to requirements of the data
mining task. In this chapter we explore the process of transforming a
data source into a dataset ready for mining.

17.1 Data Selection and Extraction

17.1.1 Training and Test Datasets

Often in modelling we build our model on a training set and then test
its performance on a test set. The simplest approach to generating a
partitioning of your dataset into a training and test set is with the sample
function:
> sub <- sample(nrow(iris), floor(nrow(iris) * 0.8))

> iris.train <- iris[sub ,]

> iris.test <- iris[-sub ,]

The first argument to sample is the top of the range of integers you wish
to choose from, and the second is the number to choose.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

370 Preparing Data

The sample.split function of the caTools package also comes in handy
here. It will split a vector into two subsets, two thirds in one and one third
in the other, maintaining the relative ratio of the different categorical
values represented in the vector:
> mask <- sample.split(iris$Species)

> mask

[1] FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE

[...]

[145] TRUE TRUE TRUE TRUE FALSE TRUE

> table(iris$Species)

setosa versicolor virginica

50 50 50

> table(iris$Species[mask])

setosa versicolor virginica

33 33 33

> table(iris$Species[!mask])

setosa versicolor virginica

17 17 17

17.2 Data Cleaning

Data cleaning deals with issues of removing errant transactions, updating
transactions to account for reversals, elimination of missing data, and so
on.

The aim of data cleaning is to raise the data quality to a level suitable
for the selected analyses.

The data cleaning to be performed depends on purpose to which the data
is to be put. Some activities will require a selection of data cleaning and
data transformation modules to be applied to the data.

Data cleaning occurs early in the process and then continually through-
out the process as we learn more about the data.

Field selection

Sampling

Data correction

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.2 Data Cleaning 371

Missing values treatment

Data transformation, e.g., birth date to age.

Derive new fields

Useful steps:

Understand the business problem.

Collect the materials about the data sources and study them to under-
stand what data is available.

Identify the data items relevant to the business problem, e.g., tables and
attributes.

Make a data extraction plan and arrange the data extraction (with
DBAs).

Calculate the summary statistics of the extracted data.

Review Data

Often we will find ourselves loading data from a CSV file which is readily
supported by R (Section 14.3.4, page 218). On the first loading of the
data we generally want to get a quick summary, using R’s summary
function. It is here that we might note that some numeric columns have
become factors!

Consider the example of the cardiac dataset (Section 14.3.4, page 220).
> cardiac <- read.csv("cardiac.data", header=F)

> summary(cardiac)

[...]

V10 V11 V12 V13 V14

Min. : -172.00 52 : 13 60 : 23 49 : 9 ?

:376

1st Qu.: 3.75 36 : 10 ? : 22 55 : 9 84

: 3

Median : 40.00 42 : 9 61 : 16 59 : 9 -157

: 2

Mean : 33.68 10 : 8 56 : 14 62 : 9 -164

: 2

3rd Qu.: 66.00 33 : 8 58 : 13 26 : 8 -93

: 2

Max. : 169.00 41 : 8 68 : 12 33 : 8 103

: 2

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

372 Preparing Data

(Other):396 (Other):352 (Other):400 (Other): 65

[...]

Our understanding of the data might be that we expect these variables
to be numeric. Indeed, the telltale sign is V14 having a ? as one of its
values. A little more exploration to show the frequency of each value
will indicate that the apparently nominal variables only have a single
non-numeric value, the ? When we read the data from the CSV file we
need to tell R that the ? is used to indicate missing values
> cardiac <- read.csv("cardiac.data", header=F, na.string="?")

> summary(cardiac)

[...]

V11 V12 V13 V14

Min. : -177.00 Min. : -170.00 Min. : -135.00 Min. : -179.00

1st Qu.: 14.00 1st Qu.: 41.00 1st Qu.: 12.00 1st Qu.: -124.50

Median : 41.00 Median : 56.00 Median : 40.00 Median : -50.50

Mean : 36.15 Mean : 48.91 Mean : 36.72 Mean : -13.59

3rd Qu.: 63.25 3rd Qu.: 65.00 3rd Qu.: 62.00 3rd Qu.: 117.25

Max. : 179.00 Max. : 176.00 Max. : 166.00 Max. : 178.00

NA’s : 8.00 NA’s : 22.00 NA’s : 1.00 NA’s : 376.00

[...]

That’s looking better. Note that the NAs are reported and that V14 has
376 of them, in accord with the previous observation of 376 ?’s.

Removing Duplicates

The function duplicated identifies elements of a data structure that are
duplicated:
> x <- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 3)

> duplicated(x)

[1] FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE

> x <- x[!duplicated(x)]

> x

[1] 1 2 3

>

This is a simple example, but works just as well to remove duplicated
rows from a matrix or data frame.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.2 Data Cleaning 373

Selectively Changing Vector Values

The next example changes the values in one vector (weights) according
to some conditions on the values in another vector (data). The data
vector is randomly sampled from the letters of the alphabet. Both vectors
are the same length. Where data is larger than m, the weight is set to 2.
Where it is between d and m, the weight is set to 3.
> weights <- rep(1, 10)

> data <- letters[sample(seq(1,length(letters)), 10)]

> data

[1] "y" "b" "j" "m" "c" "q" "o" "a" "i" "p"

> weights[data > "m"] <- 2

> weights

[1] 2 1 1 1 1 2 2 1 1 2

> weights[data <= "m" & data >= "d"] <- 3

> weights

[1] 2 1 3 3 1 2 2 1 3 2

An example of where this might be useful is in data mining pre-processing
where we wish to selectively change the weights associated with entities in
a modelling exercise. The weights might indicate the relative important
the specific entities. An example of this transformation is included in
the usage of rpart in Chapter ??, page ??.

Replace Indices By Names

> city.name <- c("Munich", "Paris", "Tokyo", "London", "Boston")

> X <- cbind(c(2, 5, 5), c(4, 1, 3))

> X

[,1] [,2]

[1,] 2 4

[2,] 5 1

[3,] 5 3

> matrix(city.name[X], ncol = 2)

[,1] [,2]

[1,] "Paris" "London"

[2,] "Boston" "Munich"

[3,] "Boston" "Tokyo"

Missing Values

Missing data can affect modelling, particularly if the data is not randomly
missing, but missing because of some underlying systematic reason (e.g.,
censoring). If data is missing at random (often abbreviated as MAR)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

374 Preparing Data

then it is more likely that the missing values will have little affect on the
modelling.

An excellent reference on dealing with missing data is Schafer (1997).

Missing values are specially recorded in R as NA. Various functions can
be used to check for a missing value (is.na), to remove any entities with
missing values (na.omit and to identify those entities that are complete
(complete.cases. The apply function also comes in handy here.
> ds <- ds[!apply(is.na(ds),1,all),] # Remove all rows of all NA ’s.

> ds <- na.omit(ds) # Remove all rows that have any NA ’s.

> ds <- ds[complete.cases(ds),] # Remove all rows that have any NA ’s.

In some very simple (i.e., not rigorous) timing experiments the second of
these using complete.cases is faster.

Remove Levels from a Factor

Some tools will attempt to model all levels in an output variable. If
there are no entities in the dataset with a value for one of the levels of
an output variable, the tool will fail (e.g., randomForest). To remove
unused levels from a factor:
> dataset$Target <- dataset$Target[,drop=TRUE]

Removing Outliers

Tests for outliers have primarily been superseded by the use of robust
methods. Outlier tests are poor in that outliers tend to damage results
long before they are detected. Robust methods attempt to compensate
rather than reject outliers. RandomForrest modelling helps avoid the
issue of outliers.

You can get a list of what the boxplot function thinks are outliers:
> load("wine.RData")

> bp <- boxplot(wine$Ash , plot=FALSE)

> bp$out

[1] 3.22 1.36 3.23

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.2 Data Cleaning 375

17.2.1 Variable Manipulations

Remove Columns

> names(ds) # List the column names

> ds$fred <- NULL # Removes the column

> ds <- subset(ds, select=-c(tom , jerry) # Remove multiple columns

Reorder Columns

> ds <- ds[,c(1,2,5,6,3,4,7,8)] # Columns will be reordered

Remove Non-Numeric Columns

We might only be interested in the numeric data, so we remove all
columns that are not numeric from a dataset. We can use the survey
dataset to illustrate this. First load the dataset and have a look at the
column names and their types. We use the lapply function to apply the
class function to each column of the data frame.
> load("survey.RData")

> colnames(survey)

[1] "Age" "Workclass" "fnlwgt" "Education"

[5] "Education.Num" "Marital.Status" "Occupation" "Relationship"

[9] "Race" "Sex" "Capital.Gain" "Capital.Loss"

[13] "Hours.Per.Week" "Native.Country" "Salary.Group"

> lapply(survey , class)

$Age

[1] "integer"

$Workclass

[1] "factor"

$fnlwgt

[1] "integer"

$Education

[1] "factor"

$Education.Num

[1] "integer"

$Marital.Status

[1] "factor"

$Occupation

[1] "factor"

\$Relationship

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

376 Preparing Data

[1] "factor"

$Race

[1] "factor"

$Sex

[1] "factor"

$Capital.Gain

[1] "integer"

$Capital.Loss

[1] "integer"

$Hours.Per.Week

[1] "integer"

$Native.Country

[1] "factor"

$Salary.Group

[1] "factor"

We can now simply use is.numeric to select the numeric columns and
store the result in a new dataset, using sapply to extract the list of
numeric columns:
> survey.numeric <- survey[,sapply(survey , is.numeric)]

You could instead build a list of the columns to remove and then explicitly
remove them from the dataset in place, so that you don’t create a need
for extra data storage.

First build a numeric list of columns to remove, and reverse it since
after we remove a column, all the remaining columns are shifted left and
their index is then one less! We use sapply to extract the list of numeric
columns (those for which is.numeric is true).
> rmcols <- rev(seq(1,ncol(survey))[!as.logical(sapply(survey , is.numeric))])

> rmcols

[1] 15 14 10 9 8 7 6 4 2

Now remove the columns from the dataset simply by setting the column
to NULL.
> for (i in rmcols) survey [[i]] <- NULL

> colnames(survey)

[1] "Age" "fnlwgt" "Education.Num" "Capital.Gain"

[5] "Capital.Loss" "Hours.Per.Week"

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.2 Data Cleaning 377

This same process can be used to remove or retain columns of any type,
simply by using the appropriate R function: e.g., is.factor, is.logical,
is.integer, or is.numeric.

Remove Variables with no Variance

We also only want columns where there is some variance in the values, so
also remove those columns with a minimum value equal to the maximum.
Again, use is made of lapply to apply a function (in this case max and
min) to the data.
> rmcols <- as.numeric(lapply(dat , min , na.rm=T)) ==

as.numeric(lapply(dat , max , na.rm=T))

> rmcols <- rev(seq(1,ncol(dat))[rmcols])

> for (i in rmcols) dat[[i]] <- NULL

> ncol(dat)

[1] 59

17.2.2 Cleaning the Wine Dataset

17.2.3 Cleaning the Cardiac Dataset

17.2.4 Cleaning the Survey Dataset

We summarise a number of cleaning operations that might be performed
on the survey dataset.

Remove entities with null values:
> load("survey.RData")

> survey <- na.omit(survey)

> dim(survey)

[1] 30162 15

Remove non-numeric data:
> load("survey.RData")

> rmcols <- rev(seq(1,ncol(survey))[as.logical(lapply(survey , is.factor))])

> for (i in rmcols) survey [[i]] <- NULL

> dim(survey)

[1] 32561 6

> colnames(survey)

[1] "Age" "fnlwgt" "Education.Num" "Capital.Gain"

[5] "Capital.Loss" "Hours.Per.Week"

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

378 Preparing Data

17.3 Imputation

Multiple imputation (MI) is a general purpose method for handling of
missing data. The basic idea is: Impute missing values using an appro-
priate model that incorporates random variation; Do this m times (often
3-5 times) to obtain m datasets, all with no missing values; Do the in-
tended analysis on each of these datasets; Gert the average values of the
parameter estimates across the m samples to have a single point estimate;
Calculate standard errors by firstly averaging the squared standard er-
rors of the m estimates and calculating the variance of the m parameter
estimates across samples, and then combine these in some way.

There are a number of R packages for imputation.

17.3.1 Nearest Neighbours

We might, more reasonably, be more sophisticated and use the average
value of the k nearest neighbours, where the neighbours are determined
by looking at the other variables (not yet implemented in Rattle).

Another approach to filling in the missing values is to look at the entities
that are closest to the entity with a missing value, and to use the values
for the missing variable of these nearby neighbours to fill in the missing
value for this entity. Refer to Data Mining With R, page 48 and following
for example R code to do this.

17.3.2 Multiple Imputation

This is the most accurate method, but is computationally expensive.
Worth doing though if you don’t want to lose any data, but is not sup-
ported directly in Rattle. The R package mitools is useful for multiple
imputation.

http://www.liacc.up.pt/~ltorgo/DataMiningWithR/PDF/DataMiningWithR.pdf

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.4 Data Linking 379

17.4 Data Linking

Linking involves bringing together multiple sources of data and connect-
ing related pieces of information across the multiple sources. Often the
linking is performed for a particular summarising or analytic task.

17.4.1 Simple Linking

The merge function can be used to join several datasets on common
fields. the default behaviour is to join on any columns that the data
frames have in common. This is what we demonstrate below.
> ds1 <- read.table(file("clipboard"), header=T)

> ds1

id age gender

1 1 32 M

2 2 45 F

3 3 29 F

> ds2 <- read.table(file("clipboard"), header=T)

> ds2

id day x1

1 1 1 0.52

2 1 2 0.72

3 1 3 0.29

4 2 1 0.51

5 2 2 0.18

6 3 2 0.22

7 3 3 0.54

> ds3 <- read.table(file("clipboard"), header=T)

> ds3

id day x2

1 1 1 0.34

2 1 2 0.55

3 1 3 0.79

4 2 1 0.12

5 2 2 0.23

6 3 2 0.45

7 3 3 0.56

> merge(ds1 , ds2)

id age gender day x1

1 1 32 M 1 0.52

2 1 32 M 2 0.72

3 1 32 M 3 0.29

4 2 45 F 1 0.51

5 2 45 F 2 0.18

6 3 29 F 2 0.22

7 3 29 F 3 0.54

> merge(merge(ds1 , ds2), ds3)

id day age gender x1 x2

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

380 Preparing Data

1 1 1 32 M 0.52 0.34

2 1 2 32 M 0.72 0.55

3 1 3 32 M 0.29 0.79

4 2 1 45 F 0.51 0.12

5 2 2 45 F 0.18 0.23

6 3 2 29 F 0.22 0.45

7 3 3 29 F 0.54 0.56

17.4.2 Record Linkage

Often data linkage is not so straightforward as linking on common columns.
Indeed, the data sources may store data in very different ways and the
linking may need to probabilistically match entries that appear to relate
to the same entity. This is typified by attempting to match names and
addresses from different data sources. The entities we are attempting to
match could be businesses, patients, and clients.

A very useful tool to help out in this process is the open source Febrl.

17.5 Data Transformation

17.5.1 Aggregation

Sum of Columns

The colSums function is an optimised function for calculating the sums
of columns in an array. The example here also illustrates how to format
output to make large numbers much easier to read, by including commas.
The times can be obtained using the system.time function.
> A <- matrix(runif (10000000 , 0, 100), ncol =10)

> colSums(A) # Optimised : 0.1 seconds

> rep(1, nrow(A)) %*% A # Slower: 0.3 seconds

> apply(A, 2, sum) # Slowest: 0.7 seconds

> format(colSums(A), big.mark=",")

[1] "49 ,966 ,626" "49 ,968 ,075" "49 ,977 ,689" "50 ,010 ,843" "50 ,038 ,271"

[6] "49 ,936 ,119" "50 ,027 ,467" "49 ,985 ,741" "50 ,065 ,027" "49 ,985 ,044"

> colSums(A)

[1] 49966626 49968075 49977689 50010843 50038271 49936119 50027467 49985741

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.5 Data Transformation 381

[9] 50065027 49985044

17.5.2 Normalising Data

R’s scale is used to re-center and re-scale data in a numeric matrix. The
re-centering involves subtracting a column’s mean from each value in the
column. The re-scaling then divides each value by the root-mean-square.
> ds <- wine [1:20,c(2,9 ,14)]

> summary(ds)

Alcohol Nonflavanoids Proline

Min. :13.16 Min. :0.1700 Min. : 735

1st Qu .:13.72 1st Qu .:0.2600 1st Qu .:1061

Median :14.11 Median :0.2950 Median :1280

Mean :14.01 Mean :0.2970 Mean :1235

3rd Qu .:14.32 3rd Qu .:0.3225 3rd Qu .:1352

Max. :14.83 Max. :0.4300 Max. :1680

> ds

Alcohol Nonflavanoids Proline

1 14.23 0.28 1065

2 13.20 0.26 1050

3 13.16 0.30 1185

4 14.37 0.24 1480

5 13.24 0.39 735

6 14.20 0.34 1450

7 14.39 0.30 1290

8 14.06 0.31 1295

9 14.83 0.29 1045

10 13.86 0.22 1045

11 14.10 0.22 1510

12 14.12 0.26 1280

13 13.75 0.29 1320

14 14.75 0.43 1150

15 14.38 0.29 1547

16 13.63 0.30 1310

17 14.30 0.33 1280

18 13.83 0.40 1130

19 14.19 0.32 1680

20 13.64 0.17 845

> scale(ds)

Alcohol Nonflavanoids Proline

1 0.4630901 -0.27054355 -0.7184008

2 -1.7198976 -0.58883009 -0.7819386

3 -1.8046738 0.04774298 -0.2100983

4 0.7598069 -0.90711662 1.0394785

5 -1.6351214 1.48003239 -2.1162325

6 0.3995079 0.68431605 0.9124029

7 0.8021950 0.04774298 0.2346663

8 0.1027912 0.20688625 0.2558456

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

382 Preparing Data

9 1.7347334 -0.11140029 -0.8031179

10 -0.3210899 -1.22540316 -0.8031179

11 0.1875674 -1.22540316 1.1665541

12 0.2299555 -0.58883009 0.1923078

13 -0.5542245 -0.11140029 0.3617419

14 1.5651810 2.11660546 -0.3583532

15 0.7810009 -0.11140029 1.3232807

16 -0.8085532 0.04774298 0.3193834

17 0.6114485 0.52517278 0.1923078

18 -0.3846721 1.63917565 -0.4430703

19 0.3783139 0.36602952 1.8866493

20 -0.7873591 -2.02111950 -1.6502886

attr(,"scaled:center")

Alcohol Nonflavanoids Proline

14.0115 0.2970 1234.6000

attr(,"scaled:scale")

Alcohol Nonflavanoids Proline

0.47183042 0.06283646 236.07991510

> ds

Alcohol Nonflavanoids Proline

1 14.23 0.28 1065

2 13.20 0.26 1050

3 13.16 0.30 1185

4 14.37 0.24 1480

5 13.24 0.39 735

6 14.20 0.34 1450

7 14.39 0.30 1290

8 14.06 0.31 1295

9 14.83 0.29 1045

10 13.86 0.22 1045

11 14.10 0.22 1510

12 14.12 0.26 1280

13 13.75 0.29 1320

14 14.75 0.43 1150

15 14.38 0.29 1547

16 13.63 0.30 1310

17 14.30 0.33 1280

18 13.83 0.40 1130

19 14.19 0.32 1680

20 13.64 0.17 845

> summary(scale(ds))

Alcohol Nonflavanoids Proline

Min. : -1.805e+00 Min. : -2.021e+00 Min. : -2.116e+00

1st Qu.: -6.125e-01 1st Qu.: -5.888e-01 1st Qu.: -7.343e-01

Median : 2.088e-01 Median : -3.183e-02 Median : 1.923e-01

Mean : -3.381e-15 Mean : -6.217e-16 Mean : 3.886e-16

3rd Qu.: 6.485e-01 3rd Qu.: 4.058e-01 3rd Qu.: 4.994e-01

Max. : 1.735e+00 Max. : 2.117e+00 Max. : 1.887e+00

The function rescaler from Hadley Wickham’s reshape package supports
five methods for rescaling/standardising data: rescale to [0, 1]; subtract
mean and divide by the standard deviation; subtract median and divide
by median absolute deviation; convert values to a rank; and do nothing.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.5 Data Transformation 383

17.5.3 Binning

Many algorithms for data mining and before that for machine learning
have been developed to deal only with categorial variables. Thus, the
ability to turn numeric variables into categorical variables is important.

To divide the range of a numeric variable into intervals, and to then code
the values of the variable according to which interval they fall into, thus
transforming the variable into a categorical variable, we can use the cut
function. In the example below the values are cut into three ranges, and
given appropriate labels. As a bonus, the percentage distribution across
the three ranges is also given!
> v <- c(1, 1.4, 3, 1.1, 0.3, 0.6, 4,5)

> v.cuts <- cut(v, breaks=c(-Inf , 1, 2, Inf), labels=c("Low", "Med", "High"))

> v.cuts

[1] Low Med High Med Low Low High High

Levels: Low Med High

> table(v.cuts)/length(v.cuts)*100

v.cuts

Low Med High

37.5 25.0 37.5

An example of this kind of transformation in practise is given in Chap-
ter 20, page 397, where the apriori function requires categorical variables.

Binning is in fact a common concept and tools exist to automatically bin
data using different strategies. The binning function of the sm package
provides basic binning functionality.
> library(sm)

> x <- rnorm (100)

> y <- cut(x, breaks=binning(x, nbins =3)$breaks , labels=c("Lo", "Med", "Hi"))

> y

[1] Lo Lo Med Med Med Lo Med Med Med Med Med Lo Lo Med Hi Hi

Med Lo

[19] Lo Med Lo Hi Lo Med Hi Lo Med Lo Med Lo Med Med Lo Med Med Med

[37] Lo Med Med Lo Lo Lo Lo Med Med Med Lo Med Med Med Lo Med Lo

Med

[55] Med Lo Med Med Med Med Lo Med Med Lo Med Lo Med Med Med Med Lo

Med

[73] Med Med Med Med Lo Med Lo Med Med Med Lo Med Med Lo Lo Med Lo

Lo

[91] Lo Med Med Lo Lo Med Med Med Lo Med

Levels: Lo Med Hi

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

384 Preparing Data

17.5.4 Interpolation

17.6 Outlier Detection

17.7 Variable Selection

Variable selection (also known as feature selection) will identify a good
subset of the data from which to perform modelling. In many cases,
using a good subset of all available variables will lead to better models,
expressed in the simplest of forms. This may include removing redundant
input variables. Indeed, the principle of Occam’s Razor indicates, and
the need to communicate and understand models requires, that it is best
to choose the simplest model from among the models that explain the
data. This also avoids unnecessary variables confusing the modelling
process with noise, and reduces the likelihood of having input variables
that are dependent.

Variable selection is important in classification and is the process of se-
lecting key features fro the collection of variables (sometimes from thou-
sands of variables) available. In such cases, most of the variables might
be unlikely to be useful for classification purposes. Decision tree algo-
rithms perform automatic feature selection and so they are relatively
insensitive to variable selection. However, nearest neighbour classifiers
do not perform feature selection and instead all variables, whether they
are relevant or not, are used in building the classifier!

In decision tree algorithms, variables are selected at each step based on
a selection criteria, and the number of variables that are used in the final
model is determined by pruning the tree using cross-validation.

We present an example here of removing columns from data in R.

The dprep package in R provides support for variable selection, including
finco and relief selection methods.

Associated with variable selection is variable weighting. The aim here

http://en.wikipedia.org/wiki/Feature_selection

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

17.7 Variable Selection 385

is to essentially score variables according to their relevance or predic-
tive power with respect to an output variable. Algorithms for variable
weighting come in two flavours: those that use feedback from the mod-
elling and those that don’t. So called wrapper methods score variables
by using subsets of variables to model and rating the variables according
to how well the model performs. Filter algorithms, on the other hand,
explore relationships within the data. The wrapper based approaches
tend to produce better results but are computationally more expensive.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

386 Preparing Data

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 18

Descriptive and Predictive
Analytics

In this chapter we introduce the concepts of descriptive and predictive
Analytics

The following chapters are then devoted to particular algorithms.

Modelling is what people often think of when they think of data mining.
Modelling is the process of taking some data (usually) and building a
model that reflects that data. Usually the aim is to address a specific
problem through modelling the world in some way and from the model
develop a better understanding of the world.

There is a bewildering array of tools and techniques at the disposal of
the data miner. We can get a better understanding of what is available
through categorising the algorithms according to the types of analysis
performed. In this chapter we introduce and summarise the broader
categories of data mining analysis. Part IV then presents, in a systematic
manner, many algorithms that are used in data mining and available
either freely or else implemented in commercial toolkits.

Much of the terminology used in data mining has grown out of that used
in both machine learning and statistics. We identify, for example, two
very broad categories of analysis as unsupervised and supervised (as
in supervised and unsupervised learning).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

388 Descriptive and Predictive Analytics

We introduce such an ordering to the world of data mining techniques in
this chapter. In summary:

18.1 Building a Model

Let’s have a look at the simplest of problems. Suppose we want to model
one variable (e.g., a person’s height) in terms of another variable (e.g., a
person’s age).

We can create a collection of people’s ages and heights, using some totally
random data:
> set.seed (123) # To ensure repeatability .

> ages <- runif(10, 1, 20) # Random ages between 1 and 20

> heights <- 30 + rnorm(10, 1, as.integer(ages)) + ages*5

> plot(ages , heights)

We can now build a model (in fact, a linear interpolation) that approxi-
mates this data using R’s approxfun:
> my.model <- approxfun(ages , heights)

> my.model (15)

[1] 85.38172

> plot(my.model , add=TRUE , col=2, ylim=c(20,200), xlim=c(1 ,20))

The resulting plot is show in Figure 18.1. We can see it is only an
approximate model and indeed, not a very good model. The data is
pretty deficient, and we also know that generally height does not decrease
for any age group in this range. It illustrates the modelling task though.
> my.spline <- splinefun(ages , heights)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

18.1 Building a Model 389

Figure 18.1: A approximate model of random data.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

390 Descriptive and Predictive Analytics

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 19

Cluster Analysis:
K-Means

The amap package includes k-means with a choice of distances like Eu-
lidean and Spearman.

. We optimize implementation (with a parallelized hierarchical cluster-
ing) and allow the possibility of using different distances like Eulidean
or Spearman (rank-based metric).

19.1 Summary

Complexity Clustering is usually expensive and K-Means is O(n2).

19.1.1 Clusters

Basic Clustering

We illustrate very simple clustering through a complete example where
the task is to read data from a file (Section 14.3.4, page 219), extract
the numeric fields, and then use k-means (Chapter 31.2, page 487) to
cluster on just two columns. A plot of the clusters over the two columns

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

392 Cluster Analysis: K-Means

shows the points and the cluster centroids. Normally, the clusters would
be built over more than just two columns. Also note that each time the
code is run a different clustering is likely to be generated!

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

11 12 13 14

1
2

3
4

5
6

Alcohol

M
al

ic

●

●

●

●

●

clusters <- 5

load("wine.Rdata")

pdf("graphics/rplot -cluster.pdf")

wine.cl = kmeans(wine [,2:3], clusters)

plot(wine[,2:3], col=wine.cl$cluster)

points(wine.cl$centers , pch=19, cex=1.5, col=1: clusters)

dev.off()

R code source: rplot-cluster.R.

The resulting cluster entity has the following entries:
cluster: The cluster that each row belongs to.
centers: The medoid of each cluster.
withinss: The within cluster sum of squares.
size: The size of each cluster.

Hot Spots

Cluster analysis can be used to find clusters that are most interesting
according to some criteria. For example, we might cluster the spam7
data of the DAAG package (without using yesno in the clustering) and
then score the clusters depending on the proportion of yes cases within

http://rattle.togaware.com/code/rplot-cluster.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

19.1 Summary 393

the cluster. The following R code will build K clusters (user specified)
and return a score for each cluster.
Some ideas here from Felix Andrews

kmeans.scores <- function(x, centers , cases)

{

clust <- kmeans(x, centers)

Iterate over each cluster to generate the scores

scores <- c()

for (i in 1: centers)

{

Count number of TRUE cases in the cluster

as the proportion of the cluster size

scores[i] <- sum(cases[clust$cluster == i] == TRUE) / clust$size[i]

}

Add the scores as another element to the kmeans list

clust$scores <- scores

return(clust)

}

We can now run this on our data with:
> require(DAAG)

> data(spam7)

> clust <- kmeans.scores(spam7 [,1:6], centers =10, spam7["yesno"]=="y")

> clust[c("scores","size")]

$scores

[1] 0.7037037 0.1970109 0.5995763 0.7656250 0.8043478 1.0000000 0.4911628

[8] 0.7446809 0.6086957 0.6043956

$size

[1] 162 2208 472 128 46 5 1075 47 276 182

Thus, cluster 5 with 46 members has a high proportion of positive cases
and may be a cluster we are interested in exploring further. Clusters 4,
8, and 1 are also probably worth exploring.

Now that we have built some clusters we can generate some rules that
describe the clusters:
hotspots <- function(x, cluster , cases)

{

require(rpart)

overall = sum(cases) / nrow(cases)

x.clusters <- cbind(x, cluster)

tree = rpart(cluster ~ ., data = x.clusters , method = "class")

tree = prune(tree , cp = 0.06)

nodes <- rownames(tree$frame)

paths = path.rpart(tree , nodes = nodes)

TO BE CONTINUED

return(tree)

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

394 Cluster Analysis: K-Means

}

And to use it:
> h <- hotspots(spam7 [,1:6], clust$cluster , spam7["yesno"]=="y")

Alternative Clustering

For model-based clustering see the BIC algorithm in the mclust package.
This estimates density with a mixture of Gaussians.

For density-based clustering the following implementation of DBSCAN
may be useful. It follows the notation of the original KDD-96 DBSCAN
paper. For large datasets, it may be slow.
Christian Hennig

distvector <- function(x,data)

{

ddata <- t(data)-x

dv <- apply(ddata^2,2,sum)

}

data may be nxp or distance matrix

eps is the dbscan distance cutoff parameter

MinPts is the minimum size of a cluster

scale: Should the data be scaled?

distances : has to be TRUE if data is a distance matrix

showplot: Should the computation process be visualized ?

countmode : dbscan gives messages when processing point no. (countmode)

dbscan <- function(data ,eps ,MinPts=5, scale=FALSE , distances=FALSE ,

showplot=FALSE ,

countmode=c(1 ,2 ,3 ,5 ,10 ,100 ,1000 ,5000 ,10000 ,50000)){

data <- as.matrix(data)

n <- nrow(data)

if (scale) data <- scale(data)

unregpoints <- rep(0,n)

e2 <- eps^2

cv <- rep(0,n)

cn <- 0

i <- 1

for (i in 1:n){

if (i %in% countmode) cat("Processing point ", i," of ",n, ".\n")

unclass <- cv <1

if (cv[i]==0){

if (distances) seeds <- data[i,]<=eps

else{

seeds <- rep(FALSE ,n)

seeds[unclass] <- distvector(data[i,],data[unclass ,])<=e2

}

if (sum(seeds)+ unregpoints[i]<MinPts) cv[i] <- (-1)

else{

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

19.2 Other Cluster Examples 395

cn <- cn+1

cv[i] <- cn

seeds[i] <- unclass[i] <- FALSE

unregpoints[seeds] <- unregpoints[seeds]+1

while (sum(seeds)>0){

if (showplot) plot(data ,col=1+cv)

unclass[seeds] <- FALSE

cv[seeds] <- cn

ap <- (1:n)[seeds]

print(ap)

seeds <- rep(FALSE ,n)

for (j in ap){

if (showplot) plot(data ,col =1+ cv)

jseeds <- rep(FALSE ,n)

if (distances) jseeds[unclass] <- data[j,unclass]<=eps

else{

jseeds[unclass] <- distvector(data[j,],data[unclass ,])<=e2

}

unregpoints[jseeds] <- unregpoints[jseeds]+1

if (cn ==1)

cat(j," sum seeds =",sum(seeds)," unreg =", unregpoints [j],

" newseeds =",sum(cv[jseeds]==0) ,"\n")

if (sum(jseeds)+ unregpoints[j]>=MinPts){

seeds[jseeds] <- cv[jseeds]==0

cv[jseeds & cv <0] <- cn

}

} # for j

} # while sum seeds >0

} # else (sum seeds + ... >= MinPts)

} # if cv ==0

} # for i

if (sum(cv==(-1)) >0){

noisenumber <- cn+1

cv[cv==(-1)] <- noisenumber

}

else

noisenumber <- FALSE

out <- list(classification=cv, noisenumber=noisenumber ,

eps=eps , MinPts=MinPts , unregpoints=unregpoints)

out

} # dbscan

classification : classification vector

noisenumber : number in the classification vector indicating noise points

unregpoints : ignore ...

19.2 Other Cluster Examples

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

396 Cluster Analysis: K-Means

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 20

Association Analysis:
Apriori

and
⇓

Association analysis identifies relationships or
affinities between entities and/or between vari-
ables. These relationships are then expressed as
a collection of association rules. The approach
has been particularly successful in mining very
large transaction databases and is one of the core
classes of techniques in data mining. A typical
example is in the retail business where historic
data might identify that customers who purchase
the Gladiator DVD and the Patriot DVD also
purchase the Braveheart DVD. The historic data might indicate that the
first two DVDs are purchased by only 5% of all customers. But 70%
of these then also purchase Braveheart. This is an interesting group
of customers. As a business we may be able to take advantage of this
observation by targetting advertising of the Braveheart DVD to those
customers who have purchased both Gladiator and Patriot.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

398 Association Analysis: Apriori

20.1 Summary

Usage Market basket analysis, customer relationship man-
agement.

Input Transactional data consisting of items whose co-
occurrence within a transaction is of interest.

Output Association rules identifying relationships between
items within each transaction.

Complexity Adversely affected as the support threshold decreases,
particularly for large datasets. Exponential.

Availability Freely available as part of the Borgelt Suite (Chap-
ter 41, page 523) and integrated within R as part of
the arules package (Chapter 43, page 527). Most
commercial data mining toolkits include an imple-
mentation of apriori. Examples include SPSS (Chap-
ter 48, page 547), SAS Enterprise Miner (Chapter 53,
page 559), and Statistica (Chapter 54, page 563).

20.2 Overview

The Apriori algorithm is the original association rule algorithm. Each
transaction is thought of as a basket of items (which we might represent
as {A,B,C,D,E, F}). The algorithm searches for collections of items
that appear together in multiple baskets (e.g., {A,C, F}). From these
so called itemsets it identifies rules like A,F ⇒ C which we read as
indicating that A and F appearing in a transaction typically entails that
C will also appear in the transaction.

The basis of an association analysis algorithm is the generation of fre-
quent itemsets. However, näıve approaches will be quite expensive in
computational time with even moderately sized databases. The Apri-
ori algorithm takes advantage of the simple apriori observation that
all subsets of a frequent itemset must also be frequent. That is, if
{milk, bread, cheese} is a frequent itemset then so must each of the
smaller itemsets {milk, bread}, {milk, cheese}, {bread, cheese}, {milk},
{bread}, and {cheese}. This observation allows the algorithm to consider
a significantly reduced search space by starting with frequent individual

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.3 Algorithm 399

items (eliminating rare items). We can then combine these into itemsets
containing just two items and retain only those that are frequent enough.
Similarly for itemsets containing three items, and so on.

Suppose we have a rule of the form A ⇒ C. We call A the antecedent
and C the consequent, and both are non-empty sets of items.

The concept of frequent enough is a parameter of the algorithm, used to
control the number of association rules discovered This support specifies
how frequently the items must appear in the whole dataset before the
items can be considered as a candidate association rule. For example,
the user may choose to consider only sets of items that occur in at least
5% of all transactions. Formally we define support for a collection of
items I as the proportion of all baskets in which all items in I appear.
Then we can define the support for an association rule as:

support(A ⇒ C) = support(A ∪ C)

A second parameter, the confidence, calculates the proportion of trans-
actions containing A that also contain C. The confidence specifies a
minimal probability for the association rule. For example, the user may
choose to only generate rules which are true at least 90% of the time (that
is, when A appears in the basket, C also appears in the same basket at
least 90% of the time). Formally:

confidence(A ⇒ C) = support(A ⇒ C)/support(A)

20.3 Algorithm

The Apriori algorithm is a breadth-first or generate-and-test type of
search algorithm. Only after exploring all possibilities of associations
containing k items does it then consider those containing k + 1 items.
For each k, all candidates are tested to determine whether they have
enough support.

The algorithm uses a simple two step generate and merge process: gener-
ate frequent itemsets of size k then combine them to generate candidate
frequent itemsets of size k + 1.

The algorithm is generally simple to implement and is reasonably efficient

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

400 Association Analysis: Apriori

even though the number of possible items is generally large and the
baskets are generally small.

The input data to the algorithm consists of entities or transactions, each
transaction representing a basket of items.

The two primary tuning parameters are minsup (minimum support
expressed as a percentage of the total number of transactions in data)
and mincon (minimum confidence also expressed as a percentage of
the total number of transactions in data). Typically they have quite
small values because of the size of the databases we are dealing with.
Thus a support of 0.1% or smaller is not unusual.

Procedure Apriori returns a set of association rules, each consisting of
a left hand side, right hand side and a support and confidence tuple.

Apriori(data,minsup,mincon):
1 tcount ← length(data)
2 items ← ListUniqueItems(data)
3 icount ← length(items)
4 scount ← max(tcount ∗minsup /100, 1)

5 f1 ← Frequencies(items, data)
6 RemoveInfrequent(f1, scount)
7 if not f1: return nil

8 for k ← 2 to icount :
9 candidates ← GenerateCandidates(fk−1)

10 if not candidates: break
11 fk ← Frequencies(candidates, data)
12 RemoveInfrequent(fk, scount)
13 if not fk: break
14 return BuildAssociations(f,mincon)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.4 Usage 401

GenerateCandidates(fk):
1 candidates ← nil
2 for u ∈ fk, v ∈ fk, u < v:
3 if u1:-1 = v1:-1:
4 c← u ∪ v-1
5 s← Subsets(c)
6 if length(filter(λx : x ∈ fk, s)) = length(s):
7 candidates .append(c)
8 return candidates

BuildAssociations(f,mincon):
1 rules ← nil
2 for k ∈ fis, itemset ∈ fk, i← 1 to length(itemset):
3 for c ∈ Combinations(itemset , i):
4 lhs ← c
5 rhs ← nil
6 for k ∈ itemset : if k 6∈ c: rhs .append(k)

7 confidence ← 100× Support(itemset ,f)

Support(lhs,f)

8 if confidence > mincon:
9 support ← Support(itemset , f)

10 rules .append(lhs → rhs(support ,
11 confidence))
12 return rules

20.4 Usage

The arules package in R provides the apriori functionality for R. As is
the power of R, the packages is actually simply an interface to the widely
used, and freely available, aprior software from Borgelt. This software
was, for example, commercially licensed for use in the Clementine data
mining package.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

402 Association Analysis: Apriori

20.4.1 Read Transactions

file

format

sep

cols

rm.duplicates

20.4.2 Summary

20.4.3 Apriori

data

parameter

appearance

control

20.4.4 Inspect

20.5 Examples

The R function apriori from the arules package provides the apriori func-
tionality using Borgelt’s excellent implementation (Chapter 41, page 523).
We use the arules package here to illustrate the discovery of apriori rules.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.5 Examples 403

20.5.1 Video Marketing: Transactions From File

A simple example from e-commerce is that of an on-line retailer of
DVDs, maintaining a database of all purchases made by each customer.
(They will also, of course, have web log data about what the customers
browsed.) The retailer might be interested to know what DVDs appear
regularly together and to then use this information to make recommen-
dations to other customers.

The input data consists of “transactions” like the following, which record
on each line the purchase history of a customer, with each purchase
separated by a comma (i.e., CSV format as discussed in Section 14.3.4,
page 218):
Sixth Sense ,LOTR1 ,Harry Potter1 ,Green Mile ,LOTR2

Gladiator ,Patriot ,Braveheart

LOTR1 ,LOTR2

Gladiator ,Patriot ,Sixth Sense

Gladiator ,Patriot ,Sixth Sense

Gladiator ,Patriot ,Sixth Sense

Harry Potter1 ,Harry Potter2

Gladiator ,Patriot

Gladiator ,Patriot ,Sixth Sense

Sixth Sense ,LOTR ,Galdiator ,Green Mile

This data might be stored in the file DVD.csv which can be directly
loaded into R using the read.transactions function of the arules package:
> library(arules)

> dvd.transactions <- read.transactions("DVD.csv", sep=",")

> dvd.transactions

transactions in sparse format with

10 transactions (rows) and

11 items (columns)

This tells us that there are, in total, 11 items that appear in the bas-
ket. The read.transactions function can also read data from a file with
transaction ID and a single item per line (using the format="single"
option).

For example, if the data consists of:
1,Sixth Sense

1,LOTR1

1,Harry Potter1

1,Green Mile

1,LOTR2

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

404 Association Analysis: Apriori

2,Gladiator

2,Patriot

2,Braveheart

3,LOTR1

3,LOTR2

4,Gladiator

4,Patriot

4,Sixth Sense

5,Gladiator

5,Patriot

5,Sixth Sense

6,Gladiator

6,Patriot

6,Sixth Sense

7,Harry Potter1

7,Harry Potter2

8,Gladiator

8,Patriot

9,Gladiator

9,Patriot

9,Sixth Sense

10,Sixth Sense

10,LOTR

10,Galdiator

10,Green Mile

we read the data with:
> dvd.transactions <- read.transactions("DVD.csv", format="single",

sep=",", cols=c(1 ,2))

> dvd.transactions

transactions in sparse format with

10 transactions (rows) and

11 items (columns)

A summary of the dataset is obtained in the usual way:
> summary(dvd.transactions)

transactions as itemMatrix in sparse format with

10 rows (elements/itemsets/transactions) and

11 columns (items)

most frequent items:

Gladiator Patriot Sixth Sense Green Mile

6 6 6 2

Harry Potter1 (Other)

2 8

element (itemset/transaction) length distribution:

2 3 4 5

3 5 1 1

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.5 Examples 405

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 2.25 3.00 3.00 3.00 5.00

includes extended transaction information - examples:

transactionIDs

1 1

2 2

3 3

The dataset is identified as a sparse matrix consisting of 10 rows (trans-
actions in this case) and 11 columns or items. In fact, this corresponds
to the total number of distinct items in the dataset, which internally are
represented as a binary matrix, one column for each item. A distribu-
tion across the most frequent items (Gladiator appears in 6 “baskets”)
is followed by a distribution over the length of each transaction (one
transaction has 5 items in the “basket”). The final extended transaction
information can be ignored in this simple example, but is explained for
the more complex example that follows.

Association rules can now be built from the dataset:
> dvd.apriori <- apriori(dvd.transactions)

parameter specification:

confidence minval smax arem aval originalSupport support minlen

0.8 0.1 1 none FALSE TRUE 0.1 1

maxlen target ext

5 rules FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996 -2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[11 item(s), 10 transaction(s)] done [0.00s].

sorting and recoding items ... [7 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 done [0.00s].

writing ... [7 rule(s)] done [0.00s].

creating S4 object ... done [0.01s].

The output here begins with a summary of the parameters chosen for the
algorithm. The default values of confidence (0.8) and support (0.1) are
noted, in addition to the minimum and maximum number of items in an
itemset (minlen=1 and maxlen=5). The default target is rules, but you
could instead target itemsets or hyperedges. These can be set in the call

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

406 Association Analysis: Apriori

to apriori with the parameter argument which takes a list of keyword
arguments.

We view the actual results of the modelling with the inspect function:
> inspect(dvd.apriori)

lhs rhs support confidence lift

1 {LOTR1} => {LOTR2} 0.2 1 5.000000

2 {LOTR2} => {LOTR1} 0.2 1 5.000000

3 {Green Mile} => {Sixth Sense} 0.2 1 1.666667

4 {Gladiator} => {Patriot} 0.6 1 1.666667

5 {Patriot} => {Gladiator} 0.6 1 1.666667

6 {Sixth Sense ,

Gladiator} => {Patriot} 0.4 1 1.666667

7 {Sixth Sense ,

Patriot} => {Gladiator} 0.4 1 1.666667

The rules are listed in order of decreasing lift.

We can change the parameters to get other association rules. For example
we might reduce the support and deliver many more rules (81 rules):
> dvd.apriori <- apriori(dvd.transactions , par=list(supp =0.01))

Or else we might maintain support but reduce confidence (20 rules):
> dvd.apriori <- apriori(dvd.transactions , par=list(conf =0.1))

20.5.2 Survey Data: Data Preparation

For this example we will use the survey dataset (see Section 14.3.4,
page 221). This dataset is a reasonable size and has some common real
world issues. The vignette for arules, by the authors of the package (Hah-
sler et al., 2005), also use a similar dataset, available within the package
through data(Survey). We borrow some of their data transformations
here.

We first review the dataset: there are 32,561 entities and 15 variables.
> load("survey.RData")

> dim(survey)

[1] 32561 15

> summary(survey)

Age Workclass fnlwgt

Min. :17.00 Private :22696 Min. : 12285

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.5 Examples 407

1st Qu .:28.00 Self -emp -not -inc: 2541 1st Qu.: 117827

Median :37.00 Local -gov : 2093 Median : 178356

Mean :38.58 State -gov : 1298 Mean : 189778

3rd Qu .:48.00 Self -emp -inc : 1116 3rd Qu.: 237051

Max. :90.00 (Other) : 981 Max. :1484705

NA’s : 1836

Education Education.Num Marital.Status

HS-grad :10501 Min. : 1.00 Divorced : 4443

Some -college: 7291 1st Qu.: 9.00 Married -AF-spouse : 23

Bachelors : 5355 Median :10.00 Married -civ -spouse :14976

Masters : 1723 Mean :10.08 Married -spouse -absent: 418

Assoc -voc : 1382 3rd Qu .:12.00 Never -married :10683

11th : 1175 Max. :16.00 Separated : 1025

(Other) : 5134 Widowed : 993

Occupation Relationship

Prof -specialty : 4140 Husband :13193 Amer -Indian -Eskimo:

311

Craft -repair : 4099 Not -in -family : 8305 Asian -Pac -Islander: 1039

Exec -managerial: 4066 Other -relative: 981 Black : 3124

Adm -clerical : 3770 Own -child : 5068 Other :

271

Sales : 3650 Unmarried : 3446 White :27816

(Other) :10993 Wife : 1568

NA’s : 1843

Sex Capital.Gain Capital.Loss Hours.Per.Week

Female :10771 Min. : 0 Min. : 0.0 Min. : 1.00

Male :21790 1st Qu.: 0 1st Qu.: 0.0 1st Qu .:40.00

Median : 0 Median : 0.0 Median :40.00

Mean : 1078 Mean : 87.3 Mean :40.44

3rd Qu.: 0 3rd Qu.: 0.0 3rd Qu .:45.00

Max. : 99999 Max. :4356.0 Max. :99.00

Native.Country Salary.Group

United -States :29170 <=50K:24720

Mexico : 643 >50K : 7841

Philippines : 198

Germany : 137

Canada : 121

(Other) : 1709

NA’s : 583

The first 5 rows of the dataset give some idea of the type of data:
> survey [1:5,]

Age Workclass fnlwgt Education Education.Num Marital.Status

1 39 State -gov 77516 Bachelors 13 Never -married

2 50 Self -emp -not -inc 83311 Bachelors 13 Married -civ -spouse

3 38 Private 215646 HS-grad 9 Divorced

4 53 Private 234721 11th 7 Married -civ -spouse

5 28 Private 338409 Bachelors 13 Married -civ -spouse

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

408 Association Analysis: Apriori

Occupation Relationship Race Sex Capital.Gain Capital.Loss

1 Adm -clerical Not -in -family White Male 2174

0

2 Exec -managerial Husband White Male 0

0

3 Handlers -cleaners Not -in-family White Male 0

0

4 Handlers -cleaners Husband Black Male 0

0

5 Prof -specialty Wife Black Female 0

0

Hours.Per.Week Native.Country Salary.Group

1 40 United -States <=50K

2 13 United -States <=50K

3 40 United -States <=50K

4 40 United -States <=50K

5 40 Cuba <=50K

The dataset contains a mixture of categorical and numeric variables while
the apriori algorithm works just with categorical variables (or factors).
We note that the variable fnlwgt is a calculated value and not of interest
to us so we can remove it from the dataset. The variable Education.Num
is redundant since is it simply a numeric mapping of Education. We can
remove these from the data frame simply by assigning NULL to them:
> survey$fnlwgt <- NULL

> survey$Education.Num <- NULL

This still leaves Age, Capital.Gain, Capital.Loss, and Hours.Per.Week.
Following Hahsler et al. (2005), we will partition Age and Hours.Per.Week
into fours segments each:
> survey$Age <- ordered(cut(survey$Age , c(15, 25, 45, 65, 100)) ,

labels = c("Young", "Middle -aged", "Senior", "Old"))

> survey$Hours.Per.Week <- ordered(cut(survey$Hours.Per.Week ,

c(0, 25, 40, 60, 168)),

labels = c("Part -time", "Full -time", "Over -time", "Workaholic"))

Again following Hahsler et al. (2005) we map Capital.Gain and Capital.Loss
to None, and Low and High according to the median:
> survey$Capital.Gain <- ordered(cut(survey$Capital.Gain ,

c(-Inf , 0, median(survey$Capital.Gain[survey$Capital.Gain >0]), 1e+06)),

labels = c("None", "Low", "High"))

> survey$Capital.Loss <- ordered(cut(survey$Capital.Loss ,

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.5 Examples 409

c(-Inf , 0, median(survey$Capital.Loss[survey$Capital.Loss >0]), 1e+06)),

labels = c("None", "Low", "High"))

That is pretty much it in terms of preparing the data for apriori :
> survey [1:5,]

Age Workclass Education Marital.Status Occupation

1 Middle -aged State -gov Bachelors Never -married Adm -clerical

2 Senior Self -emp -not -inc Bachelors Married -civ -spouse Exec -managerial

3 Middle -aged Private HS -grad Divorced Handlers -cleaners

4 Senior Private 11th Married -civ -spouse Handlers -cleaners

5 Middle -aged Private Bachelors Married -civ -spouse Prof -specialty

Relationship Race Sex Capital.Gain Capital.Loss Hours.Per.Week

1 Not -in-family White Male Low None Full -time

2 Husband White Male None None Part -time

3 Not -in-family White Male None None Full -time

4 Husband Black Male None None Full -time

5 Wife Black Female None None Full -time

Native.Country Salary.Group

1 United -States <=50K

2 United -States <=50K

3 United -States <=50K

4 United -States <=50K

5 Cuba <=50K

The apriori function will coerce the data into the transactions data type,
and this can also be done prior to calling apriori using the as function
to view the data as a transaction dataset:
> library(arules)

> survey.transactions <- as(survey , "transactions")

> survey.transactions

transactions in sparse format with

32561 transactions (rows) and

115 items (columns)

This illustrates how the transactions data type represents variables in a
binary form, one binary variable for each level of each categorical vari-
able. There are 115 distinct levels (values for the categorical variables)
across all 13 of the categorical variables.

The summary function provides more details:
> summary(survey.transactions)

transactions as itemMatrix in sparse format with

32561 rows (elements/itemsets/transactions) and

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

410 Association Analysis: Apriori

115 columns (items)

most frequent items:

Capital.Loss = None Capital.Gain = None

31042 29849

Native.Country = United -States Race = White

29170 27816

Salary.Group = <=50K (Other)

24720 276434

element (itemset/transaction) length distribution:

10 11 12 13

27 1809 563 30162

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.00 13.00 13.00 12.87 13.00 13.00

includes extended item information - examples:

labels variables levels

1 Age = Young Age Young

2 Age = Middle -aged Age Middle -aged

The summary begins with a description of the dataset sizes. This is
followed by a list of the most frequent items occurring in the dataset. A
Capital.Loss of None is the single most frequent item, occurring 31,042
times (i.e., pretty much no transaction has any capital loss recorded).
The length distribution of the transactions is then given, indicating that
some transactions have NA’s for some of the variables. Looking at the
summary of the original dataset you’ll see that the variables Workclass,
Occupation, and Native.Country have NA’s, and so the distribution
ranges from 10 to 13 items in a transaction.

The final piece of information in the summary output indicates the
mapping that has been used to map the categorical variables to the
binary variables, so that Age = Young is one binary variable, and Age =
Middle-aged is another.

Now it is time to find all association rules using apriori. After a little
experimenting we have chosen a support of 0.05 and a confidence of 0.95.
This gives us 4,236 rules.
> survey.rules <- apriori(survey.transactions ,

parameter = list(support =0.05 , confidence =0.95))

parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.95 0.1 1 none FALSE TRUE 0.05 1

5 rules

ext

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.5 Examples 411

FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996 -2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[115 item(s), 32561 transaction(s)] done [0.07s].

sorting and recoding items ... [36 item(s)] done [0.01s].

creating transaction tree ... done [0.08s].

checking subsets of size 1 2 3 4 5 done [0.23s].

writing ... [4236 rule(s)] done [0.00s].

creating S4 object ... done [0.04s].

> survey.rules

set of 4236 rules

> summary(survey.rules)

set of 4236 rules

rule length distribution (lhs + rhs):

1 2 3 4 5

1 34 328 1282 2591

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 4.000 5.000 4.517 5.000 5.000

summary of quality measures:

support confidence lift

Min. :0.05003 Min. :0.9500 Min. :0.9965

1st Qu .:0.06469 1st Qu .:0.9617 1st Qu .:1.0186

Median :0.08435 Median :0.9715 Median :1.0505

Mean :0.11418 Mean :0.9745 Mean :1.2701

3rd Qu .:0.13267 3rd Qu .:0.9883 3rd Qu .:1.3098

Max. :0.95335 Max. :1.0000 Max. :2.9725

We can inspect the first 5 rules (slightly edited to suit publication):
> inspect(survey.rules [1:5])

lhs rhs support

conf lift

1 {} => {Capital.Loss = None} 0.953

0.953 1.00

2 {Occupation = Machine -op-inspct} => {Workclass = Private} 0.058

0.955 1.37

3 {Occupation = Machine -op-inspct} => {Capital.Loss = None} 0.059

0.966 1.01

4 {Race = Black} => {Capital.Loss = None} 0.093

0.967 1.01

5 {Occupation = Other -service} => {Salary.Group = <=50K} 0.097

0.958 1.26

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

412 Association Analysis: Apriori

Or we can list the first 5 rules which have a lift greater that 2.5
> subset(survey.rules , subset=lift >2.5)

set of 40 rules

> inspect(subset(survey.rules , subset=lift >2.5)[1:5])

lhs rhs support conf lift

1 {Age = Young ,

Hours.Per.Week = Part -time} => {Marital.Status = Never -married} 0.06 0.95 2.9

2 {Age = Young ,

Relationship = Own -child} => {Marital.Status = Never -married} 0.10 0.97 2.9

3 {Age = Young ,

Hours.Per.Week = Part -time ,

Salary.Group = <=50K} => {Marital.Status = Never -married} 0.06 0.96 2.9

4 {Age = Young ,

Hours.Per.Week = Part -time ,

Native.Country = United -States }=>{ Marital.Status=Never -married} 0.05 0.95 2.9

5 {Age = Young ,

Capital.Gain = None ,

Hours.Per.Week = Part -time} => {Marital.Status = Never -married} 0.05 0.96 2.9

Here we build quite a few more rules and then view the rule with highest
lift:
> survey.rules <- apriori(survey.transactions ,

parameter = list(support = 0.05, confidence = 0.8))

parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.8 0.1 1 none FALSE TRUE 0.05 1

5 rules

ext

FALSE

algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996 -2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[115 item(s), 32561 transaction(s)] done [0.09s].

sorting and recoding items ... [36 item(s)] done [0.02s].

creating transaction tree ... done [0.10s].

checking subsets of size 1 2 3 4 5 done [0.35s].

writing ... [13344 rule(s)] done [0.00s].

creating S4 object ... done [0.08s].

> inspect(SORT(subset(survey.rules , subset=rhs %in% "Salary.Group"),

by="lift")[1:3])

lhs rhs support conf lift

1 {Occupation = Exec -managerial ,

Relationship = Husband ,

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

20.5 Examples 413

Capital.Gain = High} => {Salary.Group = >50K} 0.007

1 4.15

2 {Age = Middle -aged ,

Occupation = Exec -managerial ,

Capital.Gain = High} => {Salary.Group = >50K} 0.005

1 4.15

3 {Age = Middle -aged ,

Education = Bachelors ,

Capital.Gain = High} => {Salary.Group = >50K} 0.006

1 4.15

20.5.3 Other Examples

Health data is another example where association analysis can be effec-
tively employed. Suppose a patient is obtaining a series of pathology and
diagnostic imaging tests as part of an investigation to determine the cause
of some symptoms. The “shopping basket” here is the collection of tests
performed. Are there items in the basket that don’t belong together?
Or are there some patients who don’t seem to be getting the appropriate
selection of tests? The Australian Health Insurance Commission discov-
ered an unexpected correlation between two pathology tests performed
by pathology laboratories and paid for by insurance (Viveros et al., 1999).
It turned out that only one of the tests was actually necessary, yet reg-
ularly both were being performed. The insurance organisation was able
to reduce over-payment by disallowing payment for both tests, resulting
in a saving of some half a million dollars per year.

In a very different application, IBM’s Advance Scout was developed to
identify different strategies employed by basketball players in the US
NBA. Discoveries include the observation that Scottie Pippen’s favorite
move on the left block is a right-handed hook to the middle. And when
guard Ron Harper penetrates the lane, he shoots the ball 83% of the
time. Also it was noticed that 17% of Michael Jordan’s offence comes on
isolation plays, during which he tends to take two or three dribbles before
pulling up for a jumper (Bhandari et al., 1997).

There are many more examples of unexpected associations having been
discovered between items and, importantly, found to be particularly use-
ful for improving business (and other) processes.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

414 Association Analysis: Apriori

20.6 Resources and Further Reading

The original apriori algorithm is due to Agrawal and Srikant (1994).
Borgelt (Chapter 41, page 523) provides a freely available, and very effi-
cient, implementation of association analysis, with an extensive collection
of measures of interestingness. This same library is directly accessible in
R (Chapter 43, page 527) through the arules package described in this
chapter.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 21

Classification:
Decision Trees

21.1 Summary

Usage
Input
Output
Complexity
Alternatives SAS provides

21.2 Overview

21.3 Algorithm

21.4 Usage

21.4.1 Rpart

Rpart generates decision trees by partitioning the data based on the
largest amount of information to be gained.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

416 Classification: Decision Trees

There are a number of tuning variables for rpart.

minsplit

The minsplit specifies the minimum number of observations that must
exist at a node in the tree before any further splitting will be attempted.

minbucket

The minbucket is the minimum number of observations in any terminal
leaf node.

The two variables minbucket and minsplit are closely related. In rpart if
either is not specified then by default the other is calculated asminsplit =
3 ∗minbucket.

cp

The variable cp governs the minimum complexity benefit that must be
gained at each step in order to make a split worthwhile. The default is
0.01.

surrogatestyle

The variable surrogatestyle sets how the selection process should select
the best variable. If set to 1 variables with a large number of missing
values are essentially penalised. Defaults to 0.

maxdepth

The maxdepth variable specifies the maximum depth for the tree.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

21.5 Examples 417

21.5 Examples

Simple Example

> sub <- c(sample (1:150 , 75)) # Random sampling

> fit <- rpart(Species ~ ., data=iris , subset=sub)

> fit

n= 75

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 75 47 virginica (0.2800000 0.3466667 0.3733333)

2) Petal.Length < 2.5 21 0 setosa (1.0000000 0.0000000 0.0000000) *

3) Petal.Length >=2.5 54 26 virginica (0.0000000 0.4814815 0.5185185)

6) Petal.Length < 5.05 29 3 versicolor (0.0000000 0.8965517 0.1034483) *

7) Petal.Length >=5.05 25 0 virginica (0.0000000 0.0000000 1.0000000) *

> table(predict(fit , iris[-sub ,], type="class"), iris[-sub , "Species"])

setosa versicolor virginica

setosa 29 0 0

versicolor 0 23 6

virginica 0 1 16

Convert Tree to Rules

list.rules.rpart <- function(model)

{

if (!inherits(model , "rpart")) stop("Not a legitimate rpart tree")

#

Get some information .

#

frm <- model$frame

names <- row.names(frm)

ylevels <- attr(model , "ylevels")

ds.size <- model$frame[1,]$n

#

Print each leaf node as a rule.

#

for (i in 1:nrow(frm))

{

if (frm[i,1] == "<leaf >")

{

The following [,5] is hardwired - needs work!

cat("\n")

cat(sprintf(" Rule number: %s ", names[i]))

cat(sprintf("[yval=%s cover=%d (%.0f%%) prob =%0.2f]\n",

ylevels[frm[i,]$yval], frm[i,]$n,

round (100*frm[i,]$n/ds.size), frm[i,]$yval2 [,5]))

pth <- path.rpart(model , nodes=as.numeric(names[i]), print.it=FALSE)

cat(sprintf(" %s\n", unlist(pth)[-1]), sep="")

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

418 Classification: Decision Trees

}

}

}

Predicting Wine Type

A traditional decision tree can be built from the Wine data (Section 14.3.4,
page 219) using the rpart (recursive partitioning) function. Also see mv-
part in the mvpart package.
library("rpart")

load("wine.Rdata")

wine.rpart <- rpart(Type ~ ., data=wine)

par(xpd = TRUE)

par(mar = rep(1.1, 4))

plot(wine.rpart)

text(wine.rpart , use.n=TRUE)

R code source: rplot-rpart.R.

> wine.rpart

n= 178

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 178 107 2 (0.33146067 0.39887640 0.26966292)

2) Proline >=755 67 10 1 (0.85074627 0.05970149 0.08955224)

4) Flavanoids >=2.165 59 2 1 (0.96610169 0.03389831 0.00000000) *

5) Flavanoids < 2.165 8 2 3 (0.00000000 0.25000000 0.75000000) *

3) Proline < 755 111 44 2 (0.01801802 0.60360360 0.37837838)

6) Dilution >=2.115 65 4 2 (0.03076923 0.93846154 0.03076923) *

7) Dilution < 2.115 46 6 3 (0.00000000 0.13043478 0.86956522)

14) Hue >=0.9 7 2 2 (0.00000000 0.71428571 0.28571429) *

15) Hue < 0.9 39 1 3 (0.00000000 0.02564103 0.97435897) *

The tree is displayed with the plot function.

You can even browse the plot with:
> path.rpart(fit)

Click on a node in the tree to display the path to that node. Exit with
the right mouse button.

Use printcp to view the performance of the model.

http://rattle.togaware.com/code/rplot-rpart.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

21.5 Examples 419

> printcp(wine.rpart)

Classification tree:

rpart(formula = Type ~ ., data = wine)

Variables actually used in tree construction:

[1] Dilution Flavanoids Hue Proline

Root node error: 107/178 = 0.60112

n= 178

CP nsplit rel error xerror xstd

1 0.495327 0 1.00000 1.00000 0.061056

2 0.317757 1 0.50467 0.47664 0.056376

3 0.056075 2 0.18692 0.28037 0.046676

4 0.028037 3 0.13084 0.23364 0.043323

5 0.010000 4 0.10280 0.21495 0.041825

> formula(wine.rpart)

Type ~ Alcohol + Malic + Ash + Alcalinity + Magnesium + Phenols +

Flavanoids + Nonflavanoids + Proanthocyanins + Color + Hue +

Dilution + Proline

attr(,"variables")

list(Type , Alcohol , Malic , Ash , Alcalinity , Magnesium , Phenols ,

Flavanoids , Nonflavanoids , Proanthocyanins , Color , Hue , Dilution ,

Proline)

attr(,"factors")

Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids

Type 0 0 0 0 0 0

0

Alcohol 1 0 0 0 0 0

0

Malic 0 1 0 0 0 0

0

Ash 0 0 1 0 0 0

0

Alcalinity 0 0 0 1 0 0

0

Magnesium 0 0 0 0 1 0

0

Phenols 0 0 0 0 0 1

0

Flavanoids 0 0 0 0 0 0

1

Nonflavanoids 0 0 0 0 0 0

0

Proanthocyanins 0 0 0 0 0 0

0

Color 0 0 0 0 0 0

0

Hue 0 0 0 0 0 0

0

Dilution 0 0 0 0 0 0

0

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

420 Classification: Decision Trees

Proline 0 0 0 0 0 0

0

Nonflavanoids Proanthocyanins Color Hue Dilution Proline

Type 0 0 0 0 0

0

Alcohol 0 0 0 0 0

0

Malic 0 0 0 0 0

0

Ash 0 0 0 0 0

0

Alcalinity 0 0 0 0 0

0

Magnesium 0 0 0 0 0

0

Phenols 0 0 0 0 0

0

Flavanoids 0 0 0 0 0

0

Nonflavanoids 1 0 0 0 0

0

Proanthocyanins 0 1 0 0 0

0

Color 0 0 1 0 0

0

Hue 0 0 0 1 0

0

Dilution 0 0 0 0 1

0

Proline 0 0 0 0 0

1

attr(,"term.labels")

[1] "Alcohol" "Malic" "Ash" "Alcalinity"

[5] "Magnesium" "Phenols" "Flavanoids" "Nonflavanoids"

[9] "Proanthocyanins" "Color" "Hue" "Dilution"

[13] "Proline"

attr(,"order")

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1

attr(,"intercept")

[1] 1

attr(,"response")

[1] 1

attr(,"predvars")

list(Type , Alcohol , Malic , Ash , Alcalinity , Magnesium , Phenols ,

Flavanoids , Nonflavanoids , Proanthocyanins , Color , Hue , Dilution ,

Proline)

attr(,"dataClasses")

Type Alcohol Malic Ash

Alcalinity

"factor" "numeric" "numeric" "numeric"

"numeric"

Magnesium Phenols Flavanoids Nonflavanoids Proanthocyanins

"numeric" "numeric" "numeric" "numeric"

"numeric"

Color Hue Dilution Proline

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

21.5 Examples 421

"numeric" "numeric" "numeric" "numeric"

You can find which terminal branch each entity in the training dataset
ends up in with the where component of the object.
> wine.rpart$where

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20

3 3 3 3 6 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3

[...]

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 4 4

9

The predict function will apply the model to data. The data must con-
tain the same variable on which the model was built. If not an error is
generated. This is a common problem when wanting to apply the model
to a new dataset that does not contain all the same variables, but does
contain the variables you are interested in.
> cols <- c("Type", "Dilution", "Flavanoids", "Hue", "Proline")

> predict(wine.rpart , wine[,cols])

Error in eval(expr , envir , enclos) : Object "Alcohol" not found

Fix this up with
> wine.rpart <- rpart(Type ~ Dilution + Flavanoids + Hue + Proline , data=wine)

> predict(wine.rpart , wine[,cols])

1 2 3

1 0.96610169 0.03389831 0.00000000

2 0.96610169 0.03389831 0.00000000

[...]

70 0.03076923 0.93846154 0.03076923

71 0.00000000 0.25000000 0.75000000

[...]

177 0.00000000 0.25000000 0.75000000

178 0.00000000 0.02564103 0.97435897

Display a confusion matrix.
> table(predict(wine.rpart , wine , type="class"), wine$Type)

1 2 3

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

422 Classification: Decision Trees

1 57 2 0

2 2 66 4

3 0 3 44

Predicting Salary Group

A little more complex is the survey data.
> survey.rp <- rpart(Salary.Group ~ ., data=survey)

> survey.rp

n= 32561

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 32561 7841 <=50K (0.75919044 0.24080956)

2) Relationship=Not -in-family ,Other -relative ,Own -child ,Unmarried

17800 1178 <=50K (0.93382022 0.06617978)

4) Capital.Gain < 7073.5 17482 872 <=50K (0.95012012 0.04987988) *

5) Capital.Gain >=7073.5 318 12 >50K (0.03773585 0.96226415) *

3) Relationship=Husband ,Wife 14761 6663 <=50K (0.54860782 0.45139218)

6) Education =10th ,11th ,12th ,1st -4th ,5th -6th ,7th -8th ,9th,Assoc -acdm ,

Assoc -voc ,HS -grad ,Preschool ,Some -college

10329 3456 <=50K (0.66540807 0.33459193)

12) Capital.Gain < 5095.5 9807 2944 <=50K (0.69980626 0.30019374) *

13) Capital.Gain >=5095.5 522 10 >50K (0.01915709 0.98084291) *

7) Education=Bachelors ,Doctorate ,Masters ,Prof -school 4432 1225 >50K

(0.27639892 0.72360108) *

> table(survey$Salary.Group)

<=50K >50K

24720 7841

Predicting Fraud: Underrepresented Classes

Consider the problem of fraud investigation, perhaps in insurance claims.
Suppose some 10,000 cases have been investigated and of those just 5%
(or 500) were found to be fraudulent. This is a typical scenario for numer-
ous organisations. With modelling we wish to improve the deployment of
our resources so that the 95% of the cases that were not fraudulent need
not all be investigated, yet the 5% still need to be identified. Each case

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

21.5 Examples 423

of actual fraud also has a dollar value associated with it, representing
the risk (actually, the magnitude of the risk) associated with the case.

The advantage of a decision tree approach is that the resulting tree (and
particularly if we traverse each path through the tree to obtain a set of
rules) can be easily understood and explained, allowing decision makers
the opportunity to understand the changes being suggested.

An aim of modelling here is to present a model which will allow us to
identify a caseload tradeoff with coverage whilst maximising the recovery
of dollars represented as the risk.

The first step is to build a decision tree. Because of the skewness of
the outcome we might “trick” rpart into working harder to identify the
frauds. As Breiman et al. 1984 indicate, different costs for misclassifi-
cation can be modelled either by modifying the loss matrix or by using
different prior probabilities for the classes, or by using different weights
for the response classes. These can be achieve using rpart with the parms
option which will record the options we want for the tree building. The
variables loss and prior can be set within the parms list of variables.
Another approach is to use the weights (to weight each case) and cost
(the relative cost of obtaining the variable value, thus can tune the choice
of variables in the model) options of rpart.

In using prior the relative prior probability assigned to each class can be
used to adjust the importance of misclassifications for each class. Thus,
priors may be interpreted as case weights, although case weights are
treated as case multipliers.

In fraud it is desirable not to misclassify cases of fraud, thus a more
accurate classification is desired for some classes over others. This will
not be exhibited through the relative class sizes. However, if the crite-
rion for predictive accuracy is misclassification costs, as it often is, then
minimising costs amounts to minimising the proportion of misclassified
cases when priors are considered proportional to the class sizes and mis-
classification costs are taken to be equal for every class. A loss matrix
elaborates the loss incurred if an entity of one decision class (say 1) is
erroneously classified by our model as another decision class (say 0).

For the following examples we use the audit dataset from the rattle
package. This dataset consists of a bunch of input variables with the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

424 Classification: Decision Trees

target (Adjusted) being in the last column. The outcome is binary (0/1)
with the positive case (1) being under-represented. The measure of the
risk (Adjustment) is assumed to be in the second last column. The risk is
the dollar amount recovered from the review of the fraud and should not
be used as an input variable in the modelling (thus we use audit[,-2]
to remove this column from the data). The examples here show the R
code behind Rattle as presented in Chapter 2.

Using prior to over-emphasize the under-represented outcome:
library(rpart)

library(rattle)

data(audit)

audit.rpart <- rpart(Adjusted ~ .,data=audit[,-12],parms=list(prior=c(.5 ,.5)))

Using loss:
library(rpart)

library(rattle)

data(audit)

loss <- matrix(c(0, 2, 1, 0), byrow=TRUE , ncol =2)

audit.rpart <- rpart(Adjusted ~ ., data=audit[,-12], parms=list(loss=loss))

Using weights based on the value of the risk:
library(rpart)

library(rattle)

data(audit)

weight <- abs(audit$Adjustment)/max(audit$Adjustment)*10+1

audit.rpart <- rpart(Adjusted ~ ., data=audit[,-12], weights=weight)

Now we apply the model to the data to obtain probabilistic predictions
(note that we are applying the model to the same training set and this
is will give us an optimistic estimate - Rattle uses training/test sets to
give a better estimate). The result is the probability, for each case, of it
being a fraud:
audit.predict <- predict(audit.rpart , audit)

Now, using Rattle (see Chapter 2) we can produce a Risk Chart that
presents the cases ordered by the probability of being a fraud, and plot-
ting the coverage and risk (percentage of dollars) recovered for each
choice of caseload.
library(rattle)

eval <- evaluateRisk(audit.predict , audit$Adjusted , audit$Adjustment)

plotRisk(eval$Caseload , eval$Precision , eval$Recall , eval$Risk)

title(main="Risk Chart using rpart on the audit dataset",

sub=paste("Rattle", Sys.time(), Sys.info ()["user"]))

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

21.5 Examples 425

To produce:

The plot can be easily used to tell a story about the tradeoff between
recovering all risk cases and the amount of effort expended. The solid
black diagonal line can be thought of as the baseline. The so called op-
timal line (the caseload where the sum of the distances of the Revenue
and Adjustments from the baseline is maximal) might be an interesting
point to consider. The story says that if our investigators actually only
investigated 25% of the cases that they are currently investigating, then
they would recover 64% of the cases that were found to be fraudulent,
and 72% of the dollars that were recovered. The other 75% of the inves-
tigative resources could be better deployed, perhaps to target higher risk
populations where the returns are greater. Note that the Strike Rate has
increased from 26% in the original dataset to 67% at this optimal point.

Perhaps an even better story is that with half of the resources currently
deployed on investigations (i.e., a caseload of 50%), with our model we
could recover almost 90% of the frauds and marginally more than 90%
of the dollars known to be recoverable.

We do note that here we are assuming the caseload directly reflects the
actual workload (i.e., every case takes the same amount of effort).

Such Risk Charts are used to compare the performance of alternative
models, where the aim is often to extend the red (Revenue) and green
(Recall) lines toward the top left corner of the plot, or to maximise the
area under these curves.

Alternatives and Enhancements

An alternative is provided by the tree package, although rpart is the
generally preferred function.

For multivariate use mvpart.

Visualise trees with maptree and pinktoe.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

426 Classification: Decision Trees

21.6 Resources and Further Reading

The traditional decision tree algorithms suffer from overfitting and a bias
toward selecting variables with many possible splits. The algorithms
do not use any statistical significance concepts and thus, as noted by
Mingers (1989), cannot distinguish between significant and insignificant
improvements in the information measure.

Conditional Trees (Chapter 32, page 495) take into account distributional
properties.

Can library(rgl) be used to visualise a decision tree?

Ye (1998) discussed generalised degrees of freedom and shows that to
get an unbiased estimate of R2 from recursive partitioning (decision tree
building) you have to use the formula for adjusted R2 with the number
of parameters far exceeding the number of final splits. He showed how
to estimate the degrees of freedom. Decision tree building can result in
simple predictive models but this can be an illusion.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 22

Classification:
Boosting

Yes/No

M1

Training Data/Classification Data

{−1, 1}{−1, 1}{−1, 1}
Weighted Sum → {−1, 1}

M2

MT

The Boosting meta-algorithm is
an efficient, simple, and easy to
program learning strategy. The
popular variant called AdaBoost
(an abbreviation for Adaptive
Boosting) has been described as
the “best off-the-shelf classifier
in the world” (attributed to Leo
Breiman by Hastie et al. (2001,
p. 302)). Boosting algorithms
build multiple models from a
dataset, using some other learning
algorithm that need not be a par-
ticularly good learner. Boosting
associates weights with entities in the dataset, and increases (boosts)
the weights for those entities that are hard to accurately model. A se-
quence of models is constructed and after each model is constructed the
weights are modified to give more weight to those entities that are harder
to classify. In fact, the weights of such entities generally oscillate up and
down from one model to the next. The final model is then an additive
model constructed from the sequence of models, each model’s output

http://en.wikipedia.org/wiki/Boosting
http://en.wikipedia.org/wiki/AdaBoost
http://en.wikipedia.org/wiki/Boosting

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

428 Classification: Boosting

weighted by some score. There is little tuning required and little is as-
sumed about the learner used, except that it should be a weak learner!
We note that boosting can fail to perform if there is insufficient data or
if the weak models are overly complex. Boosting is also susceptible to
noise.

22.1 Summary

Usage Classification tasks, regression and other mod-
elling.

Input Training data consisting of entities expressed as
attribute-value pairs, with a class associated with
each entity.

Output An ensemble of models which are to be deployed to-
gether with their decisions being combined to give
a joint decision.

Complexity Depends on complexity of the weak learner em-
ployed, but generally the weak learner is quite sim-
ple (e.g., OneR or Decision Stumps) hence scala-
bility is generally good.

Availability Freely available in Weka (Chapter 46, page 535)
and in R (Chapter 43, page 527). Commercial
data mining toolkits implementing AdaBoost in-
clude TreeNet (Chapter 55, page 569), Statistica
(Chapter 54, page 563), and Virtual Predict (Chap-
ter 56, page 571).

22.2 Overview

Boosting builds a collection of models using a “weak learner” and thereby
reduces misclassification error, bias, and variance (Bauer and Kohavi,
1999; Schapire et al., 1997). Boosting has been implemented in, for
example, C5.0. The term originates with Freund and Schapire (1995).

The algorithm is quite simple, beginning by building an initial model
from the training dataset. Those entites in the training data which the

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

22.3 AdaBoost Algorithm 429

model was unable to capture (i.e., the model mis-classifies those entites)
have their weights boosted. A new model is then built with these boosted
entities, which we might think of as the problematic entities in the train-
ing dataset. This model building followed by boosting is repeated until
the specific generated model performs no better than random. The re-
sult is then a panel of models used to make a decision on new data by
combining the “expertise” of each model in such a way that the more
accurate experts carry more weight.

As a meta learner Boosting employs some other simple learning algorithm
to build the models. The key is the use of a weak learning algorithm—
essentially any weak learner can be used. A weak learning algorithm
is one that is only somewhat better than random guessing in terms of
error rates (i.e., the error rate is just below 50%). An example might be
decision trees of depth 1 (i.e., decision stumps).

22.3 AdaBoost Algorithm

Boosting employs a weak learning algorithm (which we identify as the
learner). Suppose the dataset (data) consists ofN entites described using
M variables (lines 1 and 2 of the meta-code below). The Mth variable
(i.e., the last variable of each entity) is assumed to be the classification
of the entity. In the algorithm presented here we denote the training
data (an N by M − 1 matrix) as x (line 3) and the class associated
with each entity in the training data (a vector of length M) as y (line
4). Without loss of generality we can restrict the class to be either 1
(perhaps representing yes) or −1 (representing no). This will simplify
the mathematics. Each entity in the training data is initially assigned
the same weight: wi = 1

N (line 5).

The weak learner will need to use the weights associated with each entity.
This may be handled directly by the learner (e.g., rpart takes an option to
specify the weights) or else by generating a modified dataset by sampling
the original dataset based on the weights.

The first model, M1, is built by applying the weak learner to the data
with weights w (line 7). M1, predicting either 1 or −1, is then used to
identify the set of indicies of misclassified entities (i.e., where M1(xp) 6=

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

430 Classification: Boosting

yp), denoted as ms (line 8). For a completely accurate model we would
have M1(xi) = yi. Of course the model is expected to be only slightly
better than random so ms is unlikely to be empty.

A relative error ε1 forM1 is calculated as the relative sum of the weights
of the misclassified entities (line 9). This is used to calculate α1 (line
10), used, in turn, to adjust the weights (line 11). All weights could be
either decreased or increased depending on whether the model correctly
classifies the corresponding entity, as proposed by Freund and Schapire
(1995). However, this can be simplified to only increasing the weights
of the misclassified entities, as proposed by Hastie et al. (2001). These
entities thus become more important.

The learning algorithm is then applied to the new weighted data with
the learner expected to give more focus on the difficult entities whilst
building this next model,M2. The weights are then modified again using
the errors fromM2. The model building and weight modification is then
repeated until the new model performs no better than random (i.e., the
error is 50% or more: εi ≥ 0.5), or is perfect (i.e., the error rate is 0%
and ms is empty), or perhaps after a fixed number of iterations.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

22.3 AdaBoost Algorithm 431

AdaBoost(data, learner):

1 N ← nrow(data)
2 M ← ncol(data)
3 x← data[, 1 : M − 1]
4 y ← data[,M]
5 for i← 1 to N : wi = 1

N

6 repeat i← 1, i← i+ 1:
7 Mi ← learner(data, w)
8 ms = {p|Mi(xp) 6= yp}
9 εi =

∑
i∈ms wj∑n
j=1 wj

10 αi = log((1− εi)/εi)
11 for j ∈ ms: wj = wj × eαi
12 for i← 1 to N : wi = wi∑n

j=1 wj

13 until εi >= 0.5 or ms = ∅

14 return [M(x) = sign(
∑T

j=1 αjMj(x))]

The final modelM (line 14) combines the other models using a weighted
sum of the outputs of these other models. The weights, αj , reflect the
accuracy of each of the constituent models.

A simple example can illustrate the process. Suppose the number of
training entities, N , is 10. Each weight, wj , is thus initially 0.1 (line
5). Imagine the first model, M1, correctly classifies the first 6 of the 10
entities (e.g., ms = {7, 8, 9, 10}), so that ε1 = 0.1+0.1+0.1+0.1/1 = 0.4.
Then α1 = log(0.6/0.4) = 0.405, and is the weight that will be used to
multiply the results from this model to be added into the overall model
score. The weights w7, . . . , w10 then become 0.1 × e0.405 = 0.1 × 1.5 =
0.15. That is, they now have more importance for the next model build.
Suppose now that M2 correctly classifies 8 of the entities (with ms =
{1, 8}), so that ε2 = (0.1+0.15)/1.2 = 0.208 and α2 = log(0.792/0.208) =
1.337. Thus w1 = 0.1 × e1.337 ≈ 0.381 and w8 = 0.15 × e1.337 ≈ 0.571.
Note how record 8 is proving particularly troublesome and so its weight
is now the highest.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

432 Classification: Boosting

We can understand the behaviour of the function used to weight the
models (log((1−εi)/εi)) and to adjust the entity weights (eαi) by plotting
both of these for the range of errors we expect (from 0 to 0.5 or 50%).

0.0 0.1 0.2 0.3 0.4 0.5

Error :: εε

0.
01

0.
1

1
10

10
0

αα == log((
1 −− εε

εε
))

exp((αα))

plot(function(x) exp(log((1-x)/x)), xlim=c(0.01, 0.5), ylim=c(0.01, 200),

xlab=expression(Error: epsilon), ylab="", log="y", lty=1, col=2, yaxt="n")

plot(function(x) log((1-x)/x), add=TRUE , lty=2, col =3)

axis(side=2, at=c(0.01 , 0.1, 1, 10, 100), c(0.01 , 0.1, 1, 10, 100))

grid()

exp.leg <- expression(alpha == log(over(1-epsilon , epsilon)), exp(alpha))

legend("topright", exp.leg , lty=2:1, col=3:2, inset=c(0.04, 0.1))

R code source: rplot-adaboost.R.

First, looking at the value of the α’s (log((1 − εi)/εi)), we see that for
errors close to zero, that is, for very accurate models, the αi (i.e., the
weight that is used to multiply the results from the model) is very high.
For an error of about 5% the multiplier is almost 3, and for a 1% error
the multiplier is about 4.6. With an error of approximately 27% (i.e.,
ε = 0.26894) the multiplier is close to 1. For errors greater than this the
model gets weights less than 1, heading down to a weight of 0 at ε = 0.5.

http://rattle.togaware.com/code/rplot-adaboost.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

22.4 Examples 433

In terms of building the models, the entity weights are multiplied by
eαi . If the model we have just built (Mi) is quite accurate (ε close
to 0) then fewer entities are being misclassified, and their weights are
increased significantly (e.g., for a 5% error the weight is multiplied by
19). For inaccurate models (as ε approaches 0.5) the multiplier for the
weights approaches 1. Note that if εi = 0.5 the multiplier is 1, and thus
no change is made to the weights of the entities. Of course, building a
model on the same dataset with the same weights will build the same
model, thus the criteria for continuing to build a model tests that ε < 0.5.

22.4 Examples

A number of R packages implement boosting. The caTools package pro-
vides the LogitBoost function which is perhaps the simplest to use, and
is an efficient implementation for large datasets. The boost package pro-
vides the adaboost function as well as logitboost, and relies on rpart for
building the models, and is less efficient. The gbm package is the more
sophisticated of the packages and implements the more general Gener-
alise Boosted Regression Models. We will illustrate boosting with the
gbm package.

We start our examples though with a step through of the process using
just rpart.

22.4.1 Step by Step

The learner deployed in the AdaBoost algorithm is typically a decision
tree learner that builds no more than a single split decision tree (also
called a decision stump). Such a decision tree can be built in R using
rpart and we illustrate this in the following code segments.

First we load the wine dataset and extract the input variables (x) and
the output variable (y). For a simple application of the algorithm, we’ll
have only a binary output (predicting Type == 1), and again for math-
ematical convenience we’ll predict 1 or -1:
> library(rpart)

> load("wine.RData")

> N <- nrow(wine) # 178

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

434 Classification: Boosting

> M <- ncol(wine) # 14

> x <- as.matrix(wine[,2:M])

> y <- as.integer(wine [,1])

> y[y>1] <- -1

> y

[1] 1

1 1 1 1

[...]

[176] -1 -1 -1

Now we’ll initialise the entity weights and build the first model. We
first set the weights to all be the same, and then set up an rpart.control
structure for building a decision tree stump. The control simply includes
the maxdepth option set to 1 so that a single level tree is built:
> w <- rep(1/N, N)

> w

[1] 0.005617978 0.005617978 0.005617978 0.005617978 0.005617978 0.005617978

[...]

[175] 0.005617978 0.005617978 0.005617978 0.005617978

> control <- rpart.control(maxdepth =1)

> M1 <- rpart(y ~ x, weights=w/mean(w), control=control , method="class")

> M1

n= 178

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 178 59 -1 (0.66853933 0.33146067)

2) x.Proline < 755 111 2 -1 (0.98198198 0.01801802) *

3) x.Proline >=755 67 10 1 (0.14925373 0.85074627) *

We see that the decision tree algorithm has chosen Proline to split the
data on, at a split point of 755. For Proline less than 755 the decision
is -1 with probability 0.98, and for Proline greater than or equal to 755
the decision is 1 with probability 0.85.

We now need to find those entities which are incorrectly classified by
the model. The R code here calls predict to apply the model M1 to the
dataset it was built from. From this result we get the second column
which is the list of probabilities for each entity being in class 1. If this
probability is above 0.5 then the result is 1, otherwise it is -1 (multiplying
the logical value by 2 and then subtracting 1 achieves this since TRUE
is regarded as 1 and FALSE as 0). The resulting class is then compared
to the y’s and which returns the index of those entities for which the
prediction differs from the actual class.
> ms <- which (((predict(M1)[,2] >0.5)*2)-1 != y)

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

22.4 Examples 435

> names(ms) <- NULL

> ms

[1] 5 44 71 74 75 96 142 145 146 158 176 177

We can now calculate the model weight and update the entity weights,
dividing by the resulting sum of weights to get a normalised value (so
that sum(w) is 1:
> e1 <- sum(w[ms])/sum(w) # 0.06741573

> a1 <- log((1-e1)/e1) # 2.627081

> w[ms] <- w[ms]*exp(a1)

> w[ms]

[1] 0.07771536 0.07771536 0.07771536 0.07771536 0.07771536 0.07771536

[7] 0.07771536 0.07771536 0.07771536 0.07771536 0.07771536 0.07771536

We build our second model:
> M2 <- rpart(y ~ x, weights=w/mean(w), control=control , method="class")

> M2

n= 178

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 178 45.3935700 -1 (0.744979920 0.255020080)

2) x.Flavanoids < 2.31 101 0.5361446 -1 (0.995381062 0.004618938) *

3) x.Flavanoids >=2.31 77 17.0672700 1 (0.275613276 0.724386724) *

> ms <- which (((predict(M2)[,2] >0.5)*2)-1 != y)

> names(ms) <- NULL

> ms

[1] 28 64 66 67 72 74 80 82 98 99 100 110 111 121 122 124 125 126 127

[20] 129

> e2 <- sum(w[ms])/sum(w) # 0.09889558

> a2 <- log((1-e2)/e2) # 2.209557

> w[ms] <- w[ms]*exp(a2)

> w[ms]

[1] 0.05118919 0.05118919 0.05118919 0.05118919 0.05118919 0.70811707

[7] 0.05118919 0.05118919 0.05118919 0.05118919 0.05118919 0.05118919

[13] 0.05118919 0.05118919 0.05118919 0.05118919 0.05118919 0.05118919

[19] 0.05118919 0.05118919

And then our third model:
> M3 <- rpart(y ~ x, weights=w/mean(w), control=control , method="class")

> M3

n= 178

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 178 27.60091 -1 (0.84493870 0.15506130)

2) x.Proline < 987.5 134 12.09805 -1 (0.92554915 0.07445085) *

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

436 Classification: Boosting

3) x.Proline >=987.5 44 0.00000 1 (0.00000000 1.00000000) *

> ms <- which (((predict(M3)[,2] >0.5)*2)-1 != y)

> names(ms) <- NULL

> ms

[1] 5 20 21 22 25 26 29 36 37 40 41 44 45 48 57

> e3 <- sum(w[ms])/sum(w)

> e3

[1] 0.06796657

> a3 <- log((1-e3)/e3)

> a3

[1] 2.618353

The final model, if we chose to stop here, is then:

M(x) = 2.627081 ∗M1(x) + 2.209557 ∗M2(x) + 2.618353 ∗M3(x)

22.4.2 Using gbm

Generalised boosted models, as proposed by Friedman (2001) and ex-
tended by Friedman (2002), has been implemented for R as the gbm
package by Greg Ridgeway. This is a much more extensive package for
boosting than the boost package.

We illustrate AdaBoost using the distribution option of the gbm function.
> library(gbm)

> load("wine.RData")

> ds <- wine

> ds$Type <- as.numeric(ds$Type)

> ds$Type[ds$Type >1] <- 0

> ds$Type

[1] 1

[38] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[75] 0

[112] 0

[149] 0

> ds.gbm <- gbm(Type ~ Alcohol + Malic + Ash + Alcalinity + Magnesium +

Phenols + Flavanoids + Nonflavanoids + Proanthocyanins +

Color + Hue + Dilution + Proline ,

data=ds , distribution="adaboost", n.trees =100)

Iter TrainDeviance ValidDeviance StepSize Improve

1 0.9408 nan 0.0010 0.0006

2 0.9402 nan 0.0010 0.0006

3 0.9394 nan 0.0010 0.0007

4 0.9387 nan 0.0010 0.0007

5 0.9381 nan 0.0010 0.0005

6 0.9374 nan 0.0010 0.0006

7 0.9368 nan 0.0010 0.0006

8 0.9361 nan 0.0010 0.0007

9 0.9354 nan 0.0010 0.0006

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

22.4 Examples 437

10 0.9349 nan 0.0010 0.0004

100 0.8750 nan 0.0010 0.0007

> summary(ds.gbm)

var rel.inf

1 Proline 91.82978

2 Flavanoids 8.17022

3 Alcohol 0.00000

4 Malic 0.00000

5 Ash 0.00000

6 Alcalinity 0.00000

7 Magnesium 0.00000

8 Phenols 0.00000

9 Nonflavanoids 0.00000

10 Proanthocyanins 0.00000

11 Color 0.00000

12 Hue 0.00000

13 Dilution 0.00000

> pretty.gbm.tree(ds.gbm)

SplitVar SplitCodePred LeftNode RightNode MissingNode ErrorReduction Weight

0 12 8.675000e+02 1 2 3 65.36408

89

1 -1 -8.139656e-04 -1 -1 -1 0.00000

62

2 -1 9.236987e-04 -1 -1 -1 0.00000

27

3 -1 -2.868090e-04 -1 -1 -1 0.00000

89

Prediction

0 -0.0002868090

1 -0.0008139656

2 0.0009236987

3 -0.0002868090

> gbm.show.rules(ds.gbm)

Number of models: 100

Tree 1: Weight XXXX

Proline < 867.50 : 0 (XXXX/XXXX)

Proline >= 867.50 : 1 (XXXX/XXXX)

Proline missing : 0 (XXXX/XXXX)

[...]

Tree 100: Weight XXXX

Proline < 755.00 : 0 (XXXX/XXXX)

Proline >= 755.00 : 1 (XXXX/XXXX)

Proline missing : 0 (XXXX/XXXX)

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

438 Classification: Boosting

22.5 Extensions and Variations

22.5.1 Alternating Decision Tree

An alternating decision tree Freund and Mason (1999), combines the
simplicity of a single decision tree with the effectiveness of boosting.
The knowledge representation combines tree stumps, a common model
deployed in boosting, into a decision tree type structure. The different
branches are no longer mutually exclusive. The root node is a prediction
node, and has just a numeric score. The next layer of nodes are decision
nodes, and are essentially a collection of decision tree stumps. The next
layer then consists of prediction nodes, and so on, alternating between
prediction nodes and decision nodes.

A model is deployed by identifying the possibly multiple paths from
the root node to the leaves through the alternating decision tree that
correspond to the values for the variables of an entity to be classified.
The entity’s classification score (or measure of confidence) is the sum of
the prediction values along the corresponding paths. A simple example
involving the variables Income and Deduction (with values $56,378, and
$1,429, respectively), will result in a score of 0.15−0.25+0.5−0.3 = 0.1.
This is a positive number so we will place this entity into the positive
class, with a confidence of only 0.1. The corresponding paths in Figure is
highlighted.

We can build an alternating decision tree in R using the RWeka package:
Load the sample dataset

> data(audit , package="rattle")

Load the RWeka library

> library(RWeka)

Create interface to Weka ’s ADTree and print some documentation

> ADT <- make_Weka_classifier("weka/classifiers/trees/ADTree")

> ADT

> WOW(ADT)

Create a training subset

> set.seed (123)

> trainset <- sample(nrow(audit), 1400)

Build the model

> audit.adt <- ADT(as.factor(Adjusted) ~ .,

data=audit[trainset , c(2:11 ,13)])

> audit.adt

Alternating decision tree:

: -0.568

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

22.6 Resources and Further Reading 439

| (1) Marital = Married: 0.476

| | (10) Occupation = Executive: 0.481

| | (10) Occupation != Executive: -0.074

| (1) Marital != Married: -0.764

| | (2) Age < 26.5: -1.312

| | | (6) Marital = Unmarried: 1.235

| | | (6) Marital != Unmarried: -1.366

| | (2) Age >= 26.5: 0.213

| (3) Deductions < 1561.667: -0.055

| (3) Deductions >= 1561.667: 1.774

| (4) Education = Bachelor: 0.455

| (4) Education != Bachelor: -0.126

| (5) Occupation = Service: -0.953

| (5) Occupation != Service: 0.052

| | (7) Hours < 49.5: -0.138

| | | (9) Education = Master: 0.878

| | | (9) Education != Master: -0.075

| | (7) Hours >= 49.5: 0.339

| (8)Age < 36.5: -0.298

| (8)Age >= 36.5: 0.153

Legend: -ve = 0, +ve = 1

Tree size (total number of nodes): 31

Leaves (number of predictor nodes): 21

We can pictorially present the resulting model as in Figure 22.1, which
shows a cut down version of the actual ADTree built above. We can
explore exactly how the model works using the simpler model in Fig-
ure 22.1. We begin with a new instance and a starting score of −0.568.
Suppose the person is married and aged 32. Considering the right branch
we add −0.298. We also consider the left branch, we add 0.476. Suppos-
ing that they are not an Executive, we add another −0.074. The final
score is then −0.568− 0.298 + 0.476− 0.074 = −0.464.
Explore the results

> predict(audit.adt , audit[-trainset , -12])

> predict(audit.adt , audit[-trainset , -12], type="prob")

Plot the results

> pr <- predict(audit.adt , audit[-trainset , c(2:11 ,13)] , type="prob")[,2]

> eval <- evaluateRisk(pr , audit[-trainset , c(2:11 ,13)]$Adjusted ,

audit[-trainset , c(2:11 ,13 ,12)]$Adjustment)

> title(main="Risk Chart ADT audit [test] Adjustment",

sub=paste("Rattle", Sys.time(), Sys.info ()["user"]))

22.6 Resources and Further Reading

Freund and Schapire (1995) introduced AdaBoost, popularising the idea
of ensemble learning where a committee of models cooperate to deliver

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

440 Classification: Boosting

−0.568

Marital

= Married < 36.5

Age

Occupation

= Executive

Age

< 26.5

Y N Y N

0.476 −0.764

0.481 −0.074 −1.312 0.213

−0.298 0.153

Y N Y N

Figure 22.1: Reduced example of an alternating decision tree.

Figure 22.2: Audit risk chart from an alternating decision tree.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

22.6 Resources and Further Reading 441

a better outcome. For a demonstration of AdaBoost visit http://www1.
cs.columbia.edu/~freund/adaboost/.

The original formulation of the algorithm, as in Freund and Schapire
(1995), adjusts all weights each iteration. Weights are increased if the
corresponding record is misclassified byMi or decreased if it is correctly
classified byMi. The weights are then further normalised each iteration
to ensure they continue to represent a distribution (so that

∑n
j=1wj = 1).

This can be simplified, as by Hastie et al. (2001), to only increase the
weights of the misclassified entities. We use this simpler formulation in
the above description of the algorithm. Consequently, the calculation of
εi (line 9) includes the sum of the weights as a denominator (which is 1 in
the original formulation). Only the weights associated with the misclas-
sified entities are modified in line 11. The original algorithm modified
all weights by e−αiyiMi(xj) which equates to eαi for misclassified entities
(since either yi or Mi(xj) is -1, but not both) and to e−αi for correctly
classified entities (since both yi or Mi(xj) are either 1 or -1). For each
iteration the new weights in the original algorithm are normalised by
dividing each weight by a calculated factor Zi.

Cost functions other than the exponential loss criterion e−m have been
proposed. These include the logistic log-likelihood criterion log(1 +
exp(−m)) used in LogitBoost), 1−tanh(m) (Doom II) and (1−m)I(m >
1) (Support Vector Machines).

BrownBoost addresses the issue of the sensitivity of AdaBoost to noise.

We note that if each weak classifier is always better than chance, then
AdaBoost can be proven to converge to a perfectly accurate model (no
training error). Also note that even after achieving an ensemble model
with no error, as we add in new models to the ensemble the generalisation
error continues to improve (the margin continues to grow). Although it
was thought, at first, that AdaBoost does not overfit the data, it has
since been shown that it can. However, it generally does not, even for
large numbers of iterations.

Extensions to AdaBoost include multi-class classification, application to
regression (by transforming the problem into a binary classification task),
and localised boosting which is similar to mixtures of experts.

Some early practical work on boosting was undertaken with the Aus-

http://www1.cs.columbia.edu/~freund/adaboost/
http://www1.cs.columbia.edu/~freund/adaboost/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

442 Classification: Boosting

tralian Taxation Office using boosted stumps. Multiple, simple models
of tax compliance were produced. The models were easily and indepen-
dently interpretable. Effectively, the models identified a collection of
factors that in combination were useful in predicting compliance.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 23

Classification:
Random Forests

23.1 Summary

23.2 Overview

A key factor about a random forest being a collection of many decision
trees is that each decision tree is not influenced by the other decision
trees when constructed.

23.3 Algorithm

23.4 Usage

The random forest model builder, as implemented in R:
> library(randomForest)

>

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

444 Classification: Random Forests

23.4.1 Random Forest

importance

The importance option allows us to review the importance of each vari-
able in determining the outcome. The first importance is the scaled
average of the prediction accuracy of each variable, and the second is the
total decrease in node impurities splitting on the variable over all trees,
using the Gini index.

classwt

The classwt option in the current randomForrest package does not fully
work and should be avoided. The sampsize and strata options can be
used together. Note that if strata is not specified, the class labels will be
used.

23.5 Examples

Here’s an example using the iris data:
> iris.rf <- randomForest(Species ~ ., iris , sampsize=c(10, 20, 10))

This will randomly sample 10, 20 and 10 entities from the three classes
of species (with replacement) to grow each tree.

You can also name the classes in the sampsize specification:
> samples <- c(setosa =10, versicolor =20, virginica =10)

> iris.rf <- randomForest(Species ~ ., iris , sampsize=samples)

You can do a stratified sampling using a different variable than the class
labels so that you even up the distribution of the class. Andy Liaw gives
an example of the multi-centered clinical trial data where you want to
draw the same number of patients per center to grow each tree where
you can do something like:
> randomForest (..., strata=center ,

sampsize=rep(min(table(center))), nlevels(center)))

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

23.5 Examples 445

This samples the same number of patients (minimum at any center) from
each center to grow each tree.

To be confident that the random forest score is simply the proportion of
positive examples, we can try building one tree, then multiple trees, and
see what we get. We can start with a single tree (note that we use the
Rattle generated commands, as listed in the Log tab, and thus we use the
Rattle internal variables.

First build a single tree:
> set.seed (123)

> crs$rf <- randomForest(as.factor(Adjusted) ~ .,

data=crs$dataset[crs$sample ,c(2:10 ,13)] ,

ntree=1, importance=TRUE , na.action=na.omit)

> crs$pr <- predict(crs$rf ,

crs$dataset[-crs$sample , c(2:10 ,13)] ,

type="prob")[,2]

> summary(as.factor(crs$pr))

0 1 NA’s

423 139 38

Now build two trees and rerun the code:
> set.seed (123)

> crs$rf <- randomForest(as.factor(Adjusted) ~ .,

data=crs$dataset[crs$sample ,c(2:10 ,13)] ,

ntree=2, importance=TRUE , na.action=na.omit)

> crs$pr <- predict(crs$rf ,

crs$dataset[-crs$sample , c(2:10 ,13)] ,

type="prob")[,2]

> summary(as.factor(crs$pr))

0 0.5 1 NA’s

353 124 85 38

And then four trees:
> set.seed (123)

> crs$rf <- randomForest(as.factor(Adjusted) ~ .,

data=crs$dataset[crs$sample ,c(2:10 ,13)] ,

ntree=4, importance=TRUE , na.action=na.omit)

> crs$pr <- predict(crs$rf ,

crs$dataset[-crs$sample , c(2:10 ,13)] ,

type="prob")[,2]

> summary(as.factor(crs$pr))

0 0.25 0.5 0.75 1 NA’s

293 98 68 62 41 38

Thus, we can see that when we have four trees voting, the score will be
either 0 (no tree voted in favour of the case), 0.25 (one tree in favour),

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

446 Classification: Random Forests

0.5 (two trees in favour). 0.75 (three trees in favour), and 1 (all trees in
favour).

23.6 Resources and Further Reading

Random forests can also be used in an unsupervised mode for clustering.
See Unsupervised Learning with Random Forest Predictors at http://
www.genetics.ucla.edu/labs/horvath/RFclustering/RFclustering.
htm.

http://www.genetics.ucla.edu/labs/horvath/RFclustering/RFclustering.htm
http://www.genetics.ucla.edu/labs/horvath/RFclustering/RFclustering.htm
http://www.genetics.ucla.edu/labs/horvath/RFclustering/RFclustering.htm

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 24

Issues

In this chapter we cover a number of topics around building models in
data mining.

24.1 Incremental or Online Modelling

The modelling approaches we have discussed here are what we might
think of as batch learners. The model builders take a training dataset
to build a model that might then be deployed. If we want to update
the model then the process begins again from a new training dataset, in
batch mode, to build a new model.

An alternative paradigm is to incrementally build a model. Such ap-
proaches are also often referred to as online model building.

24.2 Model Tuning

What is the right value to use for each of the variables of the model
building algorithms that we us in data mining? The variable settings
can make the difference between a good and a poor model.

The package caret, as well as providing a unified interface to many of

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

448 Issues

the model builders we have covered in this book, provides a parameter
tuning approach. Here’s a couple of examples:
> library(rattle)

> library(caret)

> data(audit)

> mysample <- sample(nrow(audit), 1400)

> myrpart <- train(audit[mysample , c(2 ,4:5 ,7:10)] ,

as.factor(audit[mysample , c(13)]) , "rpart")

Model 1: maxdepth =6

collapsing over other values of maxdepth

> myrpart

Call:

train.default(x = audit[mysample , c(2, 4:5, 7:10)] , y = as.factor(audit[mysample ,

c(13)]) , method = "rpart")

1400 samples , 7 predictors

largest class: 77.71% (0)

summary of bootstrap (25 reps) sample sizes:

1400, 1400, 1400, 1400, 1400, 1400, ...

boot resampled training results across tuning parameters:

maxdepth Accuracy Kappa Accuracy SD Kappa SD Optimal

2 0.817 0.423 0.0142 0.0386

3 0.818 0.413 0.0171 0.0617 *

6 0.814 0.412 0.019 0.0488

Accuracy was used to select the optimal model

> myrpart$finalModel

n= 1400

node), split , n, loss , yval , (yprob)

* denotes terminal node

1) root 1400 312 0 (0.77714286 0.22285714)

2) Marital=Absent ,Divorced ,Married -spouse -absent ,Unmarried ,Widowed 773

38 0 (0.95084088 0.04915912) *

3) Marital=Married 627 274 0 (0.56299841 0.43700159)

6) Education=College ,HSgrad ,Preschool ,Vocational ,Yr10 ,Yr11 ,Yr12 ,Yr1t4 ,Yr5t6 ,Yr7t8 ,Yr9 409 129 0 (0.68459658 0.31540342)

12) Deductions < 1708 400 120 0 (0.70000000 0.30000000) *

13) Deductions >=1708 9 0 1 (0.00000000 1.00000000) *

7) Education=Associate ,Bachelor ,Doctorate ,Master ,Professional 218

73 1 (0.33486239 0.66513761) *

Similarly we can replace rpart with rf.

The tune function from the e1071 package provides a simple, if some-
times computationally expensive, approach to find a good value for a
collection of tuning variables. We explore the use of this function here.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

24.2 Model Tuning 449

The tune function provides a number of global tuning variables that
affect how the tuning happens. The nrepeat variable (number of repeats)
specifies how often the training should be repeated. The repeat.aggregate
variable identifies a function that specifies how to combine the training
results over the repeated training. The sampling identifies the sampling
scheme to use, allowing for cross-validation, bootstrapping or a simple
train/test split. For each type of sample, further variables are supplied,
including, for example, cross = 10 to set the cross validation to be 10-
fold. The sampling.aggregate variable specifies a function to combine
the training results over the various training samples. A good default
(provided by tune) is to train once with 10-fold cross validation.

24.2.1 Tuning rpart

To keep the examples simple we use the audit dataset and remove entities
with missing values and also ignore the Adjustment column.
library(e1071)

audit <- na.omit(read.csv("audit.csv"))

audit$Adjustment <- NULL

fm <- formula(Adjusted ~ ID+Age+Employment+Education+

Marital+Occupation+Income+Sex+

Deductions+Hours+Accounts)

Explore minsplit

audit.rpart <- tune.rpart(fm, data=audit , minsplit=seq (10 ,100 ,10))

plot(audit.rpart , main="Tune rpart on minsplit")

cp

audit.rpart <- tune.rpart(fm, data = audit , cp = c(0.002 ,0.005 ,0.01 ,0.015 ,0.02 ,0.03))

plot(audit.rpart ,main="Performance of rpart vs. cp")

readline ()

maxdepth

audit.rpart <- tune.rpart(fm, data = audit , maxdepth = 1:5)

plot(audit.rpart ,main="Performance of rpart vs. cp")

readline ()

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

450 Issues

24.3 Unbalanced Classification

This is a common problem that we find in areas such as fraud, rare
disease diagnosis, network intrusion, and others. The problem is that
one class is very much underrepresented in the data. For example, cases
of fraud in a very large medical insurance dataset are perhaps less than
1%. In compliance work where claims are being reviewed for compliance,
often the number of claims that require adjustment is perhaps only 10%.
In such circumstances, if we build a model in the usual way, where the
aim is to minimise error rates, we can build the most accurate model to
say that there is no fraud, and the model is up to 99% accurate, but of
very little use.

Data mining of unbalanced datasets will often involve adjustments to the
modelling in some way. One approach is to down sample the majority
case to even up the classes. Alternatively, we might over sample entities
from the rare class and by so doing increase the weight of the minorities!
Such approaches can work, but it is not always clear that they will.
Under-sampling can lead to a loss of information, whilst over-sampling
may lead to over-fitting. Although, adaptive under-sampling can lead
to a reduced loss of information, producing better results than over-
sampling, and is more efficient.

An important thing to know when we have an unequal distribution of
negative and positive cases is the misclassification cost—that is, what is
the cost of incorrectly classifying a positive case as a negative (a false
negative) and of incorrectly classifying a negative as a positive (a false
positive). Often these will be different. In fraud for example, it is impor-
tant to ensure we identify all cases of fraud, and we might be willing to
accept that we will have some false positives. Thus false negatives have
a very high cost. If the misclassification cost is equal for both false posi-
tives and false negatives then a reasonable strategy is simply to minimise
the number of misclassified examples (regardless of whether they belong
to the majority class or the minority class).

We illustrate two approaches to dealing with unbalanced datasets in Chap-
ter ??, page ??. There, one approach is to modify the weights, and the
second is to down sample to balance up the classes. Both have been
found to be very effective approaches when coupled with random forests.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

24.4 Building Models 451

24.4 Building Models

To prevent overfitting and under estimating the generalisation error dur-
ing training, use a training/test set paradigm.

24.5 Outlier Analysis

Rare, unusual, or just plain infrequent events are of interest in data
mining in many contexts including fraud in income tax, insurance, and
online banking, as well as for marketing. We classify analyses that focus
on the discovery of such data items as outlier analysis. Hawkins (1980)
captures the concept of an outlier as:

an observation that deviates so much from other observations
as to arouse suspicion that it was generated by a different
mechanism.

Outlier detection algorithms often fall into one of the categories of distance-
based methods, density-based methods, projection-based methods, and
distribution-based methods.

A general approach to identifying outliers is to assume a known distri-
bution for the data and to examine the deviation of individuals from
the distribution. Such approaches are common in statistics (Barnett and
Lewis, 1994) but such approaches do not scale well.

Distance based methods are common in data mining where the measure
of an entities outliedness is based on its distance to nearby entities. The
number of nearby entities and the minimum distance are two parameters.
(see knorr and ng 1998 vldb24)

Density based approaches from breuning kriegel ng and sander 2000 sig-
mod LOF: local outlier factor. See also jin tung and han kdd2001.

The early work on outliers was carried out from a statistical view point
where outliers are data points that deviate significantly from the iden-
tified underlying distribution of the data. Hawkins (1980) is a good

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

452 Issues

textbook on outliers. Barnett and Lewis (1994) is another overview of
statistical outliers.

Distance based approaches have been developed by Knorr and Ng (1998),
Ramaswamy et al. (2000) and Knorr and Ng (1999). Such approaches
usually explore some neighbourhood and do not rely on underlying dis-
tributions.

Knorr and Ng (1998) identify outliers by counting the number of neigh-
bours within a specified radius of a data point. The radius q and the
threshold number of points n are the only two parameters of the ap-
proach. The approach is simple but is inadequate for data that is dis-
tributed with uneven density where q and n might need to vary to cope
with the changes. Ramaswamy et al. (2000) have a similar approach
whereby data points are ranked by the sum of their distance to their
nearest k neighbours.

Breunig et al. (1999) and then Breunig et al. (2000) introduce a density
based approach to score data points with a local outlier factor (LOF).
Jin et al. (2001) introduce a heuristic to more efficiently identify the top
outliers using the LOF.

Yamanishi et al. (2000) build mixture models as data becomes available
and identifies outliers as those data items causing the most perturbation
to the model.

Aggarwal and Yu (2001) explore the issue of outliers in high dimensional
space where data tends to be sparse and consequently all data points
tend to be equidistant to other points (Beyer et al., 1999) and suggest
an algorithm where the high dimensional space is projected to a lower
dimensional space having unusually low density. An evolutionary algo-
rithm is proposed to generate candidate subspaces in which outliers are
to be searched for.

SmartSifter

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

24.6 Temporal Analysis 453

24.6 Temporal Analysis

A common data mining task with temporal data is to find repeating
patterns in the data - see frequent closed itemsets.

SNN Clustering Lin et al. (2000) and Lin et al. (2001).

A common question is how likely an event will occur at a give point in
time. Suppose we had some simple churn data recording how long a
customer has been with a telecoms provider before they churned.
ID Gender Months Churn

1 M 12 1

2 M 5 0

3 M 32 1

4 M 4 0

5 M 10 1

6 F 12 0

7 F 5 1

8 F 15 0

9 F 5 1

10 F 12 0

We may be tempted in the first instance to us a logistic regression in-
cluding Gender and Months to predict Churn with:

logit(Churn = 1) = b0 + b1 ∗Gender + b2 ∗ Tenure

24.7 Survival Analysis

We note though that those who have not churned in fact have not yet
churned! They may churn in the future. We don’t know. In such a
situation we have what is called censored data and so survival analysis
is more appropriate. Survival analysis is analysis of the time to an event
and the methods used for survival analysis take in to account the fact that
we only have partial information available to us. The partial information
for customer 2, for example, is that we know they have been with us for
5 months, but we don’t know whether they might be just about to churn
or not.

Time to event modelling often uses Survival Analysis (Klein and Moeschberger,

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

454 Issues

2003, Second Edition, Survival Analysis: Techniques for Censored and
Truncated Data , Springer). Survival analysis models the time to the
occurrence of an event (e.g., time to death, time to failure, time to lodg-
ment, time to churn, etc.). It is particularly useful when we have censored
observations. The general idea approach introduces a survival function
S(t) and a hazard rate function λ(t). These describe the status of an
entities survival during the period of observation. The survival function
gives the probability of surviving beyond a certain point t. The hazard
rate function gives the instantaneous risk of non-survival (i.e., death,
churn, lodgment, failure) at time t given survival to time t.

The Cox PH model is survival analysis.

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 25

Evaluating Models

Evaluating the outcomes of data mining is important. We need to un-
derstand how well any model we build will be expected to perform, and
how well it performs in comparison to other models we might choose to
build.

A common approach is to compute an error rate which simply reports the
number of cases that the model correctly classifiers. Common methods
for estimating the empirical error rate are, for example, cross-validation
(CV), the Bayesian evidence framework, and the PAC framework.

In this chapter we introduce several measures used to report on the per-
formance of a model and review various approaches to evaluating the
output of data mining. This will cover printcp, table for producing con-
fusion matrices, ROCR for the graphical presentation of evaluations, as
well as how to tune the presentations for your own needs.

25.1 Basics

Use printcp to view the performance of the model.
> printcp(wine.rpart)

Classification tree:

rpart(formula = Type ~ ., data = wine)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

456 Evaluation

Variables actually used in tree construction:

[1] Dilution Flavanoids Hue Proline

Root node error: 107/178 = 0.60112

n= 178

CP nsplit rel error xerror xstd

1 0.495327 0 1.00000 1.00000 0.061056

2 0.317757 1 0.50467 0.47664 0.056376

3 0.056075 2 0.18692 0.28037 0.046676

4 0.028037 3 0.13084 0.23364 0.043323

5 0.010000 4 0.10280 0.21495 0.041825

The predict function will apply the model to data. The data must con-
tain the same variable on which the model was built. If not an error is
generated. This is a common problem when wanting to apply the model
to a new dataset that does not contain all the same variables, but does
contain the variables you are interested in.
> cols <- c("Type", "Dilution", "Flavanoids", "Hue", "Proline")

> predict(wine.rpart , wine[,cols])

Error in eval(expr , envir , enclos) : Object "Alcohol" not found

Fix this up with
> wine.rpart <- rpart(Type ~ Dilution + Flavanoids + Hue + Proline ,

data=wine)

> predict(wine.rpart , wine[,cols])

1 2 3

1 0.96610169 0.03389831 0.00000000

2 0.96610169 0.03389831 0.00000000

[...]

70 0.03076923 0.93846154 0.03076923

71 0.00000000 0.25000000 0.75000000

[...]

177 0.00000000 0.25000000 0.75000000

178 0.00000000 0.02564103 0.97435897

Display a confusion matrix.
> table(predict(wine.rpart , wine , type="class"), wine$Type)

1 2 3

1 57 2 0

2 2 66 4

3 0 3 44

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

25.2 Basic Measures 457

25.2 Basic Measures

True positives (TPs) are those records which are correctly classified
by a model as positive instances of the concept being modelled (e.g., the
model identifies them as a case of fraud, and they indeed are a case of
fraud). False positives (FPs) are classified as positive instances by the
model, but in fact are known not to be. Similarly, true negatives (TNs)
are those records correctly classified by the model as not being instances
of the concept, and false negatives (FNs) are classified as not being
instances, but are in fact know to be. These are the basic measures of
the performance of a model. These basic measures are often presented
in the form of a confusion matrix, produced using a contingency table.

In the following example a simple decision tree model, using rpart, is
built using the survey dataset to predict Salary.Group. The model is
then applied to the full dataset using predict, to predict the class of each
entity (using the type option to specify class rather than the default
probabilities for each class). A confusion matrix is then constructed using
table to build a contingency table. Note the use of named parameters
(Actual and Predicted) to have these names appear in the table.
> load("survey.RData")

> survey.rp <- rpart(Salary.Group ~ ., data=survey)

> survey.pred <- predict(survey.rp, data=survey , type="class")

> head(survey.pred)

[1] <=50K >50K <=50K <=50K >50K >50K

Levels: <=50K >50K

> table(Actual=survey$Salary.Group , Predicted=survey.pred)

Predicted

Actual <=50K >50K

<=50K 23473 1247

>50K 3816 4025

From this confusion matrix, interpreting the class<= 50K as the positive
class (essentially arbitrarily), we see that there are 23,473 true positives,
4,025 true negatives, 3,816 false positives, and 1,237 false negatives.

Rather than the raw numbers we usually prefer to express these in terms
of percentages or rates. The accuracy of a model can, for example, be
calculated as the number of entities correctly classified over the total
number of entities classified:

Accuracy =
TP + FP

TP + FP + TN + FN

http://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/contingency_table

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

458 Evaluation

The recall or true positive rate is the proportion of positive entities
which are classified as positive by the model:

Recall =
TP

TP + FN

The recall is a measure of how much of the positive class was actually
recovered by the model.

25.3 Cross Validation

In R see the errorest() function in the ipred package.

Cross validation is a method for estimating the true error of a model.
When a model is built from training data, the error on the training data
is a rather optimistic estimate of the error rates the model will achieve on
unseen data. The aim of building a model is usually to apply the model
to new, unseen data—we expect the model to generalise to data other
than the training data on which it was built. Thus, we would like to
have some method for better approximating the error that might occur
in general. Cross validation provides such a method.

Cross validation is also used to evaluate a model in deciding which al-
gorithm to deploy for learning, when choosing from amongst a number
of learning algorithms. It can also provide a guide as to the effect of
parameter tuning in building a model from a specific algorithm.

Test sample cross-validation is often a preferred method when there is
plenty of data available. A model is built from a training set and its
predictive accuracy is measured by applying the model a test set. A
good rule of thumb is that a dataset is partitioned into a training set
(66%) and a test set (33%).

To measure error rates you might build multiple models with the one
algorithm, using variations of the same training data for each model.
The average performance is then the measure of how well this algorithm
works in building models from the data.

The basic idea is to use, say, 90% of the dataset to build a model. The
data that was removed (the 10%) is then used to test the performance

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

25.3 Cross Validation 459

of the model on “new” data (usually by calculating the mean squared
error). This simplest of cross validation approaches is referred to as the
holdout method.

For the holdout method the two datasets are referred to as the training
set and the test set. With just a single evaluation though there can be a
high variance since the evaluation is dependent on the data points which
happen to end up in the training set and the test set. Different partitions
might lead to different results.

A solution to this problem is to have multiple subsets, and each time
build the model based on all but one of these subsets. This is repeated
for all possible combinations and the result is reported as the average
error over all models.

This approach is referred to as k-fold cross validation where k is
the number of subsets (and also will be the number of models built).
Research indicates that there is little to gain by using more than 10
partitions, so usually k = 10. That is, the available data is partitioned
into 10 subsets (each contains 10% of the available data). The holdout
method is then replicated k times, each time combining k − 1 (i.e., 9)
subsets to form the training set (consisting of 90% of the original data),
and the remaining subset (10%) is the test set.

Some prefer test sample cross-validation where a classification tree is
built from a training dataset and the predictive accuracy is tested by
predicting on a test dataset. The costs for the test dataset are compared
to those for training dataset (cost is the proportion of misclassified cases
when priors are estimated and misclassification costs are equal). Poor
cross-validation when test costs are hight.

k-fold cross-validation is useful when no test dataset is available (e.g.,
the available dataset is too small). k is the number of nearly equal
sized random subsamples. Build model k times leaving out one of the
subsamples each time. The remaining subsample is used as a test dataset
for cross-validation. The cross validation costs computed for each of the
k test samples are then averaged to give the k-fold estimate of the cross
validation costs.

http://en.wikipedia.org/wiki/training_set
http://en.wikipedia.org/wiki/training_set
http://en.wikipedia.org/wiki/test_set

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

460 Evaluation

25.4 Graphical Performance Measures

ROC graphs, sensitivity/specificity curves, lift charts, and precision/re-
call plots are useful in illustrating specific pairs of performance measures
for classifiers. The ROCR package creates 2D performance curves from
any two of over 25 standard performance measures. Curves from differ-
ent cross-validation or bootstrapping runs can be averaged by different
methods, and standard deviations, standard errors or box plots can be
used to visualize the variability across the runs. See demo(ROCR) and
http://rocr.bioinf.mpi-sb.mpg.de/ for examples.

25.4.1 Lift

Rate of positive predictions

Li
ft

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

pdf("graphics/rplot -rocr -survey -lift.pdf")

library(rpart)

library(ROCR)

load("survey.Rdata")

http://rocr.bioinf.mpi-sb.mpg.de/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

25.4 Graphical Performance Measures 461

survey.rp <- rpart(Salary.Group ~ ., data=survey)

survey.pred <- predict(survey.rp , data=survey)

pred <- prediction(survey.pred[,2], survey$Salary.Group)

lift <- performance(pred , "lift", "rpp")

plot(lift)

dev.off()

R code source: rplot-rocr-survey-lift.R.

http://rattle.togaware.com/code/rplot-rocr-survey-lift.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

462 Evaluation

25.4.2 The ROC Curve

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pdf("graphics/rplot -rocr -survey -tpfp.pdf")

library(rpart)

library(ROCR)

load("survey.Rdata")

survey.rp <- rpart(Salary.Group ~ ., data=survey)

survey.pred <- predict(survey.rp , data=survey)

pred <- prediction(survey.pred[,2], survey$Salary.Group)

perf <- performance(pred , "tpr", "fpr")

plot(perf)

dev.off()

R code source: rplot-rocr-survey-tpfp.R.

http://rattle.togaware.com/code/rplot-rocr-survey-tpfp.R

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

25.4 Graphical Performance Measures 463

25.4.3 Other Examples

Standard ROC curve.

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

−
1.

65
−

0.
23

1.
19

Precision/Recall graph.

Average recall

A
ve

ra
ge

 p
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0
0.

2
0.

4
0.

6
0.

8
1.

0

−
1.

65
0.

12
1.

9

Sensitivity/Specificity plot.

Average specificity

A
ve

ra
ge

 s
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

−
1.

65
−

0.
23

1.
19

Lift chart.

Average rate of positive predictions

A
ve

ra
ge

 li
ft

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

2.
0

3.
0

4.
0

−
1.

65
−

0.
13

1.
39

Based on code from demo(ROCR)

library(ROCR)

data(ROCR.hiv)

pp <- ROCR.hiv$hiv.svm$predictions

ll <- ROCR.hiv$hiv.svm$labels

pred <- prediction(pp, ll)

perf <- performance(pred , "tpr", "fpr")

pdf("graphics/rplot -rocr -4plots.pdf")

par(mfrow = c(2, 2))

plot(perf , avg = "threshold", colorize = T, lwd = 3,

main = "Standard ROC curve.")

plot(perf , lty = 3, col = "grey78", add = T)

perf <- performance(pred , "prec", "rec")

plot(perf , avg = "threshold", colorize = T, lwd = 3,

main = "Precision/Recall graph.")

plot(perf , lty = 3, col = "grey78", add = T)

perf <- performance(pred , "sens", "spec")

plot(perf , avg = "threshold", colorize = T, lwd = 3,

main = "Sensitivity/Specificity plot.")

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

464 Evaluation

plot(perf , lty = 3, col = "grey78", add = T)

perf <- performance(pred , "lift", "rpp")

plot(perf , avg = "threshold", colorize = T, lwd = 3,

main = "Lift chart.")

plot(perf , lty = 3, col = "grey78", add = T)

dev.off()

R code source: rplot-rocr-4plots.R.

http://rattle.togaware.com/code/rplot-rocr-4plots.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

25.4 Graphical Performance Measures 465

10 Fold Cross Validation

ROC: 10−fold cross−validation

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
0.

2
0.

6
1

Vertical avg + 1 std error

False positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Horizontal avg + boxplots

Average false positive rate

T
ru

e
po

si
tiv

e
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Threshold avg + 1 std deviation

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
0.

2
0.

6
1

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

466 Evaluation

library(ROCR)

data(ROCR.xval)

pp <- ROCR.xval$predictions

ll <- ROCR.xval$labels

pred <- prediction(pp, ll)

perf <- performance(pred , "tpr", "fpr")

pdf("graphics/rplot -rocr -10 xfold.pdf")

par(mfrow = c(2, 2))

plot(perf , colorize = T, lwd = 2,

main = "ROC: 10-fold cross -validation")

plot(perf , avg = "vertical", spread.estimate = "stderror",

lwd = 3, main = "Vertical avg + 1 std error",

col = "blue")

plot(perf , avg = "horizontal", spread.estimate = "boxplot",

lwd = 3, main = "Horizontal avg + boxplots",

col = "blue")

plot(perf , avg = "threshold", spread.estimate = "stddev",

lwd = 2, main = "Threshold avg + 1 std deviation",

colorize = T)

dev.off()

R code source: rplot-rocr-10xfold.R.

Area Under Curve

The area under a curve examples:
> library(Hmisc)

> set.seed (1)

> predicted <- runif (200)

> dead <- sample (0:1, 200, TRUE)

> roc.area <- somers2(predicted , dead)["C"]

25.5 Calibration Curves

http://rattle.togaware.com/code/rplot-rocr-10xfold.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 26

Cluster Analysis

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

468 Cluster Analysis

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Part III

Text Mining

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 27

Text Mining

A common procedure for text mining is to ‘score’ each document by a
vector that records the frequency of occurrence of commonly used and
subject matter specific words and phrases. Assuming the documents
are themselves classified into a number of classes already (perhaps those
that are relevant versus those that are not) you can use this “training
set” with any of the many supervised learning or classification tools in R
(e.g., trees, logistic regression, boosting, Random Forests, support vector
machines, linear discriminant analysis, etc.).

27.1 Text Mining with R

See ttda and tm.

Text mining begins with feature extraction. Techniques include:

• Keyword extraction

• Bag of words

• Term weighting

• Co-occurrence of words

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

472 Text Mining

Using tm, here is a simple example. The crude dataset contains 20 news
articles dealing with crude oil. The data type of the dataset is identified
as a text document collection (TextDocCol). We can create our own text
document collections using functions provided by the tm package which
will read a collection of source documents from a specified directory, and
process them into a TextDocCol. We can then take the TextDocCol
and using TermDocMatrix generate a weighted count of terms in the
documents (remove the weight argument if you just want to use term
counting).

The actual data is :
> library(tm)

> vignette("tm")

> data(crude)

> class(crude)

[1] "TextDocCol"

attr(,"package")

[1] "tm"

> crude

A text document collection with 20 text documents

> crude@.Data

[[1]]

[1] "Diamond Shamrock Corp said that \neffective [...]"

[[2]]

[1] "OPEC may be forced to meet before a \nscheduled [...]"

[...]

[[20]]

[1] "Argentine crude oil production was \ndown 10.8 pct [...]"

> tdm <- TermDocMatrix(crude , weighting = "tf -idf", stopwords = TRUE)

An object of class "TermDocMatrix"

Slot "Data":

20 x 859 sparse Matrix of class "dgCMatrix"

[[suppressing 859 column names ’barrel ’, ’brings ’, ’citing ’ ...]]

127 2 2.321928 4.321928 2.736966 2 4.643856 4.321928 2.736966

144 . . . 2.736966

[...]

> tdm <- TermDocMatrix(crude , stopwords = TRUE)

> tdm

An object of class "TermDocMatrix"

Slot "Data":

20 x 859 sparse Matrix of class "dgCMatrix"

[[suppressing 859 column names ’barrel ’, ’brings ’, ’citing ’ ...]]

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

27.1 Text Mining with R 473

127 2 1 1 1 1 2 1 1 2 2 1 2 2 1 1 1 1 1 1 1 5 2 2 3 1 2

144 . . . 1 4 1 12 . 1 5 . .

191 1 1 . . 1 1 . . 2 . . . 1 1 . . 1 . . . 2 1 2 . . .

194 1 1 . . 1 1 . . 3 . . . 2 1 . 1 1 1 2 . . .

[...]

To transform tdm into a simple matrix to save the word counts or to
compute various measures, such as to calculate the Euclidian distance:
> x <- as.matrix(tdm@Data)

> write.csv(x, "crude_words.csv")

> dist(x, method = "euclidean")

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

474 Text Mining

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Part IV

Algorithms

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

477

THESE ARE BEING MOVED INTO THE R FOR THE DATA MINER
BOOK.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

478

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 28

Bagging:
Meta Algorithm

Bagging is a variance reduction method
for model building. That is, through
building multiple models from samples
of the training data, the aim is to re-
duce the variance. Bagging is a technique
generating multiple training sets by sam-
pling with replacement from the avail-
able training data. In an ideal world we
can eliminate variance due to a particu-
lar choice of training set by combining models that are built from each
training set of size N. In practise only one training set is available. By
sampling with replacement from the training set to form new training
sets, bagging simulates the ideal situation. Bagging is also known as
bootstrap aggregating. See Chapter 28, page 479

28.1 Summary

A good introduction is available from http://www.idiap.ch/~bengio/
lectures/tex_ensemble.pdf

http://en.wikipedia.org/wiki/Bagging
http://en.wikipedia.org/wiki/Bootstrap_Aggregating
http://www.idiap.ch/~bengio/lectures/tex_ensemble.pdf
http://www.idiap.ch/~bengio/lectures/tex_ensemble.pdf

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

480 Bagging

Bagging is bootstrap aggregation. The underlying idea is that part of
the error due to variance in building a model comes from the specific
choice of the training dataset. So create many similar training data sets,
and for each of them train a new function. The final function will then
be the average of each functions output.

28.2 Overview

28.3 Example

28.4 Algorithm

28.5 Resources and Further Reading

The term originates with Breiman (1996).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 29

Bayes Classifier:
Classification

P(MoulinRouge| . . .) ≈
Bayes classifiers came in two vari-
eties: näıve and full. Näıve Bayes
is a technique for estimating prob-
abilities of individual variable val-
ues, given a class, from training data and to then allow the use of these
probabilities to classify new entities. Näıve Bayes has been demonstrated
usefully on moderate and large datasets. It can be used for diagnosis and
classification tasks. Despite the fact that the assumption of conditional
independence is often violated the approach continues to work well. Full
Bayes . . .

29.1 Summary

OutputProbabilities of outcomes.

ComplexityComputationally efficient, but at the expense of accuracy.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

482 Bayes Classifier

29.2 Example

Suppose we have a database of patients for whom we have, in the past,
identified suitable types of contact lenses. Four categorical variables
might describe each patient: Age (having possible values young, pre-
presbyopic, and presbyopic), type of Prescription (myope and hyperme-
trope), whether the patient is Astigmatic (boolean), and TearRate (re-
duced or normal). The patients are already classified into one of three
classes indicating the type of contact lens to fit: hard, soft, none.

Sample data is presented in Table 29.1.

Table 29.1: Contact lens training data.

We can make use of this historic data to talk about the probabilities of
requiring soft, hard, or no lenses, according to a patient’s Age, Prescrip-
tion, Astigmatic condition and TearRate. Having a probabilistic model
we could then make predictions using the model about the suitability
of particular lens types for new clients. Thus, if we know historically
that the probability of a patient requiring a soft contact lens, given that
they were young and had a normal rate of tear production, was 0.9 (i.e.,
90%) then we would supply soft lens to most such patients in the future.
Symbolically we write this probability as:

P (soft|young, normal) = 0.9

Generally the real problem is to determine something like:

P (soft|young,myope, no, normal)

To do this we would need to have a sufficient number of examples of
(young,myope, no, normal) in the database. For databases with many
variables, and even for very large databases, it is not likely that we will
have sufficient (or even any) examples of all possible combinations of all
variable values. This is where näıve Bayes helps.

29.3 Algorithm

The basis of näıve Bayes is Bayes theorem. Essentially we want to classify
a new record based on probabilities estimated from the training data.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

29.3 Algorithm 483

That is, we want to determine the probability of a hypothesis h (or
specifically class membership) given the training data D (i.e., P (h|D))
Bayes theorem gives us the clue to calculating this value:

P (h|D) =
P (D|h)P (h)

P (D)

Ignoring the detail we can work with P (D|h)P (h) to identify a hypothesis
that best matches our data (since P (D) is constant for a particular D).
Both of these quantities we can estimate from the training data D. P (h)
is simply the proportion of the database consistent with hypothesis h (i.e.,
the proportion of entities with class ci—ci is regarded as the hypothesis).

Calculation of P (D|h) still poses some challenges and this is where the
näıve part of näıve Bayes comes in. The näıve assumption is that the
variables (each record D is describe by variables a1, a2, . . . , an) are con-
ditionally independent given the class (i.e., the hypothesis that the clas-
sification is cj , which could be the class soft in our example data) of
the record. That is, given that a patient has a soft contact lens, to use
our example, the probability of the patient being all of young, myope,
non-astigmatic and with a normal-tear-rate is the same as the product
of the individual probabilities. The näıve assumption, more concretely,
is that being astigmatic or not, for example, does not affect the relation-
ship between being young given the use of soft lenses. Mathematically
we write this as:

P (a1, a2, . . . , an|cj) =
∏
i

P (ai|cj)

Empirically determining the values of the joint probability on the left of
this equation is a problem. To estimate it from the data we need to have
available in the data every possible combination of values and examples
of their classification so we can then use these frequencies to estimate
the probabilities. This is usually not feasible. However, the collection
of probabilities on the right poses little difficulty. We can easily obtain
the estimates of these probabilities by counting their occurrence in the
database.

For example, we can count the number of patients with Age being young

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

484 Bayes Classifier

and belonging to class soft (perhaps there are only two) and divide this
by the number of patients overall belonging to class soft (perhaps there
are five). The resulting estimate of the probability (i.e., P (young|soft))
is 0.4.

The Näıve Bayes algorithm is then quite simple. From the training data
we estimate the probability of each class, P (cj), by the proportions exhib-
ited in the database. Similarly the probabilities of each variable’s value,
given a particular class (P (ai|cj)), is simply the proportion of those train-
ing entities with that class having the particular variable value.

Now to place a new record (d) into a class we simply assign it to the class
with the highest probability. That is, we choose the cj which maximises:

P (cj)
∏
ai∈d

P (ai|cj)

29.4 Resources and Further Reading

The example data for contact lenses comes from Cendrowska (1987) and
is available from the machine learning repository at ftp://ftp.ics.
uci.edu/pub/machine-learning-databases/lenses/lenses.data.

A problem with näıve Bayes arises when the training database has no
examples of a particular value of a variable for a particular class.

Bayesian networks relax the conditional independence assumption by
identifying conditional independence among subsets of variables.

Kohavi (1996) addressed the problem of independence by combining
näıve Bayes with decision trees. The decision tree is used to partition
a database and for each resulting partition (corresponding to separate
paths through the decision tree) a näıve Bayes classifier is built using
variables not included in the corresponding path through the decision
tree. Whilst some improvement in accuracy can result, the final knowl-
edge structures tend to be less compact (with replicated structures).
Nonetheless this may be a useful approach for very large databases.

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/lenses/lenses.data
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/lenses/lenses.data

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 30

Bootstrapping:
Meta Algorithm

Boostrapping, introduced
by Efron in 1979, brings to-
gether ideas of resampling
and simulation-based sta-
tistical analysis. The aim
is to understand bias, vari-
ance, and other measures
of uncertainty through com-
puter simulations.

30.1 Summary

Market FOR WHICH MARKET IS THIS PRODUCT AIMED.
Techniques LIST TECHNIQUES IMPLEMENTED
Platforms GNU/Linux, Unix, MacOS, MSWindows.
Website http://
Pricing Available from vendor. Freely available—GNU General Public Li-

cense.
Vendor NAME OF VENDOR, LOCATION.

http://

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

486 Bootstrapping

30.2 Usage

PROVIDE AN OVERVIEW OF DEPLOYMENT OF THE PRODUCT,
INCLUDING SAMPLE APPLICATIONS AND SAMPLE CUSTOMERS.

30.3 Further Information

POINTERS TO FURTHER INFORMATION INCLUDING PERHAPS:
OVERVIEW OF COMPANY/DEVELOPER; ADDRESS; EMAIL AD-
DRESS.

Some material in this section was provided by the vendor and has been
used in this book with their express permission.

Bootstrap Methods and Their Applications by Anthony C. Davi-
son and David V. Hinkley. 256 pages published by Cambridge University
Press, 1994, ISBN 0-521-57391-2. The R package boot is based on the
methods discussed in this book.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 31

Cluster Analysis

Illustrate:
hc <- hclust(dist(crs$dataset [1:17 ,c(2 ,7 ,9:10 ,12)]) , "ave")

plot(hc)

This looks like 4 clusters.

km <- kmeans(crs$dataset [1:17 ,c(2,7,9:10,12)], 4)

km$cluster

This gives the same clusters!

31.1 Discriminant Coordinates Plot

Discriminant coordinates displays the primary differences between clus-
ters, and is similar to principal components analysis.

31.2 K Means

The aim of clustering is to identify groups
of data points that are close together but
as a group are separate from other groups.

The amap package includes k-means with
a choice of distances like Eulidean and

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

488 Cluster Analysis

Spearman.

. We optimize implementation (with a
parallelized hierarchical clustering) and
allow the possibility of using different dis-
tances like Eulidean or Spearman (rank-
based metric).

31.2.1 Summary

Complexity Clustering is usually expensive and K-Means is O(n2).

31.2.2 Clusters

Clustering is a core tool for the data miner, allowing data to be grouped
according to how similar they are, based on some measure of distance.

Basic Clustering

We illustrate very simple clustering through a complete example where
the task is to read data from a file (Section 14.3.4, page 219), extract
the numeric fields, and then use k-means (Chapter 31.2, page 487) to
cluster on just two columns. A plot of the clusters over the two columns
shows the points and the cluster centroids. Normally, the clusters would
be built over more than just two columns. Also note that each time the
code is run a different clustering is likely to be generated!

clusters <- 5

load("wine.Rdata")

pdf("graphics/rplot -cluster.pdf")

wine.cl = kmeans(wine [,2:3], clusters)

plot(wine[,2:3], col=wine.cl$cluster)

points(wine.cl$centers , pch=19, cex=1.5, col=1: clusters)

dev.off()

R code source: rplot-cluster.R.

http://rattle.togaware.com/code/rplot-cluster.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

31.2 K Means 489

The resulting cluster entity has the following entries:
cluster: The cluster that each row belongs to.
centers: The medoid of each cluster.
withinss: The within cluster sum of squares.
size: The size of each cluster.

Hot Spots

Cluster analysis can be used to find clusters that are most interesting
according to some criteria. For example, we might cluster the spam7
data of the DAAG package (without using yesno in the clustering) and
then score the clusters depending on the proportion of yes cases within
the cluster. The following R code will build K clusters (user specified)
and return a score for each cluster.
Some ideas here from Felix Andrews

kmeans.scores <- function(x, centers , cases)

{

clust <- kmeans(x, centers)

Iterate over each cluster to generate the scores

scores <- c()

for (i in 1: centers)

{

Count number of TRUE cases in the cluster

as the proportion of the cluster size

scores[i] <- sum(cases[clust$cluster == i] == TRUE) / clust$size[i]

}

Add the scores as another element to the kmeans list

clust$scores <- scores

return(clust)

}

We can now run this on our data with:
> require(DAAG)

> data(spam7)

> clust <- kmeans.scores(spam7 [,1:6], centers =10, spam7["yesno"]=="y")

> clust[c("scores","size")]

$scores

[1] 0.7037037 0.1970109 0.5995763 0.7656250 0.8043478 1.0000000 0.4911628

[8] 0.7446809 0.6086957 0.6043956

$size

[1] 162 2208 472 128 46 5 1075 47 276 182

Thus, cluster 5 with 46 members has a high proportion of positive cases
and may be a cluster we are interested in exploring further. Clusters 4,

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

490 Cluster Analysis

8, and 1 are also probably worth exploring.

Now that we have built some clusters we can generate some rules that
describe the clusters:
hotspots <- function(x, cluster , cases)

{

require(rpart)

overall = sum(cases) / nrow(cases)

x.clusters <- cbind(x, cluster)

tree = rpart(cluster ~ ., data = x.clusters , method = "class")

tree = prune(tree , cp = 0.06)

nodes <- rownames(tree$frame)

paths = path.rpart(tree , nodes = nodes)

TO BE CONTINUED

return(tree)

}

And to use it:
> h <- hotspots(spam7 [,1:6], clust$cluster , spam7["yesno"]=="y")

Alternative Clustering

For model-based clustering see the BIC algorithm in the mclust package.
This estimates density with a mixture of Gaussians.

For density-based clustering the following implementation of DBSCAN
may be useful. It follows the notation of the original KDD-96 DBSCAN
paper. For large datasets, it may be slow.
Christian Hennig

distvector <- function(x,data)

{

ddata <- t(data)-x

dv <- apply(ddata^2,2,sum)

}

data may be nxp or distance matrix

eps is the dbscan distance cutoff parameter

MinPts is the minimum size of a cluster

scale: Should the data be scaled?

distances : has to be TRUE if data is a distance matrix

showplot: Should the computation process be visualized ?

countmode : dbscan gives messages when processing point no. (countmode)

dbscan <- function(data ,eps ,MinPts=5, scale=FALSE , distances=FALSE ,

showplot=FALSE ,

countmode=c(1 ,2 ,3 ,5 ,10 ,100 ,1000 ,5000 ,10000 ,50000)){

data <- as.matrix(data)

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

31.2 K Means 491

n <- nrow(data)

if (scale) data <- scale(data)

unregpoints <- rep(0,n)

e2 <- eps^2

cv <- rep(0,n)

cn <- 0

i <- 1

for (i in 1:n){

if (i %in% countmode) cat("Processing point ", i," of ",n, ".\n")

unclass <- cv <1

if (cv[i]==0){

if (distances) seeds <- data[i,]<=eps

else{

seeds <- rep(FALSE ,n)

seeds[unclass] <- distvector(data[i,],data[unclass ,])<=e2

}

if (sum(seeds)+ unregpoints[i]<MinPts) cv[i] <- (-1)

else{

cn <- cn+1

cv[i] <- cn

seeds[i] <- unclass[i] <- FALSE

unregpoints[seeds] <- unregpoints[seeds]+1

while (sum(seeds)>0){

if (showplot) plot(data ,col=1+cv)

unclass[seeds] <- FALSE

cv[seeds] <- cn

ap <- (1:n)[seeds]

print(ap)

seeds <- rep(FALSE ,n)

for (j in ap){

if (showplot) plot(data ,col =1+ cv)

jseeds <- rep(FALSE ,n)

if (distances) jseeds[unclass] <- data[j,unclass]<=eps

else{

jseeds[unclass] <- distvector(data[j,],data[unclass ,])<=e2

}

unregpoints[jseeds] <- unregpoints[jseeds]+1

if (cn ==1)

cat(j," sum seeds =",sum(seeds)," unreg =", unregpoints [j],

" newseeds =",sum(cv[jseeds]==0) ,"\n")

if (sum(jseeds)+ unregpoints[j]>=MinPts){

seeds[jseeds] <- cv[jseeds]==0

cv[jseeds & cv <0] <- cn

}

} # for j

} # while sum seeds >0

} # else (sum seeds + ... >= MinPts)

} # if cv ==0

} # for i

if (sum(cv==(-1)) >0){

noisenumber <- cn+1

cv[cv==(-1)] <- noisenumber

}

else

noisenumber <- FALSE

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

492 Cluster Analysis

out <- list(classification=cv, noisenumber=noisenumber ,

eps=eps , MinPts=MinPts , unregpoints=unregpoints)

out

} # dbscan

classification : classification vector

noisenumber : number in the classification vector indicating noise points

unregpoints : ignore ...

31.3 Hierarchical Clustering

Agglomerative clustering is used to build a hierarchical cluster. A com-
plete hierarchical cluster is built on the click of the Execute button. You
do not need to re-execute on changing the Number of Clusters. This sim-
ply needs to obtain the relevant information from the fully built hclust.
But users will automatically go to re-execute after changing this (be-
cause this is how everything else in the interface works). An alternative
is being considered to make it more obvious not to re-execute.

Once a cluster has been built, have a look at the dendrogram to visually
get an idea of the “natural” number of clusters, and then set the number
appropriately, then have a look at the stats and the plot.

The amap package includes standard hierarchical clustering with a choice
of distances like Eulidean and Spearman, and a parallel implementation.

31.4 Summary

Usage
Input
Output
Complexity
Availability

31.5 Examples

> iris.hc <- hclust(dist(iris), "ave")

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

31.6 Resources and Further Reading 493

31.6 Resources and Further Reading

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

494 Cluster Analysis

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 32

Conditional Trees:
Classification

Traditional decision tree
induction, as epitomised
by CART and ID3/C4.5,
do not employ any test
of statistical significance in
deciding on which vari-
ables to choose when par-
titioning the data. Condi-
tional trees have been in-
troduced to address this by using a conditional distribution, measuring
the association between the output and the input variables.

32.1 Summary

Usage
Input
Output
Complexity
Availability

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

496 Conditional Trees

32.2 Algorithm

32.3 Examples

You can build a conditional tree using ctree from the party package:

Flavanoids
p < 0.001

1

≤≤ 1.39 >> 1.39

Hue
p < 0.001

2

≤≤ 0.89>> 0.89

Node 3 (n = 46)

1

0

0.2

0.4

0.6

0.8

1
Node 4 (n = 11)

1

0

0.2

0.4

0.6

0.8

1

Proline
p < 0.001

5

≤≤ 714 >> 714

Color
p < 0.001

6

≤≤ 3.94>> 3.94

Node 7 (n = 48)

1

0

0.2

0.4

0.6

0.8

1
Node 8 (n = 11)

1

0

0.2

0.4

0.6

0.8

1

Alcohol
p < 0.001

9

≤≤ 13.05>> 13.05

Node 10 (n = 10)

1

0

0.2

0.4

0.6

0.8

1
Node 11 (n = 52)

1

0

0.2

0.4

0.6

0.8

1

library("party")

load("wine.Rdata")

wine.ctree <- ctree(Type ~ ., data=wine)

pdf("graphics/rplot -ctree.pdf")

plot(wine.ctree)

dev.off()

R code source: rplot-ctree.R.

> wine.ctree

Conditional tree with 5 terminal nodes

Response: Type

Inputs: Alcohol , Malic , Ash , Alcalinity , Magnesium , Phenols ,

http://rattle.togaware.com/code/rplot-ctree.R

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

32.4 Resources and Further Reading 497

Flavanoids , Nonflavanoids , Proanthocyanins , Color ,

Hue , Dilution , Proline

Number of observations: 178

1) Flavanoids <= 1.57; criterion = 1, statistic = 127.131

2) Hue <= 0.89; criterion = 1, statistic = 36.136

3)* weights = 47

2) Hue > 0.89

4)* weights = 15

1) Flavanoids > 1.57

5) Proline <= 714; criterion = 1, statistic = 82.158

6)* weights = 54

5) Proline > 714

7) Alcohol <= 13.05; criterion = 1, statistic = 20.638

8)* weights = 10

7) Alcohol > 13.05

9)* weights = 52

32.4 Resources and Further Reading

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

498 Conditional Trees

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 33

Hierarchical Clustering:
Clustering

The amap package includes standard hi-
erarchical clustering with a choice of dis-
tances like Eulidean and Spearman, and
a parallel implementation.

33.1 Summary

Usage
Input
Output
Complexity
Availability

33.2 Examples

> iris.hc <- hclust(dist(iris), "ave")

33.3 Resources and Further Reading

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

500 Hierarchical Clustering

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 34

K-Nearest Neighbours:
Classification

The K-Nearest Neighbour algorithm.
K-nearest neighbour algorithms handle
missing values, are robust to outliers, and
can be good predictors. They tend to
only handle numeric variables, are sen-
sitive to monotonic transformations, are
not robust to irrelevant inputs, and pro-
vide models that are not easy to interpret.
K-nearest neighbour classifier, relying on
a distance function, is sensitive to noise and irrelevant features, because
such features have the same influence on the classification as do good
and highly predictive features. A solution to this is to pre-process the
data to weight features so that irrelevant and redundant features have a
lower weight.

http://en.wikipedia.org/wiki/K-Nearest_Neighbor_algorithm

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

502 K-Nearest Neighbours

34.1 Summary

Usage
Input
Output
Complexity
Availability

34.2 Resources and Further Reading

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 35

Linear Models

35.0.1 Linear Model

Compare two linear models
> wine = read.csv("wine.csv")

> lm1 = lm(Type ~ ., data=wine)

> lm1

Call:

lm(formula = Type ~ ., data = wine)

Coefficients:

(Intercept) Alcohol Malic Ash

4.4732853 -0.1170038 0.0301710 -0.1485522

Alcalinity Magnesium Phenols Flavanoids

0.0398543 -0.0004898 0.1443201 -0.3723914

Nonflavanoids Proanthocyanins Color Hue

-0.3034743 0.0393565 0.0756239 -0.1492451

Dilution Proline

-0.2700542 -0.0007011

> lm2 = lm(Type ~ Alcalinity + Magnesium , data=wine)

> lm2

Call:

lm(formula = Type ~ Alcalinity + Magnesium , data = wine)

Coefficients:

(Intercept) Alcalinity Magnesium

0.563157 0.116950 -0.009072

> anova(lm1 , lm2)

Analysis of Variance Table

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

504 Linear Models

Model 1: Type ~ Alcohol + Malic + Ash + Alcalinity + Magnesium + Phenols +

Flavanoids + Nonflavanoids + Proanthocyanins + Color + Hue +

Dilution + Proline

Model 2: Type ~ Alcalinity + Magnesium

Res.Df RSS Df Sum of Sq F Pr(>F)

1 164 10.623

2 175 74.856 -11 -64.234 90.154 < 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 36

Regression:
Ordinal Regression

The output variable is an ordinal - ordered categorical, so that the cate-
gorical values have a natural ordering.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

506 Regression: Ordinal Regression

-
-
-

-
-
-

-
-
-

-
-
-

Graham Williams --- Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 37

Regression:
Logistic Regression

37.1 Summary

Usage
Input
Output
Complexity
Availability

To represent a logistic regression model
use effect plots, odds ratio charts, and
nomograms are better. See the Design
package for details.

37.1.1 Linear Model

Compare two linear models
> wine = read.csv("wine.csv")

> lm1 = lm(Type ~ ., data=wine)

> lm1

Call:

lm(formula = Type ~ ., data = wine)

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

508 Logistic Regression

Coefficients:

(Intercept) Alcohol

Malic Ash

4.4732853 -0.1170038

0.0301710 -0.1485522

Alcalinity Magnesium

Phenols Flavanoids

0.0398543 -0.0004898

0.1443201 -0.3723914

Nonflavanoids Proanthocyanins

Color Hue

-0.3034743 0.0393565

0.0756239 -0.1492451

Dilution Proline

-0.2700542 -0.0007011

> lm2 = lm(Type ~ Alcalinity + Magnesium , data=wine)

> lm2

Call:

lm(formula = Type ~ Alcalinity + Magnesium , data = wine)

Coefficients:

(Intercept) Alcalinity Magnesium

0.563157 0.116950 -0.009072

> anova(lm1 , lm2)

Analysis of Variance Table

Model 1: Type ~ Alcohol + Malic + Ash + Alcalinity + Magnesium + Phenols +

Flavanoids + Nonflavanoids + Proanthocyanins + Color + Hue +

Dilution + Proline

Model 2: Type ~ Alcalinity + Magnesium

Res.Df RSS Df Sum of Sq F

Pr(>F)

1 164 10.623

2 175 74.856 -11 -64.234 90.154 < 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

37.2 Resources and Further
Reading

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 38

Neural Networks:
Classification and
Regression

Gender

Distance

Income

Age

GP Visits 0.825

...

...

0.568

0.184

0.419

0.257

0.723

Hospital?

Neural networks (often called
artificial neural networks
to distinguish them from
the natural kind found
in humans) are a data
and processing structure
inspired by natural neural
networks. The basic idea
is to connect a collection of
simple neurons into a net-
work. Some of these nodes are identified as input nodes while others
are output nodes. The input data is always numeric, perhaps requiring
some transformation. The numbers are propagated through the nodes
of the network, being modified as they go (multiplied by link weights,
and combined with other numbers at nodes), until they pop out at the
output nodes. As a classification model the variable values are provided
to the input nodes and the “answer” pops out at the output node.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

510 Neural Networks

38.1 Overview

Topics include: Neural Networks; Multilayer, Feed-Forward, Neural Net-
work; Neuron Activation functions; Learning through backpropogation.

38.2 Algorithm

Each node in a neural network is an independent processing unit. It
accepts multiple numeric inputs that we might consider as signals, and if
the combined signal is strong enough it passes the signal on as its single
output.

The R package provides a neural network package to fit a neural network
with a single hidden layer. See the nnet package in R.

38.2.1 Neural Network

> library(nnet)

> ?nnet # See example there

Consider a two-class problem. Build a neural network with
>

The average Matthew Correlation Coeffience can be used to gauge the
performance of the neural network. The highr the value the better.

For an unbalanced class, for example where the ratio of class A to class
B is about 3:100, we might decide to weight the under-represented class:
> sample.nn <- nnet (....... weights=ifelse(ds$class=="A", 100/3, 1)

38.3 Resources and Further Reading

See http://www.idiap.ch/~bengio/lectures/

http://www.idiap.ch/~bengio/lectures/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 39

Support Vector Machines:
Classification

39.1 Overview

Support vector machines were introduced by Vapnik (1979, 1998). Their
use has become widespread because of their sound theoretical foundations
and demonstrated good results in practise. SVMs are based on the idea
of structural risk minimisation (SRM).

We can understand the idea best as a binary classification problem, pre-
dicting two classes as -1 and 1. The idea is to find the best hyperplane
separating the two classes in the training dataset. The best hyperplane is
the on that maximises the margin between the two classes—it is the sum
of the distances from the hyperplane to the closest positive and negative
correctly classified samples. The number of miss-classifications is used
to penalise the measure.

The hyperplane can be found in the original dataset (and this is referred
to as linear SVMs) or it can be found in a higher-diemnsional space
by transforming the dataset into a representation having more dimen-
sions (input variables) than the original dataset (referred to as nonlinear
SVMs). Mapping the dataset, in this way, into a higher dimensional
space, and then reducing the problem to a linear problem, provides a

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

512 SVM

simple solution.

Computational requirements for SVM are significant.

A kernel is a function k(xi, xj) which takes two entities (xi and xj and
computes a scalar.

In choosing a kernel: the Gaussian kernel is a good choice when only the
smoothness of the data can be assumed.

The main choice then is the γ, the kernel width for SVMs with Gaussian
kernel.

The Gaussian kernel is k(xi, xj) = e
||xi.xj ||

2

2γ2 . Here, the numerator is the
squared 2-norm of the two vectors.

39.2 Examples

R provides the svm in e1071 as an interface to LIBSVM, which provides
a very efficient and fast implementation.

library(e1071)

iris.svm <- svm(Species ~ ., data=iris , probability=TRUE)

plot(iris.svm , iris , Petal.Width ~ Petal.Length ,

slice = list(Sepal.Width = 3, Sepal.Length = 4))

pred <- predict(iris.svm , iris , probability = TRUE)

attr(pred , "prob") # to get the probabilities

kernlab for kernel learning provides ksvm and is more integrated into
R so that different kernels can easily be explored. A new class called
kernel is introduced, an kernel functions are objects of this class.

39.3 Resources and Further Reading

An issue with support vector machines is that parameter tuning is not
altogether easy for users new to them. One computationally expen-
sive approach is to build multiple models with different parameters and
choose the one with lowest expected error. This can lead to suboptimal
results though, unless quite extensive search is performed. Research has

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

39.3 Resources and Further Reading 513

explored using previous performance of different parameter settings to
predict their relative performance on new tasks Soares et al. (2004).

It has been recognised that the task of learning is often difficult from the
specific collection of available variables. Artificial intelligence research,
and knowledge representation research in particular, often notes how
changing a representation can significantly impact on the ability to reason
and learn. Kernel learning projects entities into a higher dimensional
space where it is found that learning is actually easier. Kernel learning
does this by computing the dot product of the data. Different kernels
result in different projections, which result in different distances between
entities in the higher dimensional space. A support vector machine is a
kernel learner.

Kernel methods are like k nearest neighbours, except all data points con-
tribute through a weighted sum where the kernel measures the distance
between points. Kernel methods have demonstrated excellent perfor-
mance on many machine learning and pattern recognition tasks. How-
ever, they are sensitive to the choice of kernel, may be intolerant to noise,
and can not deal with missing data and data of mixed types.

A kernel is a function k(xi, xj) which takes two entities (xi and xj and
computes a scalar.

kernlab for kernel learning provides ksvm and is more integrated into
R so that different kernels can easily be explored. A new class called
kernel is introduced, an kernel functions are objects of this class.

A Support Vector Machine (SMV)
searches for so called support vec-
tors which are data points that are
found to lie at the edge of an area
in space which is a boundary from
one class of points to another. In
the terminology of SVM we talk
about the space between regions
containing data points in differ-
ent classes as being the margin
between those classes. The sup-
port vectors are used to identify
a hyperplane (when we are talk-

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

514 SVM

ing about many dimensions in the
data, or a line if we were talking about only two dimensional data) that
separates the classes. Essentially, the maximum margin between the sep-
arable classes is found. An advantage of the method is that the modelling
only deals with these support vectors, rather than the whole training
dataset, and so the size of the training set is not usually an issue. If
the data is not linearly separable, then kernels are used to map the data
into higher dimensions so that the classes are linearly separable. Also,
Support Vector Machines have been found to perform well on problems
that are non-linear, sparse, and high dimensional. A disadvantage is that
the algorithm is sensitive to the choice of parameter settings, making it
harder to use, and time consuming to identify the best.

It has been recognised that the task of learning is often difficult from the
specific collection of available variables. Artificial intelligence research,
and knowledge representation research in particular, often notes how
changing a representation can significantly impact on the ability to reason
and learn. Kernel learning projects entities into a higher dimensional
space where it is found that learning is actually easier. Kernel learning
does this by computing the dot product of the data. Different kernels
result in different projections, which result in different distances between
entities in the higher dimensional space. A support vector machine is a
kernel learner.

Kernel methods are like k nearest neighbours, except all data points con-
tribute through a weighted sum where the kernel measures the distance
between points. Kernel methods have demonstrated excellent perfor-
mance on many machine learning and pattern recognition tasks. How-
ever, they are sensitive to the choice of kernel, may be intolerant to noise,
and can not deal with missing data and data of mixed types.

A kernel is a function k(xi, xj) which takes two entities (xi and xj and
computes a scalar.

kernlab for kernel learning provides ksvm and is more integrated into
R so that different kernels can easily be explored. A new class called
kernel is introduced, an kernel functions are objects of this class.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

39.3 Resources and Further Reading 515

39.3.1 Overview

Support vector machines were introduced by Vapnik (1979, 1998). Their
use has become widespread because of their sound theoretical foundations
and demonstrated good results in practise. SVMs are based on the idea
of structural risk minimisation (SRM).

We can understand the idea best as a binary classification problem, pre-
dicting two classes as -1 and 1. The idea is to find the best hyperplane
separating the two classes in the training dataset. The best hyperplane is
the on that maximises the margin between the two classes—it is the sum
of the distances from the hyperplane to the closest positive and negative
correctly classified samples. The number of miss-classifications is used
to penalise the measure.

The hyperplane can be found in the original dataset (and this is referred
to as linear SVMs) or it can be found in a higher-diemnsional space
by transforming the dataset into a representation having more dimen-
sions (input variables) than the original dataset (referred to as nonlinear
SVMs). Mapping the dataset, in this way, into a higher dimensional
space, and then reducing the problem to a linear problem, provides a
simple solution.

Computational requirements for SVM are significant.

A kernel is a function k(xi, xj) which takes two entities (xi and xj and
computes a scalar.

In choosing a kernel: the Gaussian kernel is a good choice when only the
smoothness of the data can be assumed.

The main choice then is the γ, the kernel width for SVMs with Gaussian
kernel.

The Gaussian kernel is k(xi, xj) = e
||xi.xj ||

2

2γ2 . Here, the numerator is the
squared 2-norm of the two vectors.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

516 SVM

39.3.2 Examples

R provides the svm in e1071 as an interface to LIBSVM, which provides
a very efficient and fast implementation.

library(e1071)

iris.svm <- svm(Species ~ ., data=iris , probability=TRUE)

plot(iris.svm , iris , Petal.Width ~ Petal.Length ,

slice = list(Sepal.Width = 3, Sepal.Length = 4))

pred <- predict(iris.svm , iris , probability = TRUE)

attr(pred , "prob") # to get the probabilities

kernlab for kernel learning provides ksvm and is more integrated into
R so that different kernels can easily be explored. A new class called
kernel is introduced, an kernel functions are objects of this class.

39.3.3 Resources and Further Reading

An issue with support vector machines is that parameter tuning is not
altogether easy for users new to them. One computationally expen-
sive approach is to build multiple models with different parameters and
choose the one with lowest expected error. This can lead to suboptimal
results though, unless quite extensive search is performed. Research has
explored using previous performance of different parameter settings to
predict their relative performance on new tasks Soares et al. (2004).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Part V

Open Products

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

39.4 Rattle and Other Data Mining Suites 519

39.4 Rattle and Other Data Mining Suites

A variety of open source data mining suites are available. Generally,
Rattle aims to be quick and easy to deploy for teaching and in business,
uncomplicated to use, and to support the delivery of both evidence of
the performance of the models, and code for deploying the models in pro-
duction. However, the choice is always up to you, and in an open source
world it is easy to explore the choices yourself. Here we review some of
the major data mining suites available and offer very brief comments on
their strengths and weaknesses.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

520

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 40

AlphaMiner

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

522 AlphaMiner

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 41

Borgelt Data Mining Suite:
From University of
Magdeburg

Christian Borgelt of the Working Group on Neu-
ral Networks and Fuzzy Systems, Otto-von-Guericke-
University of Magdeburg, Germany, makes available a
collection of data mining algorithms. These are licensed
under the GNU General Public License and available
freely for download from the Internet for both Unix/Linux and for
MSWindows. Both binary versions and source code are available. This
is a tremendous resource for anyone getting started in data mining and
indeed provide a suite of tools that are as good as, if not better than,
many commercial offerings. Indeed, the apriori algorithm implemented
by Borgelt is considered to be one of the fastest available and is also avail-
able as part of the Clemetine package from SPSS (Chapter 48, page 547).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

524 Borgelt

41.1 Summary

Market General data mining application developers.
Techniques Associations using apriori (apriori). Associations using eclat (eclat).

Classification using Bayesian network (ines). Classification using de-
cision trees (dtree). Classification using naive Bayes (bayes). Re-
gression using neural network (nn). Clustering using self-organising
maps (xsom).

Platforms Linux, Unix, MSWindows.
Website http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html
Pricing Freely available—GNU Lesser General Public License.
Vendor Borgelt, Germany.

41.2 Usage

The Borgelt data mining suite is a collection of command line tools,
providing very many options. Below we review the basic command line
interfaces for each of the applications.

apriori

Association rules are discovered using the apriori algorithm. The input
data file contains transactions, one per line, each transaction containing
items, separated by space (or optionally commas, or any other character).
A sample input file, shopping.tab, is:

milk bread

To generate the association rules:

% apriori shopping.tab shopping.rules

http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 42

KNime

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

526 KNime

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 43

R:
From the R Foundation

R is both a programming language and an environment
for statistical computing and graphics. It is a GNU
project providing compatibility with the S language and
environment developed by John Chambers and others at
Bell Laboratories (formerly AT&T, now Lucent Tech-
nologies), from 1976 onwards. It provides a wide variety
of statistical (linear and nonlinear modelling, classical statistical tests,
time-series analysis, classification, clustering, . . .) and graphical tech-
niques. While it is often the vehicle of choice for research in statistical
methodology, it provides a powerful environment for data mining, with
a comprehensive collection of analytic tools.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

528 R

43.1 Summary

Market Statistical research.
Techniques Many are available as packages, including boosting (gbm), and ran-

dom forests (randomForests).
Platforms Linux, Unix, MacOS, MSWindows.
Vendor The R Foundation for Statistical Computing.
Website http://www.r-project.org
Pricing Freely available—GNU General Public License.

43.2 Further Information

A reference card is available from http://www.rpad.org/Rpad/Rpad-refcard.
pdf

Useful books include:

Bootstrap Methods and Their Applications by Anthony C. Davi-
son and David V. Hinkley. 256 pages published by Cambridge University
Press, 1994, ISBN 0-521-57391-2. The R package boot is based on the
methods discussed in this book.

ToDo: Add Hastie, Tinshirani, Friedman. Add Venables, Ripley. Add
Daalgaard.

http://www.r-project.org
http://www.rpad.org/Rpad/Rpad-refcard.pdf
http://www.rpad.org/Rpad/Rpad-refcard.pdf

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 44

RapidMiner:
From Rapid-I

Heavily based on WEKA, formerly called Yale, provides a good graphical
interface and addition data processing tools.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

530 Rapid-I

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 45

Rattle:
From Togaware

Rattle is an R based data mining tool us-
ing the Gnome graphical user interface,
available on Debian, GNU/Linux, Unix,
MS/Windows, and Macintosh/OSX. It
supports a growing collection of algo-
rithms that can be used in general data mining projects. The software is
released under the GNU General Public License and freely available. In
general the tool provides a consistent interface for interacting with the
many of the different packages available in R.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

532 Rattle

45.1 Summary

Market General data mining applications, ease of use, ideal for new data
miners.

Techniques Associations using apriori (arules), Classification using decision trees
(rpart), generalised linear models (glm), boosting (gbm), and Ran-
dom Forests (randomForest).

Platforms GNU/Linux, Unix, MS/Windows, Macintosh/OSX
Website http://www.togaware.com/datamining/
Pricing Freely available—GNU General Public License.
Vendor Togaware, Canberra, Australia.

45.2 Usage

Rattle provides a graphical interface to a variety of data mining applica-
tions.

http://www.togaware.com/datamining/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

45.2 Usage 533

Figure 45.1: Togaware’s Rattle Gnome Data Mining interface.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

534 Rattle

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 46

Weka:
From University of Waikato

WEKA (the Waikato Environment for
Knowledge Analysis) is an open source
and freely available workbench for apply-
ing machine learning techniques to prac-
tical problems, integrating many different
machine learning tools within a common
framework and a uniform, if basic but
functional, user interface. WEKA incor-
porates over 60 machine learning techniques, ranging from traditional
decision trees, association rules, clustering, through to modern random
forests and support vector machines. A WEKA user is able to use ma-
chine learning techniques to derive useful knowledge from quite large
databases. Typical users include both researchers and industrial scien-
tists.

WEKA is a great suite of data mining algorithms that allow us to quickly
explore alternatives approaches to data mining. However, perhaps be-
cause it is written in Java, it is well known that the WEKA user in-
terface is very heavy in its use of memory. Staying with the command
line in WEKA (see the excellent guide written by Alexander K. Seewald)
is a good option with reports of, for example, using the rather efficient
NaiveBayesNominal algorithm to process a large ham/spam dataset with

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

536 Weka

500,000 samples and 1.3 million attributes on the commandline “in a few
minutes.” (See KDD Nuggets, 2007, n24).

46.1 Summary

Market General data mining applications.
Techniques Classification using decision trees, support vector machines, conjunc-

tive rules. Regression. Rule induction using FOIL.
Platforms Java (GNU/Linux, Unix, MSWindows).
Website http://www.cs.waikato.ac.nz/ ml/
Pricing Open source—GNU General Public License.
Vendor University of Waikato, Hamilton, New Zealand.

46.2 Usage

Weka runs as a Java application. Thus, a user can simply obtain the
appropriate Java archive file weka.jar and then start up the application
with Java. On GNU/Linux and Unix this is usually:

java -jar weka.jar

On MSWindows this is usually:
javaw -jar weka.jar

On start-up you will see the Weka GUI Chooser (Figure 46.1). From
here you can either run the system from a simple command line interface
(Simple CLI), or else start up an interactive data explorer and modeller
with the Explorer button.

The Weka Explorer (Figure 46.2) can be used to interactively load data,
pre-process the data, and run the modelling tools. Figure 46.2 shows a
dataset having been loaded, with a list of the variables found in the CSV
file in the left pane, with a plot of the distribution of the output variable
(yexno) shown in the right pane.

To load a CSV file, for example, click on the Open file... button. This
will bring up the Weka Open dialogue (Figure 46.3). Click in the button

http://www.kdnuggets.com/news/2007/n24/6i.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

46.2 Usage 537

Figure 46.1: The Weka GUI chooser.

labelled Arff data files to change this to CSV data files. Then browse to
the CSV file you wish to load. In our example this is wine-nominal.csv.
Double click the name, and then the Open button to import the data.

To start building models, go to the Classify tab (Figure 46.4). The
default model builder is ZeroR, a very basic model builder indeed! Click
the Choose button to select from over 60 model builders. For example,
under Trees you could choose J48, which is an implementation of C4.5.
You will also find support vector machines (SMO under Functions) and
random forests (under Trees) and AdaBoost (under Meta). Once you
have chosen you model builder the corresponding command is shown in
the text box to the right of the button. Click in here to change any of the
parameters, or to read some documentation about the chosen method.
From the drop-down menu above the Start button, choose the output
variable (in this case we have chosen Class). When you are ready to
build your model, click on the Start button.

A tree built this way will list, for each branch, the number of training
instances and the number of these that are misclassified.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

538 Weka

Figure 46.2: Weka explorer viewing data.

Figure 46.3: Import CSV data into Weka.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

46.2 Usage 539

Figure 46.4: Output from running J48 (C4.5).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

540 Weka

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Part VI

Closed Products

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 47

C4.5:
Classification

C4.5 builds decision trees.

47.1 Summary

Complexity Generally C4.5 is quite efficient as the number of training instances
increases, and for specific datasets has been found empirically to be
between O(n1.22) and O(n1.38). With rule generation the algorithm
is somewhat more expensive at O(n4).

Availability The Borgelt collection (Chapter 41, page 523) contains dtree, a
generic implementation of the decision tree divide and conqueror al-
gorithm. Weka (Chapter 46, page 535) also provides a freely available
implementation of a decision tree induction algorithm (J48) within its
Java-based framework. Decision tree induction is a fundamental data
mining tool and implementations of C4.5 or its variations are avail-
able in most commercial data mining toolkits, including Clementine
(Chapter 48, page 547) and STATISTICA (Chapter 54, page 563).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

544 C4.5

47.2 Overview

Decision tree analysis is a tech-
nique for building classification
models for predicting classes for
unseen entities.

Decision trees have been around
for a long time as a mechanism for
structuring a series of questions
and choosing the next question to ask on the basis of the answer to
the previous question. In data mining we commonly identify decision
trees as the knowledge representation scheme targeted by the family of
techniques originating from ID3 in 1979.

As a classification technique decision tree analysis generates decision
trees for discrete value classification. The variables can be either contin-
uous or categorical.

A decision tree has the traditional computer science structure of a tree,
having a single root node and multiple arcs emanating from the node to
connect to other nodes.

Example

You are sitting with the finance manage of the car sales yard applying,
on-line, for a loan to purchase a new people mover. The finance manager
is asking you a series of questions. You think it odd that just a little
while ago you overheard the same finance manager using the same on-
line system, asking someone else different questions, but not to worry,
your circumstances are different. You supply the details requested and
walk out with a new set of wheels.

Over the coming year as you pay back the loan with monthly repayments
the financial institution who actually lent you the money is monitoring
your account. Are you paying back on time? Or are you sometimes late?
Or do you never pay unless you are visited by the debt collector? In the
end, were you a good or a bad customer for the financial institution?

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

47.3 Resources and Further Reading 545

The financial institution can use their experience with you and many
other customers to develop a prediction system to indicate for each new
customer their likelihood of being a good or bad customer. It is this
system that decides which are the more important variables to take into
account in making that decision. For some combination of variables more
details and more questions, and different questions need to be answered.

Algorithm

Decision tree induction algorithms are generally what are called greedy
algorithms. They are greedy in that they decide on a question to ask
then don’t consider any more alternatives later on. The algorithms are
also dived and conquer because they partition the database into smaller
sets. In fact, the general algorithm continually partitions the database
into smaller sets until the sets all have the same value for the output
variable.

Note that pruning is a mechanism for reducing the variance of the re-
sulting models. However, for large datasets the reduction of variance is
not usually useful thus unpruned trees may actually be better.

47.3 Resources and Further Reading

C4.5 was made available together with a book (Quinlan, 1993) that
served as a guide to using the code, which was printed as half of the
book, and supplied on electronically.

The similar technique of classification trees was independently developed
at the same time.

The complexity figure comes from Provost et al. (1999).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

546 C4.5

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 48

Clementine:
From SPSS

Clementine packages a number of tools
with a GUI which simplifies the process of
performing a data mining project. In par-
ticular the Clementine workbench sup-
ports a number of data mining algorithms
through a simple linked node interface
supporting the entire business process of
data mining using the CRISP-DM model.

48.1 Summary

Market General data mining applications.
Techniques Association analysis using apriori. Classification using C5.0. Clus-

tering using k-means (Chapter 31.2, page 487) and Kohonen self
organising maps. Multivariate using principle component analysis
and factor analysis. Regression using neural networks. Visualisation
(Web Graph).

Platforms Linux, Unix, MSWindows.
Website http://www.spss.com/spssbi/clementine/
Vendor SPSS, Chicago, Illinois.

http://www.spss.com/spssbi/clementine/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

548 Clementine

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 49

Equbits Foresight:
Tool from Equbits

Equbits provides SVM based predictive
modeling solutions to Drug Discovery
Professionals. Equbits Foresight, a soft-
ware application, provides classification
and regression modeling that is auto-
mated, accurate, and interpretable.

49.1 Summary

Market Drug Discovery, OEM.
Techniques Support Vector Machines (SVM’s)
Website http://www.Equbits.com
Vendor Equbits, CA.

http://www.Equbits.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

550 Equbits Foresight

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 50

GhostMiner:
From Fujitsu

GhostMiner is an analytical data mining package
supported by visualisations for multidimensional
data. While supporting the traditional analy-
sis techniques, GhostMiner also provides variable
selection facilities that include automated ap-
proaches for variable selection and variable rank-
ing.

50.1 Summary

Techniques Classification using Support Vector Machine. Clustering using Den-
drograms and Support Vector techniques. Visualisation using Prin-
cipal Component Analysis.

Platforms MSWindows NT, MSWindows 2000, MSWindows XP.
Website http://www.fqspl.com.pl/ghostminer/
Pricing From vendor.
Vendor Fujitsu, Poland.

http://www.fqspl.com.pl/ghostminer/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

552 GhostMiner

50.2 Usage

GhostMiner supports the extraction of knowledge from data through the
following steps:

• Data selection

• Data preprocessing

• Variable selection

• Model learning

• Model analysis

• Selection of the final model

The final output of each GhostMiner project is a model of the knowledge
inherent in your data. This model can then be used for decision support.

GhostMiner includes an intuitive interface for managing projects of arbi-
trary complexity through a project window and a project tree. Projects
store all results of experiments performed so far, automatically adding
models created during cross-validation.

Statistical information and charting options are provided to view the
data, allowing for the quick detection of outliers. Data may be viewed
in its original form or in a standardized/normalized form.

The data can be filtered and ordered in various ways, including......

Numeric and graphical views display variable statistics such as the av-
erage, standard deviation, minimum/maximum values and the number
of missing values. A facility is provided to show for each class and
each variable the distribution of variable values in 2 and 3-dimensional
charts, allowing for the identification of potentially useful variables. Two-
dimensional projections allow the viewing of data points for particular
combination of variables.

A collection of adaptive analytics, including neural networks, neurofuzzy
systems, decision trees, and the k-nearest neighbour algorithm are pro-

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

50.2 Usage 553

Figure 50.1: Fujitsu GhostMiner interface.

vided. The models can be refined through an ensemble where commit-
tees can be composed of arbitrary models or subcommittees of models.
GhostMiner introduces K-classifiers which are composed of single models
or committees, one for each class.

Various methods for testing the accuracy and efficiency of trained models
(cross-validation and -xtest) along with the confusion matrix summaris-
ing the model quality are provided.

All these variables are accessible in GhostMiner Developer. After the best
model has been selected GhostMiner Analyzer may be used to read it
and evaluate new cases. Analyzer displays information about the model
and about the data the model has been trained for, without needing to
access the tools available in GhostMiner Developer.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

554 GhostMiner

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 51

InductionEngine:
Tool from PredictionWorks

PredictionWorks’ InductionEngine cre-
ates real-time predictive models and ana-
lytical data marts to support ad hoc anal-
ysis. Past systems include customer life-
time value scoring, mortgage prepayment
scoring, delinquency scoring, churn scor-
ing, warehouse perishables demand prediction, coupon optimisation, and
real-time web personalisation.

51.1 Summary

Techniques Decision Tree, k-Nearest Neighbor, Logistic Regression, Naive-
Bayes,+Visualisation, Auto Sampling, Cost Matrix

Platforms GNU/Linux, MSWindows.
Website http://www.predictionworks.com
Pricing Available from vendor.
Vendor PredictionWorks, USA.

http://www.predictionworks.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

556 InductionEngine

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 52

ODM:
Oracle Data Mining

Having purchased one of the original data
mining products (Darwin from Thinking
Machines) Oracle Data Miner (ODMiner)
has been built from the ground-up, and
the data mining engine is integrated into
the Oracle server. The Oracle Data Miner
is a client-side tool that layers on this server engine. It provides a graph-
ical user interface for data mining using wizards to guide a data miner
through the data preparation, data mining, model evaluation, and model
scoring process. As the data analyst transforms the data, builds mod-
els, and interprets results, Oracle Data Miner can automatically generate
code needed to transform the data mining steps into an integrated data
mining/BI application. All Oracle Data Mining functions are accessible
by PL/SQL and/or Java APIs so you can develop enterprise BI appli-
cations on top of your Oracle Database. ODMimer generates Java code
from Oracle Data Miner models and results.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

558 Oracle Data Mining

52.1 Summary

Market Oracle database users.
Techniques Classification: Decision Trees, Support Vector Machines, Naive

Bayes, Adaptive Bayes Network. Regression: Support Vector Ma-
chines. Clustering: Hierarchical K-Means, Orthogonal partitioned
cluster (O-Cluster) Feature Extraction: Non-negative matrix factor-
ization

Platforms All Oracle10g platforms, including Linux, Unix, MacOS, MSWin-
dows.

Website http://www.oracle.com/technology/products/bi/odm/
Vendor Oracle, California.

52.2 Usage

Figure 52.1: Sample ODMiner interface to ODM.

http://www.oracle.com/technology/products/bi/odm/
http://www.oracle.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 53

Enterprise Miner:
From SAS

Enterprise Miner is a data min-
ing package with integrated link-
age to the popular commercial
SAS statistical application. It
provides a range of techniques ac-
cessed through a graphical user in-
terface, using the node (represent-
ing data processing and modelling
steps) and link paradigm to build process flows. The product is priced
at the higher end of the market with a license restricting its usage to the
owner’s own data, only—the product is certainly targeted to large en-
terprises. For smaller projects, SAS/JMP is a good choice, with student
pricing starting from about $100.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

560 SAS Enterprise Miner

53.1 Summary

Market Internal data mining applications with statistical backing.
Techniques Associations. Classification using decision trees and logistic regres-

sion. Clustering using k-means. Regression using neural networks
and generalised linear models. Ensembles and model assessment.
Statistical tools.

Platforms GNU/Linux, Unix, MSWindows.
Website http://www.sas.com.
Pricing High end, annual fees, tens or hundreds of thousand dollars.
Vendor SAS Institute, Cary, North Carolina.

53.2 Usage

SAS Enterprise Miner is a full scale commercial product with pricing
to match. Version 4 provided many more modelling options that the
rewritten Version 5 (which now uses a Java thin client to access the
Enterprise Miner server). The missing functionality is working its way
back into the product.

Enterprise Miner works with the idea of projects. The first task is to
make a New Project. Supply a Name (this will be the name of a di-
rectory) and a Path (which is where the directory will be created). If
you have SAS datasets somewhere, you might want to click across to the
Startup Code tab and add something like:

libname dmsource "/home/share/data/sas";

Then select OK to initialise the project.

Now select the new project, and right click the Data Source node. Create
a New Data Source, and Browse to the libname you supplied, and choose
a SAS dataset from those available. Click on through to either perform
a Basic load (automatic processing of variables) or an Advanced load (to
allow tuning of how the variables are treated).

Once the Data Source has been defined, create a New Drawing, and then
drag the Data Source on to the new drawing. From the Data tab drag
the Partition icon onto the diagram and connect the Data Source to the

http://www.sas.com.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

53.3 Tips and Tricks 561

Figure 53.1: SAS Enterprise Miner interface (Version 4).

Parition node. Then from the Classify tab drag a decision tree node onto
the diagram and connect the Partition node to the Decision Tree node.
No right click the Decision Tree node to select Run, to build the decision
tree. Right click again, once it has completed, to view the Results.

53.3 Tips and Tricks

SAS Enterprise Miner is a large product (including the SAS statistical
package), and sometimes cumbersome and quaintly old fashioned. It
is being migrated into a modern world, slowly, and its functionality is
improving regularly. Below we highlight some issues and tricks that may
be helpful.

• Log Transform of a dataset seems somewhat of a trap. A log
transform essentially transforms the data items d with ln(1+(d−dmin

dmax−dmin .

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

562 SAS Enterprise Miner

The dmin and dmax are determined from the current dataset. How-
ever, if you log transform your training dataset, and separately log
transform your test dataset, then the transforms will end up be-
ing different! Hence, the model you build will not be applicable to
any data unless it is transformed with the same values of dmin and
dmax! You may want to avoid such transforms.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 54

Statistica Data Miner:
From StatSoft

STATISTICA Data Miner combines a
comprehensive selection of data mining
tools with an icon-based interface. It tar-
gets integrated data mining solutions in
a variety of business domains such as fi-
nance, marketing, insurance, and phar-
maceuticals. The included data min-
ing tools integrate with the STATISTICA
line of products which includes a web de-
livery application. The provided algo-
rithms cover the whole spectrum of data mining technologies includ-
ing alternative neural networks architectures, classification/regression
trees, multivariate modelling, and many other classification and regres-
sion techniques. User implemented nodes can easily be added to the
interface and many models generate industry standard PMML (XML).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

564 Statistica

54.1 Summary

Market General data mining applications.
Techniques Associations using apriori. Classification using decision trees. Clus-

tering using k-means (Chapter 31.2, page 487) and EM. Regression
using regression trees, neural networks, MARS, generalised linear
models and CHAID. Miscellaneous techniques including boosting and
survival analysis.

Platforms MSWindows with potential for clients running in web browsers.
Website http://www.statsoft.com
Pricing Available from vendor.
Vendor StatSoft, Tulsa, Oklahoma.

54.2 Usage

STATISTICA Data Miner implements a large number of algorithms for
analysing data. They are seamlessly integrated with other analytic and
graphics options within an icon based used interface.

The graphical user interface allows analysis nodes to be dragged into the
data mining workspace and connected to other nodes. Results can be
reviewed, analysed, and saved, or used to perform additional interactive
analyses. The analysis nodes can handle multiple data streams, enabling
processing of lists of data sources. STATISTICA includes options for
defining connections to databases on remote servers.

A particularly significant feature of STATISTICA is its open architecture
which allows users to add their own custom nodes implemented in any
language accessible from Visual Basic programs. User supplied nodes
can have their own user interface for accepting user parameters, choices,
etc. The resulting node then becomes part of the toolkit available to
your users.

Multi-threading and distributed processing allows multiple servers to
work in parallel for computationally intensive projects. STATISTICA
Data Miner is also a COM object allowing full integration with other
applications or analysis macros under MSWindows.

http://www.statsoft.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

54.2 Usage 565

Figure 54.1: Statistica Data Miner graphical interface.

A comprehensive collection of algorithms is implemented in STATIS-
TICA Data Miner. These include statistical, exploratory, and visual-
isation techniques. In addition to the techniques listed in the sum-
mary above, graphical and interactive exploration/visualisation tools
work with descriptive statistics and exploratory data analysis to give
initial insights into the data being explored. General data mining opera-
tions, including slice and dice and drill-down, for interactively exploring
data on selected variables and categories are also supported.

A goodness of fit module computes various goodness of fit statistics for
continuous and categorical output variables (for regression and classifica-
tion problems). The module provides a competitive evaluation of models,
as a tool to choose the best solution.

The Predictive Modelling Markup Language (PMML) is supported as
the description language for generated models from many of the included
predictive data mining tools. PMML, based on XML, allows both sharing
of models and loading of other, possibly externally generated, models into
STATISTICA.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

566 Statistica

54.3 Sample Applications

The tool is suitable for general application, including finance and quality
management.

The typical finance application is loan application processing. Consider
a bank receiving an average of over 900 loan applications per day, requir-
ing considerable manpower to process in a timely and accurate manner.
A decision support system for loan application screening was developed
using STATISTICA Data Miner, where applicant data are processed us-
ing a variety of analytic methods, ranging from simple IF-THEN-ELSE
decision rules to advanced classification and regression tree models de-
signed to resolve ambiguities. Such preprocessing of each application
takes only seconds, and, in some cases, includes verification through au-
tomatic queries to a large data warehouse. A risk rating is generated
indicating: very low risk, low risk, acceptable risk, high risk, and very
high risk. Since the system was deployed the rate of error in the loan
approval process has reportedly decreased “significantly”.

For quality management a semiconductor manufacturer employed a to-
tally automated system for “Intelligent Quality Monitoring” (IQM). IQM
collects over 50 thousand characteristics of the production process in
real-time (ranging from simple temperature variations to scores from
multi-perspective laser scanning detection systems). All these data are
pre-screened in real-time and fed into an intelligent data processor built
on predictive data mining technologies. The risk of producing a defective
wafer is calculated and monitored in real-time and the decisions to make
costly adjustments or to terminate a wafer burning cycle entirely are
made automatically. Moreover, this decision process is integrated with
the corporate Enterprise Resource Planning system, and thus linked to
data on fluctuating cost considerations. Consistently higher yields per
cycle, compared to its competitors, are now achieved, and the cost per
unit has been reduced by 27%.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

54.4 Further Information 567

54.4 Further Information

StatSoft was founded in 1984 and produces enterprise and single-user
software for data analysis, data mining, quality control/six sigma, and
web-based analytics. Training and consulting services are provided through
StatSoft’s subsidiaries and distributors, worldwide.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

568 Statistica

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 55

TreeNet:
From Salford Systems

Salford Systems has implemented and commer-
cialised several tools from two of the key re-
searchers in data mining (Jerome Friedman and
Leo Breiman of Stanford University). TreeNetR©

uses stochastic gradient boosting to improve
modelling capabilities.

55.1 Summary

Market General data mining projects.
Techniques Classification.
Platforms MSWindows.
Website http://www.salford-systems.com
Vendor Salford Systems, San Diego, California.

http://www.salford-systems.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

570 TreeNet

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Chapter 56

Virtual Predict:
From Virtual Genetics

Virtual Predict is a system for the discov-
ery of classification and regression rules.
It provides more than the standard de-
cision tree and rule induction in that it
allows for more expressive hypotheses to
be generated and more expressive background knowledge to be incorpo-
rated in the induction process.

56.1 Summary

Market Life sciences research consultancies.
Techniques Rule induction, inductive logic programming.
Platforms MSWindows.
Website http://www.vglab.com
Pricing Available from vendor.
Vendor Virtual Genetics Laboratory, Stockholm, Sweden.

http://www.vglab.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

572 Virtual Predict

56.2 Usage

Virtual Predict was deployed by the department of Medicinal Chemistry
at AstraZeneca together with consultants from Virtual Genetics. Known
molecular properties from about 1,000 substances were used to create
a model to predict water solubility in new untested drug leads. Molec-
ular properties included the number of atoms, bonds and rings, graph
radius and diameter, Wiener index, carbon, nitrogen and oxygen counts,
molecular weight and volume, and polarizability. By including known
solubility values Virtual Predict identified important criteria for predict-
ing solubility of unknown substances with a precision between 87%–93%.

Virtual Predict handles both numerical and categorical data. Structured
data in the form of is also handled.

The user can choose from a range of data mining techniques including
decision trees (divide-and-conquer, or DAC, in Virtual Predict termi-
nology) for classification and regression. Minimum Description Length
(MDL) is employed for Options for choosing variables include In-
formation Gain. Pruning, boosting, bagging, boosted stumps, and naive
Bayes are all options. And SAC?

Building a model is straight-forward with the simple and uncluttered
MSWindows graphical user interface. Data in comma separated format
(CSV) can easily be imported. However, visualisations of the resulting
models are not provided.

Building multiple models with different approaches is straight forward
and test protocols are provided to empirically compare the performance
of the various methods for a particular dataset.

Virtual Predict employs a representation language based on the common
logic programming language Prolog.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Part VII

Appendicies

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Appendix A

Glossary

With the rather unruly explosion of in-
terest in data mining and its well doc-
umented commercial successes, and the
fact that data mining is the fusion of
many disciplines, each with their own her-
itage, the terminology used in the data
mining community is at times quite con-
fusing and often redundant. The begin-
nings of a Glossary began here but has
ceased. Wikipedia is now the canonical
source.

Bias: The error in a model due to systematic inadequacies in the learning
process. That is, those instances consistently incorrectly classified by
models built by the learning algorithm. Modelling error due to bias can
be reduced using Boosting. Compare with variance.

C

C5.0: A commercial decision tree and rule induction product from Rule-
Quest developed by Ross Quinlan as the successor to his very successful
and widely used ID3 and C4.5 systems.

http://en.wikipedia.org
http://en.wikipedia.org/wiki/Boosting
http://en.wikipedia.org/wiki/variance
file:www.rulequest.com
file:www.rulequest.com

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

576 Glossary

Churn: The process of customer turnover, as occurs in many consumer
service providers such as telecommunications and credit providers.

Classification:

Coevolution: An Evolutionary Computation paradigm where both
the measure of fitness and the solution evolve separately and affect each
other.

Computational Intelligence: Describes numerically based Artificial
Intelligence systems distinguished from Symbolic Intelligence. Generally
covers Evolutionary Computation, Neural Networks and Fuzzy Logic.

Cross Validation: A method of comparing or confirming performance
of predictive models by estimating the error that would be produced
by a model. Cross validation is also used to compare one method of
inducing a predictive model (called an inducer) with another inducer.
Cross validation can also be used to refine the parameters of a particular
inducer. In this case the inducer’s parameters are refined to minimise
the error in the model produced. A k -fold cross validation will build k
models from k datasets.

Confidence:

Cubist: A commercial piecewise-linear regression product from Rule-
Quest developed by Ross Quinlan. Uses decision tree induction to iden-
tify subsets of the data on which to perform regression.

D

Data Cube: A block of data, often extracted from a data warehouse,
offering fast access/views of data in any number of dimensions.

Data Mining: A technology concerned with using a variety of tech-
niques, including associations, classification, and segmentation, on
problem domains that require analysing extremely large collections of
data, including domains such as fraud and churn. Typically draws
on tools and techniques from machine learning, Parallel Computation,
OLAP, visualisation, Mathematical Computation, and statistics. Fayyad
defines data mining as a single step in the KDD process that under ac-

http://en.wikipedia.org/wiki/Association_(statistics)
http://en.wikipedia.org/wiki/olap

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

577

ceptable computational efficiency limitations, enumerates structures (pat-
terns or models) over the data.

Data Warehouse: Provides a multi-dimensional view of an organi-
sations data for efficient analysis as distinct from typical transactional
relational database systems which manage the day-to-day operations of
the organisation. Data warehouses particularly lend themselves to quick
ad-hoc queries on large volumes of data on a read-only basis. Inmon
defined a data warehouse as a subject-oriented, integrated, time variant
and non-volatile collection of data in support of management’s decision-
making process.

Decision Tree:

Demographic Clustering: Clustering performed on the characteris-
tics of population groups in terms of size, distribution, and other vital
statistics, rather than on the individuals of the population. Related to
Data Mining in Data Cubes in that Data Cubes allow varying degrees
of aggregation over any of the variables.

Dependent Variable: The classical term for an Output Variable.

E

E-Commerce: Conduct of financial transactions by electronic means,
usually in the form of on-line business and trade, and often involving the
buying and selling of goods over the Internet.

Ensemble Learning: A generic description for a learning system that
builds multiple knowledge structures and combines the outcomes in some
way. For example, a voting stratgey might be used where we have gen-
erated multiple Decision Trees for the same task. Each decision tree
will be applied to an unseen record and the decisions from each tree
will be combined in some way. One of the earliest examples was devel-
oped by Williams (1987) (also see Williams (1988) and Williams (1991))
where multiple decision trees were combined using a majority rules voting
scheme. The idea of a committee of models arose from earlier work in ex-
pert systems and then in machine learning with MIL (Multiple Inductive
Learning).

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

578 Glossary

Evolutionary Computation: Motivated by Darwinian Evolution heuris-
tic rules are employed to modify a population of solutions in such a way
that each generation of the population tends to be on average better
than its predecessor. These algorithms generally have three components
(analogous to the theory of evolution): A fitness function which is used
to guide in the selection of the fitest individual; Reproduction operators
to generate new structures from other structures; Genetic operators to
guide the combination of the structures in reproduction.

F

Fuzzy Expert System: Uses Fuzzy Logic instead of Boolean Logic
for reasoning in an Expert Systems.

Fuzzy Logic: Introduced by Dr. Lotfi Zadeh of UCB around 1960. A
superset of conventional Boolean logic that allows truth values in the
interval [0, 1], instead of just the set {0, 1} with a rigorous set of math-
ematical operations that define how the logic system works. The most
common definitions for the basic operations are:

truth(xANDy) = min(truth(x), truth(y)); truth(xORy) = max(truth(x), truth(y)); truth(NOTx) = 1−truth(x),

where x and y are truth values (degree of belief, degree of membership).

G

Genetic Algorithms: A form of Evolutionary Computation using
probabilistic search procedures to search large spaces involving states
represented by strings.

I

Independent Variable: The classical term for an input variable.

Input Variable: The variables of a dataset that are generally measur-
able or preset, and used as the input to the modelling and mining. It is

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

579

synonymous with the statistical term predictor and the classical term
independent variable. See also Output Variable.

Interestingness: A measure used to rank or filter discoveries, particu-
larly in the context of the often overwhelming number of discoveries that
typical data mining tools present the user, with example measures in-
cluding support, confidence, lift, and leverage. See also subjective
interestingness, objective interestingness.

Invariant Clustering:

K

Knowledge Discovery in Databases: Fayyad defines it as the process
of identifying valid, novel, potentially useful, and ultimately understand-
able structure in data.

L

Lazy Learning: While traditional learning algorithms compile data into
abstractions in the process of inducing concept descriptions, lazy learn-
ing algorithms, also known as instance-based, memory-based, exemplar-
based, experience-based, and case-based, learning delay this process and
represent concept descriptions with the data itself. Lazy learning has
its roots in disciplines such as pattern recognition, cognitive psychol-
ogy, statistics, cognitive science, robotics, and information retrieval. It
has received increasing attention in several AI disciplines as researchers
have explored issues on massively parallel approaches, cost sensitivity,
matching algorithms for use with symbolic and structured data represen-
tations, formal analyses, rule extraction, variable selection, interaction
with knowledge-based systems, integration with other learning/reason-
ing approaches, and numerous application-specific issues. Many reasons
exist for this level of activity: these algorithms are relatively easy to
present and analyse, are easily applied, have promising performance on
some measures, and are the basis for today’s commercially popular case-
based reasoning systems.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

580 Glossary

Learning Curve: A plot of accuracy against training set size, often
used to determine the smallest training set size for which adding extra
instances leads to little, if any, improvement of accuracy.

Leverage: A measure of interestingness in terms of the difference
between the observed frequency of occurrence of items and the expected
frequency if the items were independent.

Lift: A measure of interestingness capturing the increase in the likeli-
hood of an item occurring, for example, within a defined sub population,
compared to the full population.

Link Analysis: Explores associations among entities. For example, a
law enforcement application might examine familial relationships among
suspects and victims, the addresses at which those persons reside, and the
telephone numbers that they called during a specified period. The ability
of link analysis to represent relationships and associations among enti-
ties of different types has proven crucial in assisting human investigators
to comprehend complex webs of evidence and draw conclusions that are
not apparent from any single piece of information. Computer-based link
analysis is increasingly used in law enforcement investigations, fraud de-
tection, telecommunications network analysis, pharmaceuticals research,
epidemiology, and many other specialised applications. Also referred to
as Social Network Analysis. David Jensen jensen@cs.umass.edu, 30 Jan
98, datamine-l@nautilus-sys.com

Logistic Regression:

M

Mean: A measure of the central tendency (i.e., average) of a set of data,
calculated as

∑n
i=1 xi
n

Mixture Modelling: models a statistical distribution by a mixture (or
weighted sum) of other distributions.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

581

O

Objective Interestingness: A measure of interestingness often spec-
ified in terms of the knowledge structures discovered and the associated
data, independent of the application.

Ontology: The vocabulary and set of constraints on the combination of
terms of the vocabulary.

Orthogonal Persistence: A form of persistence where the persis-
tence of data is a property of the data orthogonal to all other properties
of the value and operations on the value.

P

Parametric Techniques: Analysis techniques which assume a model
for the data to be analysed. The task of analysis is to select an appro-
priate model and then to estimate the parameters of the model.

Parallel Coordinates: A multidimensional visualisation technique where
the dimensions are represented as a series of parallel lines and individuals
are represetned as paths through the parallel coordinates. The idea was
first presented by Alfred Inselberg at the University of Illinois in 1959
and he has been developing the idea since. Wegman has also written on
Inselberg’s work. See the Journal of Computational Statistics, January
1999 for example, for recent significant developments in Statistics.

Persistence: A general term for mechanisms that save values from a
program’s execution space so that they can be used in a later execution;
i.e. by making the values ”persist” from one execution to the next. See
also Orthogonal Persistence.

Predictor: The statistical term for an input variable.

p-value: The probability that a “discovery” is pure chance. A p-value
of 0.05 indicates that there is a 5% chance that the discovery is purely
by chance, or conversely, that the discovery is 95% likely to be valid.

mailto:aiisreal@math.tau.ac.il

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

582 Glossary

Q

Quartile: A point in a distribution of numeric data which identifies
one quarter of the data. The first quartile, for example, splits the low-
est valued quarter of the dataset from the upper three quarters of the
dataset.

R

Reflection: The ability of a program to manipulate as data something
representing the state of the program during its own execution. Reflec-
tion can be introspective or intercessory, or both. Introspection is the
ability to observe and analyse one’s own state; intercession is the ability
to modify one’s own execution state or to alter one’s own meaning.

Reinforcement Learning: An approach to learning what to do so
as to maximise a numerical reward by discovering the most rewarding
actions by trying them out (trial-and-error), which itself may affect the
immediate reward and subsequent rewards (delayed reward).

Residual: The residual is essentially what is left after you have ac-
counted for in your modelling. It is the difference between the modelled
and the actual.

r2: A measure of the closeness of fit of a regression line.

RuleQuest: Ross Quinlan’s commercial venture selling the decision tree
and rule induction systems C5.0, See5, and Cubist. Refer to the Rule
Quest Home Page.

S

Sample: In statistics a large sample is anything 30 or more!

See5: A commercial Windows95/NT decision tree and rule induction
product from RuleQuest developed by Ross Quinlan as the successor
to his very successful and widely used ID3 and C4.5 systems.

http://www.rulequest.com/
http://www.rulequest.com/

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

583

Segmentation:

Similarity-Based Learning: Involves comparing several examples of
a concept, searching for common variables, in order to define the concept
being learned.

Statistics:

Subjective Interestingness: A measure of interestingness incorpo-
rating the user’s point of view.

Supervised Learning: Training data is labelled by class membership.

Support:

T

Temporal Difference Learning: Learning based on the difference be-
tween temporally successive predictions, rather than error between pre-
dicted and actual values, so that the learner’s current prediction for the
current input data more closely matches the next prediction at the next
time step, thus learning occurring as predictions change over time. Forms
the basis for Reinforcement Learning.

Terminological Logics: Formalise the notion of Frames as structured
types, often called Concepts. These logics include a set of syntactic
constructs that form concepts, and other, related, notions such as roles,
and are based on formal model-theoretic semantics which provide firm
definitions for the syntactic constructs of the logic. Synonyms include
Description Logic and Concept Language.

Test Set: A portion of a dataset used to test the performance of a
model. See also Training Set and Validation Set.

Training Set: A portion of a dataset that is used to build a model. See
also Test Set and Validation Set.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

584 Glossary

U

Unsupervised Learning: Classes are not defined a priori (essentially
Cluster Analysis).

V

Validation Set: A portion of a dataset that is used to test the perfor-
mance of a model as it is being built. See also Training Set and Test
Set.

Variance: The error in a model due to the fact that the model is built
from only a sample of the data taken to represent the whole population.
That is, those instances occasionally incorrectly classified by models built
by the learning algorithm. Modelling error due to variance can be re-
duced using Bagging. Compare with bias.

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Bibliography

Aggarwal, C. C. and Yu, P. S. (2001), Outlier detection for high diemn-
sional data, in Proceedings of the 27th ACM SIGMOD International
Conference on Management of Data (SIGMOD01), pp. 37–46. 452

Agrawal, R. and Srikant, R. (1994), Fast algorithms for mining as-
sociation rules in large databases, in J. B. Bocca, M. Jarke and
C. Zaniolo, eds, Proceedings of the 20th International Conference on
Very Large Databases (VLDB94), Morgan Kaufmann, pp. 487–499.
http://citeseer.ist.psu.edu/agrawal94fast.html. 414

Barnett, V. and Lewis, T. (1994), Outliers in Statistical Data, John Wi-
ley. 451, 452

Bauer, E. and Kohavi, R. (1999), ‘An empirical comparison of vot-
ing classification algorithms: Bagging, boosting, and variants’, Ma-
chine Learning 36(1-2), 105–139. http://citeseer.ist.psu.edu/
bauer99empirical.html. 109, 428

Beyer, K. S., Goldstein, J., Ramakrishnan, R. and Shaft, U. (1999),
When is “nearest neighbor” meaningful?, in Proceedings of the 7th
International Conference on Database Theory (ICDT99), Jerusalem,
Israel, pp. 217–235. http://citeseer.ist.psu.edu/beyer99when.
html. 452

Bhandari, I., Colet, E., Parker, J., Pines, Z., Pratap, R. and Ramanujam,
K. (1997), ‘Advance scout: data mining and knowledge discovery in
nba data’, Data Mining and Knowledge Discovery 1(1), 121–125. 413

Blake, C. and Merz, C. (1998), ‘UCI repository of machine learn-
ing databases’. http://www.ics.uci.edu/~mlearn/MLRepository.
html. 218

http://citeseer.ist.psu.edu/agrawal94fast.html
http://citeseer.ist.psu.edu/bauer99empirical.html
http://citeseer.ist.psu.edu/bauer99empirical.html
http://citeseer.ist.psu.edu/beyer99when.html
http://citeseer.ist.psu.edu/beyer99when.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

586 BIBLIOGRAPHY

Breiman, L. (1996), ‘Bagging predictors’, Machine Learning 24(2), 123–
140. http://citeseer.ist.psu.edu/breiman96bagging.html. 123,
480

Breiman, L. (2001), ‘Random forests’, Machine Learning 45(1), 5–32.
123

Breunig, M. M., Kriegel, H., Ng, R. and Sander, J. (1999), OPTICS-OF:
Identifying local outliers, in Proceedings of the XXXXth Conference
on Priciples of Data Mining and Knowledge Discovery (PKDD99),
Springer-Verlag, pp. 262–270. 452

Breunig, M. M., Kriegel, H., Ng, R. and Sander, J. (2000), LOF: Identi-
fying denisty based local outliers, in Proceedings of the 26th ACM SIG-
MOD International Conference on Management of Data (SIGMOD00)
Proceedings of the 26th ACM SIGMOD International Conference on
Management of Data (SIGMOD00) (2000). 452

Caruana, R. and Niculescu-Mizil, A. (2006), An empirical comparison
of supervised learning algorithms, in Proceedings of the 23rd Interna-
tional Conference on Machine Learning, Pittsburgh, PA. 123

Cendrowska, J. (1987), ‘An algorithm for inducing modular rules’, Inter-
national Journal of Man-Machine Studies 27(4), 349–370. 484

Cleveland, W. S. (1993), Visualizing Data, Hobart Press, Summit, New
Jersey. 57, 259

Culp, M., Johnson, K. and Michailidis, G. (2006), ‘ada: An r package
for stochastic boosting’, Journal of Statistical Software 17(2). http:
//www.jstatsoft.org/v17/i02/v17i02.pdf. 123

Cypher, A., ed. (1993), Watch What I Do: Programming by Demon-
stration, The MIT Press, Cambridge, Massachusetts. http://www.
acypher.com/wwid/WWIDToC.html. 161

Dalgaard, P. (2002), Introductory Statistics with R, Statistics and Com-
puting, Springer, New York. xliv

Freund, Y. and Mason, L. (1999), The alternating decision tree algo-
rithm, in Proceedings of the 16th International Conference on Machine
Learning, pp. 124–133. 438

http://citeseer.ist.psu.edu/breiman96bagging.html
http://www.jstatsoft.org/v17/i02/v17i02.pdf
http://www.jstatsoft.org/v17/i02/v17i02.pdf
http://www.acypher.com/wwid/WWIDToC.html
http://www.acypher.com/wwid/WWIDToC.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

BIBLIOGRAPHY 587

Freund, Y. and Schapire, R. E. (1995), A decision-theoretic generaliza-
tion of on-line learning and an application to boosting, in Proceedings
of the 2nd European Conference on Computational Learning Theory
(Eurocolt95), Barcelona, Spain, pp. 23–37. http://citeseer.ist.
psu.edu/freund95decisiontheoretic.html. 109, 428, 430, 439, 441

Friedman, J. H. (2001), ‘Greedy function approximation: A gradi-
ent boosting machine’, Annals of Statistics 29(5), 1189–1232. http:
//citeseer.ist.psu.edu/46840.html. 436

Friedman, J. H. (2002), ‘Stochastic gradient boosting’, Computational
Statistics and Data Analysis 38(4), 367–378. http://citeseer.ist.
psu.edu/friedman99stochastic.html. 436

Hahsler, M., Grün, B. and Hornik, K. (2005), A Computational Environ-
ment for Mining Association Rules and Frequent Item Sets, R Package,
Version 0.2-1. 406, 408

Hastie, T., Tibshirani, R. and Friedman, J. (2001), The elements of
statistical learning: Data mining, inference, and prediction, Springer
Series in Statistics, Springer-Verlag, New York. xliv, 25, 109, 427, 430,
441

Hawkins, D. (1980), Identification of Outliers, Chapman and Hall, Lon-
don. 451

Ho, T. K. (1998), ‘The random subspace method for constructing de-
cision forests’, IEEE Transactions on Pattern Analysis and Machine
Intelligence 20(8), 832–844. 123

Jin, W., Tung, A. K. H. and Han, J. (2001), Mining top-n local outliers
in large databases, in Proceedings of the 7th International Conference
on Knowledge Discovery and Data Mining (KDD01). 452

King, R. D., Feng, C. and Sutherland, A. (1995), ‘Statlog: Compari-
son of classification algorithms on large real-world problems’, Applied
Artificial Intellgience 9(3), 289–333. 123

Knorr, E. and Ng, R. (1998), Algorithms for mining distance based out-
liers in large databases, in Proceedings of the 24th International Con-
ference on Very Large Databases (VLDB98), pp. 392–403. 452

http://citeseer.ist.psu.edu/freund95decisiontheoretic.html
http://citeseer.ist.psu.edu/freund95decisiontheoretic.html
http://citeseer.ist.psu.edu/46840.html
http://citeseer.ist.psu.edu/46840.html
http://citeseer.ist.psu.edu/friedman99stochastic.html
http://citeseer.ist.psu.edu/friedman99stochastic.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

588 BIBLIOGRAPHY

Knorr, E. and Ng, R. (1999), Finding intensional knowledge of distance-
based outliers, in Proceedings of the 25th International Conference on
Very Large Databases (VLDB99) Proceedings of the 25th International
Conference on Very Large Databases (VLDB99) (1999), pp. 211–222.
452

Kohavi, R. (1996), Scaling up the accuracy of naive-Bayes clas-
sifiers: A decision tree hybrid, in Proceedings of the 2nd In-
ternational Conference on Knowledge Discovery and Data Mining
(KDD96), Portland, OR, pp. 202–207. http://citeseer.ist.psu.
edu/kohavi96scaling.html. 484

Lin, W., Orgun, M. A. and Williams, G. J. (2000), Temporal data mining
using multilevel-local polynominal models, in Proceedings of the 2nd
International Conference on Intelligent Data Engineering and Auto-
mated Learning (IDEAL 2000), Hong Kong, Vol. 1983 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 180–186. 453

Lin, W., Orgun, M. A. and Williams, G. J. (2001), Temporal data mining
using hidden markov-local polynomial models, in D. W.-L. Cheung,
G. J. Williams and Q. Li, eds, Proceedings of the 5th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD01),
Hong Kong, Vol. 2035 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 324–335. 453

Mingers, J. (1989), ‘An empirical comparison of selection measures for
decision-tree induction’, Machne Learning 3(4), 319–342. 426

Proceedings of the 25th International Conference on Very Large
Databases (VLDB99) (1999). 587, 589

Proceedings of the 26th ACM SIGMOD International Conference on
Management of Data (SIGMOD00) (2000), ACM Press. 586, 589

Provost, F. J., Jensen, D. and Oates, T. (1999), Efficient pro-
gressive sampling, in Proceedings of the 5th International Con-
ference on Knowledge Discovery and Data Mining (KDD99), San
Diego, CA, ACM Press, pp. 23–32. http://citeseer.ist.psu.edu/
provost99efficient.html. 545

Quinlan, J. R. (1993), C4.5: Programs for machine learning, Morgan
Kaufmann. 545

http://citeseer.ist.psu.edu/kohavi96scaling.html
http://citeseer.ist.psu.edu/kohavi96scaling.html
http://citeseer.ist.psu.edu/provost99efficient.html
http://citeseer.ist.psu.edu/provost99efficient.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

BIBLIOGRAPHY 589

R D (2005), R Data Import/Export, version 2.1.1 edn. 215

Ramaswamy, S., Rastogi, R. and Kyuseok, S. (2000), Efficient algorithms
for mining outliers from large data sets, in Proceedings of the 26th ACM
SIGMOD International Conference on Management of Data (SIG-
MOD00) Proceedings of the 26th ACM SIGMOD International Con-
ference on Management of Data (SIGMOD00) (2000), pp. 427–438.
452

Schafer, J. L. (1997), Analysis of Incomplete Multivariate Data, Chap-
man and Hall, London. 88, 374

Schapire, R. E., Freund, Y., Bartlett, P. and Lee, W. S. (1997), Boost-
ing the margin: a new explanation for the effectiveness of voting
methods, in Proceedings of the 14th International Conference on Ma-
chine Learning (ICML97), Morgan Kaufmann, pp. 322–330. http:
//citeseer.ist.psu.edu/schapire97boosting.html. 109, 428

Soares, C., Brazdil, P. B. and Kuba, P. (2004), ‘Meta-learning method to
select the kernel width in support vector regression’, Machine Learning
54(3), 195–209. 513, 516

Tukey, J. W. (1977), Exploratory data analysis, Addison-Wesley. 60, 299,
361

Venables, W. N. and Ripley, B. D. (2002), Modern Applied Statistics with
S, Staistics and Computing, 4th edn, Springer, New York. xliv

Viveros, M. S., Nearhos, J. P. and Rothman, M. J. (1999), Ap-
plying data mining techniques to a health insurance information
system., in Proceedings of the 25th International Conference on
Very Large Databases (VLDB99) Proceedings of the 25th Inter-
national Conference on Very Large Databases (VLDB99) (1999),
pp. 286–294. http://www.informatik.uni-trier.de/~ley/vldb/
ViverosNR96/Article.PS. 413

Williams, G. J. (1987), ‘Some experiments in decision tree induction.’,
Australian Computer Journal 19(2), 84–91. 577

Williams, G. J. (1988), Combining decision trees: Initial results from the
MIL algorithm, in J. S. Gero and R. B. Stanton, eds, Artificial In-
telligence Developments and Applications, Elsevier Science Publishers
B.V. (North-Holland), pp. 273–289. 577

http://citeseer.ist.psu.edu/schapire97boosting.html
http://citeseer.ist.psu.edu/schapire97boosting.html
http://www.informatik.uni-trier.de/~ley/vldb/ViverosNR96/Article.PS
http://www.informatik.uni-trier.de/~ley/vldb/ViverosNR96/Article.PS

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

590 BIBLIOGRAPHY

Williams, G. J. (1991), Inducing and combining decision structures for
expert systems, PhD thesis, Australian National University. http://
togaware.redirectme.net/papers/gjwthesis.pdf. 577

Yamanishi, K., ichi Takeuchi, J., Williams, G. J. and Milne, P. (2000),
On-line unsupervised outlier detection using finite mixtures with dis-
counting learning algorithms, in Proceedings of the 6th International
Conference on Knowledge Discovery and Data Mining (KDD00),
pp. 320–324. http://citeseer.ist.psu.edu/446936.html. 452

Ye, J. (1998), ‘On measuring and correcting the effects of data mining
and model selection’, Journal of the American Statistical Association
93(441), 120–131. 426

http://togaware.redirectme.net/papers/gjwthesis.pdf
http://togaware.redirectme.net/papers/gjwthesis.pdf
http://citeseer.ist.psu.edu/446936.html

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

Index

-Median/MAD, 85
.Machine, 189
.Platform, 187
.packages (R function), 182
R Console, 14
R, 7

Access
Import data into R, 229

ada (R package), 110, 123
AdaBoost, 109, 427–442
adaboost (R function), 433
Adjusted, 70, 73, 102
Adjustment, 102, 113, 116
Advance Scout, 413
Age, 30, 32, 56, 70, 72, 90, 95
aggregate (R function), 204, 282
amap (R package), 391, 487, 492,

499
AMD64, 191
analysis of variance, 317
analysis of variance, 317
Annotate, 58, 61
ANOVA, 317, see analysis of vari-

ance
apply, see lapply, mapply, sapply
apply (R function), 374, 381
approxfun (R function), 388
Apriori, 414
apriori, 397
apriori (R function), 402, 406, 409,

410
array (R function), 206
arrows (R function), 240
Artificial neural networks, see Neu-

ral networks
arules (R package), 398, 401–403,

406
as (R function), 409
as.Date (R function), 203, 204
as.integer (R function), 284
as.logical (R function), 377
as.matrix (R function), 192
as.yearmon (R function), 204
Associate, 22, 129, 130
association analysis

Apriori, 397–414
associations, 576
at, 310
attach (R function), 210, 223, 237,

319
attr (R function), 186
attribute, see variable
audit (Dataset), xxxiv, 16, 18, 32,

55, 69, 70, 97, 102, 120,
151

available.packages (R function), 178

Bagging, 479
bagging, 479–480
barchart, 328
barchart (R function), 319, 320

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

592 INDEX

barplot (R function), 272, 350
Basics, 51
Baskets, 130
batch model building, 447
bayesian analysis

Bayes theorem, 482
bbox (R function), 232
Believe Num Rows, 36
believeNRows, 227
Benford, 69
Benford’s Law, 65
Binning, 95
binning (R function), 92, 383, 384
bitmap (R function), 252
bmp (R function), 252
Boost, 111
boost (R package), 433, 436
Boosting, 109, 427–442, 575
boosting, 109–111
bootstrap aggregating, 479
Bootstrapping, 485–486
Borgelt, 523–524
box and whisker plot, see box plot
boxplot, 60, 299, 361
boxplot (R function), 237, 299–302,

343, 361–363, 374
breaks, 274
bxp (R function), 302, 303

c (R function), 205, 207, 456
C4.5, 543–545
capabilities (R function), 189
caret (R package), 447
cast (R function), 281
caTools (R package), 152, 249, 370,

433
censored data, 453
check box, xlvii
chron (R package), 204, 341

Churn, 453
class (R function), 375
Classification

C4.5, 543–545
Conditional trees, 495–497
Decision trees, 105–108, 415–

426, 543–545
K-nearest neighbour, 501–502
Kernel methods, 513–514
Neural networks, 509–510
Support vector machine (SVM),

513–516
classification

Näıve Bayes, 481, 484
classwt, 444
Cleanup, 95, 97
Clementine, 547
clipboard, 184, 216, 229, 230, 379
Close, 23, 24
closure, 199
Cluster, 22
Clustering

Hierarchical, 492–493, 499
K-means, 391–395, 487–492

cm.colors (R function), 243, 288,
353

col, 241, 243, 262
colnames (R function), 207, 209, 261,

345, 377
color, 273
colour (R function), 243
colSums (R function), 380, 381
comment, 173
complete.cases (R function), 374
complex (R function), 249
complex numbers, 200
compress, 223
Conditional trees, 495–497
confidence, 399

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

INDEX 593

confusion matrix, 138, 457
confusion matrix, 138, 457
contingency table, 138, 457
contingency table, 138, 457
continue, 189
Copy, 23, 24
cor (R function), 288, 353
correlation, 288, 353
cost, 423
cp, 416
crude (Dataset), 472
CSV, 27
ctree (R function), 496
cut (R function), 383, 384, 408, 409

Data, 15, 26, 27, 29, 30, 83, 113,
199

data, 385
loading, 26

data import
csv, 228
txt, 29

data sources, see data import
data (R function), 217
data cleaning, 370–377
Data Entry, 40
data frame, 208–210
data import

Access, 26
arff, 26, 32–34
csv, 26–32
DB2, 26
Excel, 26, 228
missing values, see missing val-

ues
MySQL, 26
ODBC, 26, 35–37, 228
Oracle, 26
SQL Server, 26

SQLite, 26
Teradata, 26
txt, 26

data linking, 379–380
data transformation, 380–384

aggregation, 380
Sum of columns, 380

data types, 199
Data frame, 208–210
date, 203–204
Matrix, 207–208
String, 201–202
Vector, 205–206

dataset, 25
testing, 26
training, 26

Datasets
audit, xxxiv, 16, 18, 32, 55, 69,

70, 97, 102, 120, 151
crude, 472
iris, 167, 222, 237
survey, 221, 377, 457
wine, 219, 260, 262, 265, 272,

281, 282, 284, 288, 345, 350,
353, 433

date, 203–204
dd load (R function), 344
Debian, 165
decision tree, see random forest
Decision trees, 105–108, 415–426
Delete Ignored, 97
density estimate, 62
dependencies, 13
Describe, 50, 62
DescribeDisplay (R package), 343
Design (R package), 507
detach (R function), 177, 237
dev.copy (R function), 255
dev.cur (R function), 252

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

594 INDEX

dev.list (R function), 252
dev.next (R function), 252
dev.off (R function), 251
dev.prev (R function), 252
dev.set (R function), 252
difftime (R function), 203
digits, 152, 189
dim (R function), 261, 345, 377
distribution, 436
distributions

normal, 63
divide by zero, 212
do.call (R function), 209
download.file (R function), 218
download.packages (R function), 178
dprep (R package), 384
duplicated (R function), 372

e1071 (R package), 448, 512, 516
EDA, see Exploratory data anal-

ysis, see exploratory data
analysis

Eddelbuettel, Dirk, 165
edit (R function), 175, 207
Education, 32
ellipse (R package), 288, 353
Employment, 32, 72
ensemble model builder, 109
Enterprise Miner, 559–562
entity, 25
Equal Width, 92
Equbits Foresight, 549
Evaluate, 22, 116–118, 136–138, 155
evaluation

risk chart, 101
example (R function), 175
Excel, see data import
Execute, 40, 41, 113, 114, 116, 130
exploratory data analysis, 47, 259

Explore, 47, 48, 55, 89
Explore Missing, 78, 79
Export, 18, 20, 83, 154

false negative, 138, 457
false positive, 138, 457
feature, see variable
feature selection, 384
fields (R package), 249
fig (R function), 252
file (R function), 230
file.choose (R function), 220
file.show (R function), 28, 184
finco (R function), 384
fix (R function), 207
Flavanoids, 284
floor (R function), 151
for (R function), 377
Forest, 113
format (R function), 224, 381
format.df (R function), 224
formatC (R function), 224
Fujitsu, 551–553
functional, 173
functional language, 173

gbm (R function), 436
gbm (R package), 433, 436
gc (R function), 193
gcinfo (R function), 193
Gender, 95, 453
get (R function), 186
getOption (R function), 189
GGobi, 71, 72
ggplot (R package), 304
GhostMiner, 551–553
GNU/Linux, 165
gplots (R package), 181, 316
graphics

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

INDEX 595

barchart, 328
graphics.off (R function), 251
gray (R function), 243
grep (R function), 201
gsub (R function), 202

head (R function), 213, 261, 345
Health Insurance Commission, 413
help, 174, 180
help (R function), 174, 181
help.search (R function), 175
help.start (R function), 174
Hierarchical clustering, 492–493, 499
hist (R function), 237, 274
histogram, 62
histogram (R function), 273
Hmisc (R package), 224
holdout method, 459
horizontal, 300, 362
htmlhelp, 174
hyperedges, 405

IBM
Advance Scout, 413

ID, 30
if (R function), 203
image (R function), 249
Importance, 116
imputation, 88

multiple imputation, 378
Income, 32, 69
incremental model building, 447
InductionEngine, 555
inspect (R function), 406
install

GTK+, 10
R, 8
R packages, 12
Rattle, 13

RGtk2, 12
install.packages (R function), 165,

178
installed.packages (R function), 178
interpreted language, 173
interquartile range, 60, 299, 361
invisible (R function), 184, 207
iris (Dataset), 167, 222, 237
is.factor (R function), 377
is.integer (R function), 377
is.logical (R function), 377
is.na (R function), 374
is.numeric (R function), 376, 377
itemsets, 405

join, see merge
Join Categoricals, 95
jpeg (R function), 252
JPG, 235

K-means, 391–395, 487–492
K-Nearest Neighbour, 501
K-nearest neighbour, 501–502
Kernel Methods, 513, 514
Kernel methods, 513
kernlab (R package), 120, 512–514,

516
KMeans, 92
kurtosis, 52

lapply (R function), 284, 375, 377
latex (R function), 224
lattice (R package), 256, 273, 319,

327
layout (R function), 309
legend (R function), 241, 262
length (R function), 152
levels (R function), 211
library (R function), 174, 177, 180,

182

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

596 INDEX

linear interpolation, 388
load (R function), 222, 223
locator (R function), 256
Log, 15, 18, 95, 121, 154, 155, 445
log (R function), 173
Logistic regression, 507–508
LogitBoost (R function), 433
logitboost (R function), 433
loss, 423, 424
lty, 241, 262

mapply (R function), 185
maptree (R package), 425
Marital, 32, 56, 69
matplot (R function), 262
matrix, see dataset, 207–208
matrix (R function), 207, 381
matrix scatterplot, 287
max (R function), 377
maxdepth, 416, 434
mean, 61, 296, 297, 357, 359
mean (R function), 185, 186, 281,

297, 359
median, 60, 296, 299, 357, 361
median (R function), 408
merge (R function), 379
Meta algorithms

AdaBoost, 427–442
Boosting, 427–442
Bootstrapping, 485–486

meta algorithms
bagging, 479–480
boosting, 109–111

methods (R function), 175
mfrow, 302, 310
min (R function), 377
minbucket, 416
minsplit, 416
missing values

in csv files, 30
mitools (R package), 378
mode (R function), 200
Model, 20, 22, 113, 114, 137
model

linear interpolation, 388
model builders

random forest, 111–119
modelling

supervised, 21
unsupervised, 21

Months, 453
months (R function), 204, 343
mvpart (R function), 418
mvpart (R package), 418, 425

na.omit (R function), 374
näıve Bayes classifier, 481–484
nchar (R function), 201, 224
ncol (R function), 261, 345, 377
Neural networks, 509–510
new, 254
nomenclature, 25–26
normal distribution, 63
Normalise, 85
nrepeat, 449
nrow (R function), 151, 167, 222,

261, 345, 381
nsl (R function), 190
Number of Trees, 111

object, see entity
object.size (R function), 97, 192
Occupation, 32
ODBC, see data import
odbcClose (R function), 229
odbcConnect (R function), 226
odbcConnectAccess (R function), 229
odbcConnectExcel (R function), 228

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

INDEX 597

ODM, 557–558
ODMiner, 557–558
OLAP, 576
on.exit (R function), 190
online model building, 447
options (R function), 152, 178, 189
Oracle, 557–558
order (R function), 214
ordered (R function), 211, 343, 408,

409
out of bag, 115
outlier analysis, 451–452

packageStatus (R function), 178, 179
palette (R function), 243, 284
par (R function), 255, 256, 302
parms, 423
party (R package), 496
paste (R function), 201
pch, 241, 284
PDF, 235
pdf (R function), 252, 255
percentile, 60, 299, 361
Phenols, 284
pie (R function), 237, 265
pie chart, 265
pinktoe (R package), 425
pivot table

reshape, 281
plot (R function), 166, 175, 231,

237, 238, 254, 284, 287, 418
plot.rpart (R function), 175
plotcorr (R function), 288, 353
plotmeans (R function), 316
plotNetwork (R function), 312
plots

matrix scatterplot, 287
Scatterplot, 237
scatterplot, 284, 287

pmatch (R function), 201
PNG, 235
png (R function), 252
PostScript, 235
postscript (R function), 252, 255
predict (R function), 421, 456, 457
PredictionWorks, 555
predictor

seeinput variable, 26
Print, 23, 24
printcp (R function), 418, 455
prior, 423, 424
proc.time (R function), 190
prompt, 189
prompt (R function), 233

q (R function), 167
qplot (R function), 304
Quantian live CD, 164
Quantile, 92
quantile (R function), 302
quartile, 60, 299, 361
quartz (R function), 251

R, 527–528
R functions, 186

.packages, 182
adaboost, 433
aggregate, 204, 282
apply, 374, 381
approxfun, 388
apriori, 402, 406, 409, 410
array, 206
arrows, 240
as, 409
as.Date, 203, 204
as.integer, 284
as.logical, 377
as.matrix, 192

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

598 INDEX

as.yearmon, 204
attach, 210, 223, 237, 319
attr, 186
available.packages, 178
barchart, 319, 320
barplot, 272, 350
bbox, 232
binning, 92, 383, 384
bitmap, 252
bmp, 252
boxplot, 237, 299–302, 343, 361–

363, 374
bxp, 302, 303
c, 205, 207, 456
capabilities, 189
cast, 281
class, 375
cm.colors, 243, 288, 353
colnames, 207, 209, 261, 345,

377
colour, 243
colSums, 380, 381
complete.cases, 374
complex, 249
cor, 288, 353
ctree, 496
cut, 383, 384, 408, 409
data, 217
dd load, 344
detach, 177, 237
dev.copy, 255
dev.cur, 252
dev.list, 252
dev.next, 252
dev.off, 251
dev.prev, 252
dev.set, 252
difftime, 203
dim, 261, 345, 377

do.call, 209
download.file, 218
download.packages, 178
duplicated, 372
edit, 175, 207
example, 175
fig, 252
file, 230
file.choose, 220
file.show, 28, 184
finco, 384
fix, 207
floor, 151
for, 377
format, 224, 381
format.df, 224
formatC, 224
gbm, 436
gc, 193
gcinfo, 193
get, 186
getOption, 189
graphics.off, 251
gray, 243
grep, 201
gsub, 202
head, 213, 261, 345
help, 174, 181
help.search, 175
help.start, 174
hist, 237, 274
histogram, 273
if, 203
image, 249
inspect, 406
install.packages, 165, 178
installed.packages, 178
invisible, 184, 207
is.factor, 377

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

INDEX 599

is.integer, 377
is.logical, 377
is.na, 374
is.numeric, 376, 377
jpeg, 252
lapply, 284, 375, 377
latex, 224
layout, 309
legend, 241, 262
length, 152
levels, 211
library, 174, 177, 180, 182
load, 222, 223
locator, 256
log, 173
LogitBoost, 433
logitboost, 433
mapply, 185
matplot, 262
matrix, 207, 381
max, 377
mean, 185, 186, 281, 297, 359
median, 408
merge, 379
methods, 175
min, 377
mode, 200
months, 204, 343
mvpart, 418
na.omit, 374
nchar, 201, 224
ncol, 261, 345, 377
nrow, 151, 167, 222, 261, 345,

381
nsl, 190
object.size, 97, 192
odbcClose, 229
odbcConnect, 226
odbcConnectAccess, 229

odbcConnectExcel, 228
on.exit, 190
options, 152, 178, 189
order, 214
ordered, 211, 343, 408, 409
packageStatus, 178, 179
palette, 243, 284
par, 255, 256, 302
paste, 201
pdf, 252, 255
pie, 237, 265
plot, 166, 175, 231, 237, 238,

254, 284, 287, 418
plot.rpart, 175
plotcorr, 288, 353
plotmeans, 316
plotNetwork, 312
pmatch, 201
png, 252
postscript, 252, 255
predict, 421, 456, 457
printcp, 418, 455
proc.time, 190
prompt, 233
q, 167
qplot, 304
quantile, 302
quartz, 251
rainbow, 367
randomForest, 374
rbind, 208, 209
read.arff, 34
read.csv, 151, 203, 218, 221
read.transactions, 403
read.xls, 229
readShapePoly, 231
rect, 246
relief, 384
remove.packages, 178

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

600 INDEX

rep, 381
require, 177
rescaler, 382
return, 184
rev, 214, 377
rnorm, 332, 343, 363, 384, 388
rownames, 207, 261, 345
rpart, 192, 373, 415, 416, 418,

423, 429, 433, 457
rpart.control, 434
Rprof, 190
RSiteSearch, 175
runif, 205, 388
sample, 42, 151, 222, 369
sample.split, 152, 370
sapply, 298, 376
save, 219, 222, 223, 229
scale, 381
scan, 215, 230
search, 177
seq, 205, 377
seq.dates, 204
sessionInfo, 188
set.seed, 42
show.settings, 256
sprintf, 224
sqlFetch, 226, 228, 229
sqlQuery, 228, 229
sqlTables, 226, 228, 229
stopifnot, 181
str, 150, 174, 261, 346
strftime, 203
strptime, 343
strsplit, 201
strwidth, 246
sub, 201, 202
subset, 210, 310
substr, 201
sum, 381

summary, 60, 179, 262, 296, 297,
299, 346, 358, 359, 361, 371,
404, 409, 410

sunflower, 314
svm, 512, 516
Sys.info, 188
Sys.sleep, 190
system, 187
system.file, 28, 184
system.time, 190, 193, 380
t, 208
table, 135, 152, 455, 457
tail, 213, 214
TermDocMatrix, 472
text, 246, 272, 350
tim.colors, 249
traceback, 194
trellis.par, 256
trellis.par.get, 256
trellis.par.set, 319
tune, 448, 449
typeof, 199
unique, 214
unlist, 284
unstack, 209
update.packages, 178
UseMethod, 186
vector, 205
vignette, 174, 175, 406
which, 212, 434
win.metafile, 252, 254
window, 23
windows, 23, 251
with, 213, 238
write.gif, 249
write.table, 218
x11, 23, 251
years, 204
zoo, 204

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

INDEX 601

R options
at, 310
believeNRows, 227
breaks, 274
classwt, 444
col, 241, 243, 262
color, 273
compress, 223
continue, 189
cost, 423
dependencies, 13
digits, 152, 189
distribution, 436
help, 174, 180
horizontal, 300, 362
htmlhelp, 174
hyperedges, 405
itemsets, 405
loss, 423, 424
lty, 241, 262
maxdepth, 434
mfrow, 302, 310
new, 254
parms, 423
pch, 241, 284
prior, 423, 424
prompt, 189
rules, 405
sampsize, 444
scipen, 257
strata, 444
type, 457
usr, 236, 255, 310
weight, 429
weights, 423, 424
where, 421
width, 189
xlim, 231
xpd, 236, 256, 272, 350

y, 272, 350
ylim, 231

R packages
ada, 110, 123
amap, 391, 487, 492, 499
arules, 398, 401–403, 406
boost, 433, 436
caret, 447
caTools, 152, 249, 370, 433
chron, 204, 341
DescribeDisplay, 343
Design, 507
dprep, 384
e1071, 448, 512, 516
ellipse, 288, 353
fields, 249
gbm, 433, 436
ggplot, 304
gplots, 181, 316
Hmisc, 224
kernlab, 120, 512–514, 516
lattice, 256, 273, 319, 327
maptree, 425
mitools, 378
mvpart, 418, 425
party, 496
pinktoe, 425
randomForest, 113
randomForrest, 444
rattle, 170, 423
Rcmdr, 170, 172
reshape, 281, 382
rggobi, 10
ROCR, 135, 138, 455, 460
RODBC, 191, 226, 227
rpart, 425, 433
RWeka, 438
sudoku, 194
survey, 197

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

602 INDEX

tm, 471, 472
tree, 425
ttda, 471
xlsReadWrite, 229
zoo, 204, 264, 341

R variables
.Machine, 189
.Platform, 187
cp, 416
maxdepth, 416
minbucket, 416
minsplit, 416
nrepeat, 449
repeat.aggregate, 449
sampling, 449
sampling.aggregate, 449
surrogatestyle, 416
version, 187

radio button, xlvii
rainbow (R function), 367
random forest, 111–119
randomForest (R function), 374
randomForest (R package), 113
randomForrest (R package), 444
Rank, 85
Rattle, 531–532

install, 13
start up, 14
Variables

Adjusted, 70, 73, 102
Adjustment, 102, 113, 116
Age, 30, 32, 56, 70, 72, 90,

95
Churn, 453
Education, 32
Employment, 32, 72
Gender, 95, 453
ID, 30
Income, 32, 69

Marital, 32, 56, 69
Months, 453
Occupation, 32

Widgets
-Median/MAD, 85
Annotate, 58, 61
Associate, 22, 129, 130
Basics, 51
Baskets, 130
Believe Num Rows, 36
Benford, 69
Binning, 95
Boost, 111
Cleanup, 95, 97
Close, 23, 24
Cluster, 22
Copy, 23, 24
CSV, 27
Data, 15, 26, 27, 29, 30, 83,

113
Data Entry, 40
Delete Ignored, 97
Describe, 50, 62
Equal Width, 92
Evaluate, 22, 116–118, 136–

138, 155
Execute, 40, 41, 113, 114, 116,

130
Explore, 47, 48, 55, 89
Explore Missing, 78, 79
Export, 18, 20, 83, 154
Forest, 113
GGobi, 71, 72
Importance, 116
Join Categoricals, 95
KMeans, 92
Log, 15, 18, 95, 121, 154, 155,

445
Model, 20, 22, 113, 114, 137

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

INDEX 603

Normalise, 85
Number of Trees, 111
Print, 23, 24
Quantile, 92
Rank, 85
Recenter, 85, 88
Remap, 69, 70, 95
Risk, 116
Sample, 41, 138
Save, 23, 24
Scale [0,1], 85
Select, 41, 69, 83, 97, 113,

114, 129, 138
Settings, 23
Show Missing, 55, 89
Summary, 48, 49, 55, 60, 89
Tools, 41
Transform, 69, 70, 83, 85, 94,

97
Two Class, 118
Unsupervised, 16
Use Sample, 48

rattle (R package), 170, 423
rbind (R function), 208, 209
Rcmdr (R package), 170, 172
read.arff (R function), 34
read.csv (R function), 151, 203, 218,

221
read.transactions (R function), 403
read.xls (R function), 229
readShapePoly (R function), 231
recall, 458
Recenter, 85, 88
record, see entity
rect (R function), 246
Regression

Logistic regression, 507–508
Neural networks, 509–510
Support vector machine (SVM),

513–516
regular expressions, 202
relief (R function), 384
Remap, 69, 70, 95
remove.packages (R function), 178
rep (R function), 381
repeat.aggregate, 449
require (R function), 177
rescaler (R function), 382
reshape (R package), 281, 382
return (R function), 184
rev (R function), 214, 377
rggobi (R package), 10
Ridgeway, Greg, 436
Risk, 116
risk analysis, 102
rnorm (R function), 332, 343, 363,

384, 388
ROCR (R package), 135, 138, 455,

460
RODBC (R package), 191, 226, 227
rownames (R function), 207, 261,

345
rpart (R function), 192, 373, 415,

416, 418, 423, 429, 433, 457
rpart (R package), 425, 433
rpart.control (R function), 434
Rprof (R function), 190
RSiteSearch (R function), 175
rug, 62
rules, 405
runif (R function), 205, 388
RWeka (R package), 438

Salford Systems, 569
Sample, 41, 138
sample (R function), 42, 151, 222,

369
sample.split (R function), 152, 370

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

604 INDEX

sampling, 449
sampling.aggregate, 449
sampsize, 444
sapply (R function), 298, 376
SAS, 559–562
Save, 23, 24
save (R function), 219, 222, 223,

229
scale (R function), 381
Scale [0,1], 85
scan (R function), 215, 230
scatterplot, 237, 284, 287
scipen, 257
script file, 162, 166
search (R function), 177
Select, 41, 69, 83, 97, 113, 114, 129,

138
selection, see clipboard
seq (R function), 205, 377
seq.dates (R function), 204
sessionInfo (R function), 188
set.seed (R function), 42
Settings, 23
shapefiles, 230
Show Missing, 55, 89
show.settings (R function), 256
skewness, 54
sprintf (R function), 224
SPSS, 547
sqlFetch (R function), 226, 228, 229
sqlQuery (R function), 228, 229
sqlTables (R function), 226, 228, 229
Statistica, 563–567
StatSoft, 563–567
Stem-and-leaf, 267, 347
stopifnot (R function), 181
str (R function), 150, 174, 261, 346
strata, 444
strftime (R function), 203

string, 201–202
strptime (R function), 343
strsplit (R function), 201
strwidth (R function), 246
sub (R function), 201, 202
subset (R function), 210, 310
substr (R function), 201
sudoku (R package), 194
sum (R function), 381
Summary, 48, 49, 55, 60, 89
summary (R function), 60, 179, 262,

296, 297, 299, 346, 358, 359,
361, 371, 404, 409, 410

sunflower (R function), 314
support, 399
Support vector machine (SVM), 513–

516
surrogatestyle, 416
survey (Dataset), 221, 377, 457
survey (R package), 197
survival analysis, 453
SVM, 513–516
svm (R function), 512, 516
Sys.info (R function), 188
Sys.sleep (R function), 190
system (R function), 187
system.file (R function), 28, 184
system.time (R function), 190, 193,

380

t (R function), 208
table, see dataset
table (R function), 135, 152, 455,

457
tail (R function), 213, 214
temporal analysis, 453–454
TermDocMatrix (R function), 472
test set, 459
text (R function), 246, 272, 350

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

INDEX 605

tim.colors (R function), 249
tm (R package), 471, 472
Togaware, 531–532
Tools, 41

Borgelt, 523–524
Clementine, 547
Enterprise Miner, 559–562
Equbits Foresight, 549
Ghostminer, 551–553
InductionEngine, 555
ODM, 557–558
ODMiner, 557–558
R, 527–528
Rattle, 531–532
SAS Enterprise Miner, 559–562
Statistica, 563–567
TreeNet, 569
Virtual Predict, 571–572
Weka, 535–537

traceback (R function), 194
training set, 459
Transform, 69, 70, 83, 85, 94, 97
tree (R package), 425
TreeNet, 569
trellis.par (R function), 256
trellis.par.get (R function), 256
trellis.par.set (R function), 319
true negative, 138, 457
true positive, 138, 457
true positive rate, 458
ttda (R package), 471
tune (R function), 448, 449
Two Class, 118
type, 457
typeof (R function), 199

unique (R function), 214
University of Magdeburg, 523–524
University of Waikato, 535–537

unlist (R function), 284
unstack (R function), 209
Unsupervised, 16
update.packages (R function), 178
Use Sample, 48
UseMethod (R function), 186
usr, 236, 255, 310

variable, 25
descriptive

seeinput variable, 26
independent

seeinput variable, 26
input, 25
output, 25

variable selection, 384–385
variance, 296, 357, 575
vector, 205–206
vector (R function), 205
Vendors

Equbits, 549
Fujitsu, 551–553
Oracle, 557–558
PredictionWorks, 555
Salford Systems, 569
SAS, 559–562
SPSS, 547
StatSoft, 563–567
Togaware, 531–532
University of Magdeburg, 523–

524
University of Waikato, 535–537
Virtual Genetics, 571–572

version, 187
vignette (R function), 174, 175, 406
Virtual Genetics, 571–572
Virtual Predict, 571–572

weight, 429

—

— —

—

—

— —

—
Graham Williams — Data Mining Desktop Survival 18th January 2008

Personal Copy for Martin Schultz, 18 January 2008

Togaware Watermark For Data Mining Survival

Copyright c© 2006-2008 Graham Williams

606 INDEX

weights, 423, 424
Weka, 535–537
where, 421
which (R function), 212, 434
Wickham, Hadley, 382
widget, xlvii
width, 189
win.metafile (R function), 252, 254
window (R function), 23
windows (R function), 23, 251
wine (Dataset), 219, 260, 262, 265,

272, 281, 282, 284, 288, 345,
350, 353, 433

with (R function), 213, 238
write.gif (R function), 249
write.table (R function), 218

x11 (R function), 23, 251
xlim, 231
xlsReadWrite (R package), 229
xpd, 236, 256, 272, 350

y, 272, 350
years (R function), 204
ylim, 231

zoo (R function), 204
zoo (R package), 204, 264, 341

	I Data Mining with Rattle
	Introduction
	Data Mining
	Types of Analysis
	Data Mining Applications
	A Framework for Modelling
	Agile Data Mining

	Rattle Data Miner
	Installing GTK, R, and Rattle
	Quick Start Install
	Installation Details

	The Initial Interface
	Interacting with Rattle
	Menus and Buttons
	Project Menu and Buttons
	Edit Menu
	Tools Menu and Toolbar
	Settings
	Help

	Paradigms
	Interacting with Plots
	Summary

	Sourcing Data
	Nomenclature
	Loading Data
	CSV Data
	ARFF Data
	ODBC Sourced Data
	R Data
	R Dataset
	Data Entry

	Selecting Data
	Sampling Data
	Variable Roles
	Automatic Role Identification
	Weights Calculator

	Exploring Data
	Summarising Data
	Summary
	Describe
	Basics
	Kurtosis
	Skewness
	Missing

	Exploring Distributions
	Box Plot
	Histogram
	Cumulative Distribution Plot
	Benford's Law
	Bar Plot
	Dot Plot
	Mosaic Plot

	Sophisticated Exploration with GGobi
	Scatterplot
	Data Viewer: Identifying Entities in Plots
	Other Options
	Further GGobi Documentation

	Correlation Analysis
	Hierarchical Correlation
	Principal Components

	Single Variable Overviews

	Transforming Data
	Normalising Data
	Recenter
	Scale [0,1]
	Rank
	Median/MAD

	Impute
	Zero/Missing
	Mean/Median/Mode
	Constant

	Remap
	Binning
	Indicator Variables
	Join Categoricals
	Math Transforms

	Outliers
	Cleanup
	Delete Ignored
	Delete Selected
	Delete Missing
	Delete Entities with Missing

	Building Classification Models
	Building Models
	Risk Charts
	Decision Trees
	Tutorial Example
	Formalities
	Tuning Parameters

	Boosting
	Tutorial Example
	Formalities
	Tuning Parameters

	Random Forests
	Tutorial Example
	Formalities
	Tuning Parameters

	Support Vector Machine
	Logistic Regression
	Bibliographic Notes

	Unsupervised Modelling
	Cluster Analysis
	KMeans
	Export KMeans Clusters
	Discriminant Coordinates Plot
	Number of Clusters

	Hierarchical Clusters
	Association Rules
	Basket Analysis
	General Rules

	Evaluation
	The Evaluate Tab
	Confusion Matrix
	Measures
	Graphical Measures

	Lift
	ROC Curves
	Precision versus Recall
	Sensitivity versus Specificity
	Scoring
	Calibration Curves

	Issues
	Model Selection
	Overfitting
	Imbalanced Classification
	Sampling
	Cost Based Learning

	Model Deployment and Interoperability
	SQL
	PMML

	Bibliographic Notes

	Moving into R
	The Current Rattle State
	Data
	Samples
	Projects
	The Rattle Log
	Further Tuning Models

	Troubleshooting
	Cairo: cairo_pdf_surface_create could not be located
	A factor has new levels

	II R for the Data Miner
	R: The Language
	Obtaining and Installing R
	Installing on Debian GNU/Linux
	Installing on MS/Windows
	Install MS/Windows Version Under GNU/Linux

	Interacting With R
	Basic Command Line
	Emacs and ESS
	Windows, Icons, Mouse, Pointer---WIMP

	Evaluation
	Help
	Assignment
	Libraries and Packages
	Searching for Objects
	Package Management
	Information About a Package
	Testing Package Availability
	Packages and Namespaces

	Basic Programming in R
	Folders and Files
	Flow Control
	Functions
	Apply
	Methods
	Objects
	System
	Misc
	Internet

	Memory Management
	Memory Usage
	Garbage Collection
	Errors

	Frivolous
	Sudoku

	Further Resources
	Using R
	Specific Purposes

	Data
	Data Types
	Numbers
	Strings
	Logical
	Dates and Times
	Space

	Data Structures
	Vectors
	Arrays
	Lists
	Sets
	Matricies
	Data Frames
	General Manipulation

	Loading Data
	Interactive Responses
	Interactive Data Entry
	Available Datasets
	CSV Data Used In The Book

	Saving Data
	Formatted Output
	Automatically Generate Filenames

	Using SQLite
	ODBC Data
	Database Connection
	Excel
	Access

	Clipboard Data
	Map Data
	Other Data Formats
	Fixed Width Data
	Global Positioning System

	Documenting a Dataset
	Common Data Problems

	Graphics in R
	Basic Plot
	Controlling Axes
	Arrow Axes
	Legends and Points
	Colour

	Symbols
	Multiple Plots
	Other Graphic Elements
	Maths in Labels
	Making an Animation
	Animated Mandelbrot
	Adding a Logo to a Graphic
	Graphics Devices Setup
	Screen Devices
	Multiple Devices
	File Devices
	Multiple Plots
	Copy and Print Devices

	Graphics Parameters
	Plotting Region
	Locating Points on a Plot
	Scientific Notation and Plots

	Understanding Data
	Single Variable Overviews
	Textual Summaries
	Multiple Line Plots
	Separate Line Plots
	Pie Chart
	Fan Plot
	Stem and Leaf Plots
	Histogram
	Barplot
	Trellis Histogram
	Histogram Uneven Distribution
	Density Plot
	Basic Histogram
	Basic Histogram with Density Curve
	Practical Histogram

	Multiple Variable Overviews
	Pivot Tables
	Scatterplot
	Scatterplot with Marginal Histograms
	Multi-Dimension Scatterplot
	Correlation Plot
	Colourful Correlations
	Projection Pursuit
	RADVIZ
	Parallel Coordinates

	Measuring Data Distributions
	Textual Summaries
	Boxplot
	Violin Plot
	What Distribution
	Labelling Outliers

	Miscellaneous Plots
	Line and Point Plots
	Matrix Data
	Multiple Plots
	Aligned Plots
	Probability Scale
	Network Plot
	Sunflower Plot
	Stairs Plot
	Graphing Means and Error Bars
	Bar Charts With Segments
	Bar Plot With Means
	Multi-Line Title
	Mathematics
	Plots for Normality
	Basic Bar Chart
	Bar Chart Displays
	Multiple Dot Plots
	Alternative Multiple Dot Plots
	3D Plot
	Box and Whisker Plot
	Box and Whisker Plot: With Means
	Clustered Box Plot
	Perspective Plots
	Star Plot
	Residuals Plot

	Dates and Times
	Simple Time Series
	Multiple Time Series
	Plot Time Series
	Plot Time Series with Axis Labels
	Grouping Time Series for Box Plot

	Using gGobi
	Quality Plots Using R

	Textual Summaries
	Stem and Leaf Plots
	Histogram
	Barplot
	Density Plot
	Basic Histogram
	Basic Histogram with Density Curve
	Practical Histogram
	Correlation Plot
	Colourful Correlations

	Measuring Data Distributions
	Textual Summaries
	Boxplot
	Box and Whisker Plot
	Box and Whisker Plot: With Means
	Clustered Box Plot

	Further Resources
	Map Displays
	Further Resources

	Preparing Data
	Data Selection and Extraction
	Training and Test Datasets

	Data Cleaning
	Variable Manipulations
	Cleaning the Wine Dataset
	Cleaning the Cardiac Dataset
	Cleaning the Survey Dataset

	Imputation
	Nearest Neighbours
	Multiple Imputation

	Data Linking
	Simple Linking
	Record Linkage

	Data Transformation
	Aggregation
	Normalising Data
	Binning
	Interpolation

	Outlier Detection
	Variable Selection

	Descriptive and Predictive Analytics
	Building a Model

	Cluster Analysis: K-Means
	Summary
	Clusters

	Other Cluster Examples

	Association Analysis: Apriori
	Summary
	Overview
	Algorithm
	Usage
	Read Transactions
	Summary
	Apriori
	Inspect

	Examples
	Video Marketing: Transactions From File
	Survey Data: Data Preparation
	Other Examples

	Resources and Further Reading

	Classification: Decision Trees
	Summary
	Overview
	Algorithm
	Usage
	Rpart

	Examples
	Resources and Further Reading

	Classification: Boosting
	Summary
	Overview
	AdaBoost Algorithm
	Examples
	Step by Step
	Using gbm

	Extensions and Variations
	Alternating Decision Tree

	Resources and Further Reading

	Classification: Random Forests
	Summary
	Overview
	Algorithm
	Usage
	Random Forest

	Examples
	Resources and Further Reading

	Issues
	Incremental or Online Modelling
	Model Tuning
	Tuning rpart

	Unbalanced Classification
	Building Models
	Outlier Analysis
	Temporal Analysis
	Survival Analysis

	Evaluation
	Basics
	Basic Measures
	Cross Validation
	Graphical Performance Measures
	Lift
	The ROC Curve
	Other Examples

	Calibration Curves

	Cluster Analysis

	III Text Mining
	Text Mining
	Text Mining with R

	IV Algorithms
	Bagging
	Summary
	Overview
	Example
	Algorithm
	Resources and Further Reading

	Bayes Classifier
	Summary
	Example
	Algorithm
	Resources and Further Reading

	Bootstrapping
	Summary
	Usage
	Further Information

	Cluster Analysis
	Discriminant Coordinates Plot
	K Means
	Summary
	Clusters

	Hierarchical Clustering
	Summary
	Examples
	Resources and Further Reading

	Conditional Trees
	Summary
	Algorithm
	Examples
	Resources and Further Reading

	Hierarchical Clustering
	Summary
	Examples
	Resources and Further Reading

	K-Nearest Neighbours
	Summary
	Resources and Further Reading

	Linear Models
	Linear Model

	Regression: Ordinal Regression
	Logistic Regression
	Summary
	Linear Model

	Resources and Further Reading

	Neural Networks
	Overview
	Algorithm
	Neural Network

	Resources and Further Reading

	SVM
	Overview
	Examples
	Resources and Further Reading
	Overview
	Examples
	Resources and Further Reading

	V Open Products
	Rattle and Other Data Mining Suites
	AlphaMiner
	Borgelt
	Summary
	Usage

	KNime
	R
	Summary
	Further Information

	Rapid-I
	Rattle
	Summary
	Usage

	Weka
	Summary
	Usage

	VI Closed Products
	C4.5
	Summary
	Overview
	Resources and Further Reading

	Clementine
	Summary

	Equbits Foresight
	Summary

	GhostMiner
	Summary
	Usage

	InductionEngine
	Summary

	Oracle Data Mining
	Summary
	Usage

	SAS Enterprise Miner
	Summary
	Usage
	Tips and Tricks

	Statistica
	Summary
	Usage
	Sample Applications
	Further Information

	TreeNet
	Summary

	Virtual Predict
	Summary
	Usage

	VII Appendicies
	Glossary
	Bibliography
	Index

