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1 Combinatorial Auctions

1.1 Overview

Our treatment of combinatorial auctions will be organized as follows:

1. Ascending Auctions and the Vickrey-Clarke-Groves (VCG) mechanism;

2. Linear programming techniques and the concept of Walrasian equilibrium;

3. Approximation and communication complexity.

1.2 Basic Elements and Notation

• The set of objects/items is given by K = {1, ..., K}. The set of possible

bundles that can be formed from K is denoted by the power-set1 2K. An arbitrary

bundle is denoted by S ∈ 2K. Observe that the cardinality of 2K, i.e. the number

of elements in the set 2K, is given by 2K .

• The set of bidders/agents is given by N = {1, ..., N}.

• Agent n ∈ N has a valuation function

vn : 2K → R+.

That is, each agent n ∈ N assigns a non-negative number to every possible subset

of the set of objects K.

Most importantly, the valuation-function vn is agent n’s private knowledge.2 She can be

asked to report it, but it is by no means clear that agent n will actually tell the truth.

So, it is the task of the mechanism-designer to set up a mechanism such that it is in the

agent’s self-interest to report her valuation. This will be a crucial feature of mechanisms

that we will be talking about below.

In order to reflect different preferences for bundles of items, certain restrictions can be

imposed on the valuation-function vn for an agent n ∈ N :

• vn can be assumed to be additive, i.e.

vn(S) =
∑
k∈S

vn(k).

1The power-set of K refers to the set of all subsets of K. For example for the set {1, 2, 3} the power-set
is given by {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

2So, the agent’s valuation function will be regarded as his type. This has previously been denoted by
tn.
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Under the linearity-assumption, one obtains the valuation for a bundle by simply

adding up the valuations for the objects in K that constitute the subset S. In

consequence, one does not need to worry about specifying the valuation of agent n

for any possible subset S ⊆ K, but all valuations can be reverse-engineered from

the valuations of the objects k ∈ K.

Another important aspect is related to the point of view of an auctioneer. She does

not have to worry about offering bundles of the objects to be auctioned off, but it

is sufficient for her to assign each object k ∈ K in a separate auction.

• Alternatively, the valuation function might be defined in a non-additive manner for

two arbitrary subsets S, T ∈ 2K satisfying S ∩ T = ∅:

– S and T are said to be complements iff

vn(S ∪ T ) > vn(S) + vn(T ).

That is, agent n values having both bundles more than getting either one of

them.

– S and T are said to be substitutes iff

vn(S ∪ T ) 6 vn(S) + vn(T ).

That is, agent n values having both bundles less than getting either one of

them.

Making use of the valuation-function3 vn of any agent n ∈ N , it will be assumed that

agent n’s utility function has the following functional form:

un : 2K × R → R
(S, t) 7→ vn(S)− t

So, agent n’s utility has an arbitrary subset S ⊆ K and a monetary transfer t as an

input. Then, her utility is given by her valuation of the bundle S minus the transfer that

she has to make. This particular specification of the utility-function is called quasi-linear

utility.

In order to complete the model, one also needs to think about the assignment of a utility-

function to the auctioneer, which we will also refer to as the government or the residual

3A priori, none of the properties for vn discussed above will be assumed to hold. The following
statements are valid for any functional assumption of vn : 2K → R+.
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recipient.4 This utility function, denoted by u0, is given by the following mapping:

u0 : 2M × RN → R

(S; t1, ..., tN) 7→
N∑

n=1

tn

The government’s utility function takes a subset from M and the transfers from all agents

as an input. Its utility value is simply the sum of the transfers. The fact that a subset of

M appears as an input of u0, but does not affect the government’s utility at all is purely

due to notational convenience. It is by no means clear that the auctioneer will necessarily

distribute all objects to the bidders. Hence, the government will be considered as an

additional entity that will receive all unassigned objects. The subset of the set K that

the government receives will be denoted by S0. Furthermore, we will use the notation

N0 , {0} ∪ N

to describe the set of agents plus the government.

1.3 Efficiency

In this subsection, we take the point of view of the auctioneer and try to determine the

”best” or efficient way (which will be made precise below) to distribute the M objects

among the N bidders and the government, i.e. over the set N0.

In order to come to the concept of efficiency, we need to formally define the concept of a

(feasible) allocation:5

Definition 1 A feasible allocation is a partition of the set K over the set N0, i.e. a

collection of subsets

S = (S0, S1..., SN)

such that:

1. For all n, n′ ∈ N0

Sn ∩ Sn′ = ∅;

2.
N⋃

n=0

Sn = K.6

4In the following analysis, we will always assume that the auctioneer is benevolent, i.e. he does not
have a self-interest, but acts in the interest of the entity of the participants in the auction.

5We will not consider any unfeasible allocations. Therefore, the following definition of ”allocation”
already incorporates feasibility.

6It is exactly the inclusion of the government that yields equality in this condition.
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The set of all such partitions (feasible allocations) will be denoted by S.

So, an allocation assigns a subset of objects from K to each player n ∈ N . We require

the intuitive to be satisfied that no object is assigned to more than one player (property

1.) and that the union of all assignments stays within the bounds of the set of available

objects (property 2.)

In order to obtain efficiency, it is necessary to aggregate all market-participants’ utilities

into a social (economy-wide) utility. An example of this aggregation is to take sum all

utilities, to which we will restrict attention in the following:7

Taking an arbitrary feasible allocation (S0, S1, ..., SN) and a tuple of transfer t1, ..., tN , the

social utility is given by

N∑
n=1

un(Sn, tn) + u0(S0; t1, ..., tN)

=
N∑

n=1

[vn(Sn)− tn] +
N∑

n=1

tn

=
N∑

n=1

vn(Sn)

The last expression (the sum of all agent’s valuations) is also referred to gross utility.

So, an efficient allocation is a feasible allocation that maximizes gross or social utility,

i.e. (S∗
1 , ..., S

∗
N) is called an efficient allocation iff

(S∗
1 , ..., S

∗
N) ∈ argmax

{
N∑

n=1

vn(Sn)

}
s.t. feasibility-conditions 1. and 2.

Previously, we have already discussed the Second-Price auction as an example of an

efficient allocation.8 In the following, we aim to generalize the concept of the Second-

Price auction by introducing the Vickrey-Clarke-Groves9 (VCG) mechanism. But, before

that, we have to clarify the notions of direct mechanism and truthful revelation in

dominant strategies.

7The sum of all participants’ utilities is by far the most widespread criterion for efficiency.
8Our argument for efficiency rested on the fact that the agent/bidder with the highest valuation

received the object
9The corresponding articles are Vickrey (1962), Clarke (1972) and Groves (1974).
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1.4 Valuation-Functions and Construction of a Direct Mecha-

nism

A direct mechanism is given by the following pair of mappings:

• An allocation:

a : R2K ·N
+ → S

a = (a1, ..., aN), where an : R2K ·N → 2K denotes the allocation that is assigned to

player n ∈ N .

• A vector of transfers:

t : R2K ·N
+ → RN

.

Both mappings that constitute a direct mechanism have R2K ·N
+ as their domain. That,

is they take a report about all valuations (remember that an agent’s valuations specifies

a non-negative value for every subset, i.e. a valuation-vector for an agent has length

R2K

+ ) from all agents (N agents) as their input. Then, the allocation-mapping outputs

a (feasible) allocation as described above and the transfer-mapping specifies a monetary

amount that agent n, n ∈ N , has to pay to the government (the benevolent planner).

1.5 Design of the Transfer

The transfer-vector t = (t1, ..., tN) ∈ RN will be specified with a very particular goal in

mind:

Truth-telling shall be a dominant strategy for the agent, i.e.

For all n ∈ N and all vn ∈ R2K

+ the following condition is satisfied

vn(an(v′1, ..., vn, ..., v
′
N))− tn(v′1, ..., vn, ..., v

′
N) >

vn(an(v′1, ..., v
′
n, ..., v

′
N))− tn(v′1, ..., v

′
n, ..., v

′
N) ∀ tuples (v′1, ..., v

′
n, ..., v

′
N)

The following remarks on this condition can be made:

• Player n compares two different regimes. In the first regime, she truthfully reports

the R2K

+ -vector to the mechanism-designer as vn. In the second regime, she makes

up a valuation-vector v′n to report to the mechanism-designer.
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• Agent n makes the comparison between the two scenarios for all possible reports

that the other agents may submit, i.e. for (v′1, ..., v
′
n−1, v

′
n+1, ..., v

′
N). This is the

characteristic feature of the concept of ”dominant strategies”, because these strate-

gies are optimal irrespective of the opponents’ actions. This is in contrast to any

notion of Nash-equilibrium that we have considered so far. Here, one presupposes

a certain kind of action for the opponents, namely the equilibrium-actions.

• The vectors of valuations for all agents are plugged into the allocation-function and

agent n’s allocations as represented by the nth row an of the allocation-matrix.

• Finally, the allocation that agent n is assigned is evaluated according to agent n

true valuation function vn.

Abstractly, agent n’s strategy, n ∈ N , in this setting can be defined as a mapping rn as

follows:

mn : R2K

+ → R2K

+ .

So, agent n takes her valuation-vector vn and transforms it into her report (which is often

referred to as her message) mn(vn). It will only be her report that she will announce

toward the mechanism-designer. In contrast, vn will remain her private knowledge.

The concept of truthful revelation corresponds to rn being the identity-mapping.

1.5.1 VCG-mechanism

As a particular example of a transfer-scheme which induces truth-telling as a dominant

strategy, the VCG-mechanism will be specified in the following. This mechanism is also

referred to as social externality pricing. That is, any agent is supposed to make a

payment according to the negative externality that she imposes on the remaining agents

by her presence. In the following, we will, for notational convenience, adhere to the

originally introduced notion of the valuation-function that has the power-set 2K as its

domain.

Compare the following two social programs:10

• Social program including agent j:

S∗ = (S∗
1 , ..., S

∗
j−1, S

∗
j , S

∗
j+1, ..., S

∗
N) ∈ argmax

N∑
n=1

vn(Sn).

• Social program excluding agent j:

S∗
−j = (S∗

1 , ..., S
∗
j−1, S

∗
j+1, ..., S

∗
N) ∈ argmax

∑
n6=j

vn(Sn).

10Both programs are obviously computed under the feasibility-restriction.
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In the social program including agent j, the objects from the set K are optimally and

feasibly distributed taking all agents into account. In contrast, the second program simply

excludes agent j from the determination of an optimal and feasible distribution of the

elements in K.

Denote

V ∗ ,
N∑

n=1

vn(S∗
n),

V ∗
−j ,

∑
n6=k

vn(S∗
−j,n).

So, V ∗ and V ∗
−j describe the levels of social utility from the two social programs.

Observe the following general properties that arise from the comparison of the two pro-

grams:

1. Assume S∗
j = ∅. That is, in the program that includes agent j, this particular agent

optimally receives no element from M. In other words, agent j does not impose

any externality on the other agents. In this case, the difference between V ∗ and V ∗
−j

is equal to zero.

2. In general, the following inequality holds:

V ∗ > V ∗
−j.

The optimization-problem for V ∗
−j can be seen as a special case of the optimization-

problem for V ∗ in which the additional restriction S∗
j = ∅ is imposed. So, the

inequality above simply originates from the fact that the maximum for V ∗ is taken

over a superset of the set over which V ∗
−j is determined.

Now, we are in the position to ask ourselves what is the exact amount of the externality

that agent j should be charged. It is flawed to simply take the difference between V ∗

and V ∗
−j, because this ignores agent j’s contribution to social welfare in the first program.

Part of the payment of agent j would be his own valuation that he contributes to social

welfare. This problem can be overcome by the following definition of the transfer in the

VCG-mechanism:

tVCG
j ,

∑
n6=j

vn(S∗
−j,n)−

∑
n6=j

vn(S∗
n).

This exactly reflects the notion of social externality pricing. Agent j is charged the

difference in the sum of the utilities of all other agents (social utility without agent j),

when she is not considered in the allocation (first sum) and when she is (second sum).
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Lemma 1

For all j ∈ N , the inequality tVCG
j > 0 holds.

Proof of Lemma 1

The first summand
∑

n6=j vn(S∗
−j,n) in the definition of tVCG

j describes the optimal level of

social utility that can be achieved of one takes agents (1, ..., j−1, j+1, ..., N) into account.

The second summand simply denotes another level of social utility in the situation that

considers (1, ..., j − 1, j + 1, ..., N). Therefore, the second summand is necessarily smaller

than or equal to the first summand.

2

Making use of the definition of tVCG
j , agent j’s utility from the VCG-mechanism is given

by

vj(S
∗
k)− tVCG

j .

Lemma 2

The following two properties hold for any agent k ∈ N:

1. Agent j will participate in the mechanism.11 Put differently, her utility is non-

negative, i.e.

vj(S
∗
j )− tVCG

j > 0.

2. Truth-telling is a dominant-strategy.

Proof of Lemma 2

Applying the definition of tVCG
j , one obtains

vj(S
∗
j )− tVCG

j = vj(S
∗
j )−

[∑
n6=j

vn(S∗
−j,n)−

∑
n6=j

vn(S∗
n)

]
= vj(S

∗
j ) +

∑
n6=j

vn(S∗
n)−

∑
n6=j

vn(S∗
−j,n)

=
N∑

n=1

vn(S∗
n)−

∑
n6=j

vn(S∗
−j,n) (1)

= V ∗ − V ∗
−j. (2)

As it has been argued above in the general property 2., the difference V ∗ − V ∗
−j from (2)

is non-negative, proving part 1. of the claim.

11Implicit in this statement is the assumption that the outside-option of any agent is zero, i.e. any
agent who does not participate in the mechanism obtains zero utility.



Economics and Computation Fall 2008 Lecture X 9

In order to verify claim 2., observe that the expression V ∗
−j =

∑
n6=j vn(S∗

−j,n) in (1) does

not depend on the report of agent j, because he is simply not taken into account. So,

agent j tries to choose a report in order to maximize the social utility V ∗ =
∑N

n=1 vn(S∗
n)

in (1). This will guarantee herself maximum-possible utility. But fixing the other agents’

reported valuations, it is exactly the true valuation for agent j which will yield the best

possible level of social utility for agent j, so it is optimal for agent j to tell the truth.

Because the other agents’ reports have been assumed to be arbitrary, it follows that

truth-telling is a dominant strategy for agent j.

2

1.6 Special Cases of the VCG-Mechanism

In this part we will look at the VCG-mechanism in the specific context of auctions with

unit demand.12 We will assume that all bidders are sorted by their valuation, i.e. we have

v1 > v2 > ... > vN .

So, first consider a situation in which there is only one good to be auctioned off:

• Each agent/bidder simultaneously submits a bid for an object.

• The person with the highest bid wins the object.

So, what will be the transfers that the VCG-mechanism prescribes? Remember that

VCG implies that truth-telling is a dominant strategy, so we do not have to care about

strategies, but can simply restrict attention to valuations of the agents:

• For agent 1, i.e. j = 1:

– According to the rules of the auction, she will be the bidder who receives the

object.

– Social utility is V ∗ = v1 in the program that includes her, since she is the only

one who receives the object.

– If agent 1’s valuation is subtracted from v∗ in order to obtain the sum
∑

n6=j vn(S∗
n),

it follows that ∑
n6=j

vn(S∗
n) = 0.

12Unit demand means that each bidder/agent only wants to obtain one object.
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– Now, assume that agent 1 is excluded from the social program. Then, it will

be agent 2 who receives the only object to be auctioned off. In consequence,

social utility equals agent 2’s valuation, i.e.∑
n6=j

vn(S∗
−j,n) = v2.

– By the definition of tVCG
1 , it follows that

tVCG
1 = v2.

• For any agent j ∈ {2, ..., N}:

– According to the rules of the auction, she will not receive the object, so her

valuation is zero.

– Social utility is v∗ = v1 in the program that includes her.

– Because agent j’s valuation is zero, v∗ remains unchanged if agent j’s valuation

is subtracted. Therefore, it follows that∑
n6=j

vn(S∗
n) = v1.

– Now, assume that agent j is excluded from the social program. Then, it will

still be agent 1 who receives the only object to be auctioned off. In consequence,

social utility equals agent 1’s valuation, i.e.∑
n6=j

vn(S∗
−j,n) = v1.

– By the definition of tVCG
j , it follows that

tVCG
j = 0.

Therefore, it is only agent 1 who has to make a payment and this payment equals the

second-highest bid/valuation. This is exactly the logic of the Second-Price auction.

Now, consider a situation in which there are k identical goods to be auctioned off:13

• Each agent/bidder simultaneously submits a bid for an object.

13For ease of exposition, we will assume that the number of bidders is strictly bigger than the number
of objects to be auctioned off.
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• The person with the m highest bids each win one object.

So, what will be the transfers that the VCG-mechanism prescribes? Again, remember

that VCG implies that truth-telling is a dominant strategy, so we do not have to care

strategies, but can simply restrict attention to valuations of the agents:

• For any agent j ∈ {1, ..., k}:

– According to the rules of the auction, she will one of the bidders who receive

one object.

– Social utility is V ∗ =
∑k

n=1 vn in the program that includes her.

– If agent j’s valuation is subtracted from v∗ in order to obtain the sum
∑

n6=j vn(S∗
n),

then it follows that ∑
n6=j

vn(S∗
n) =

∑
n∈{1,...,k}\{j}

vn.

– Now, assume that agent j is excluded from the social program. Then, it will

be agents 1, ..., j − 1, j + 1, ..., k, k + 1 who receive one object to be auctioned

off. In consequence, social utility equals∑
n6=j

vn(S∗
−j,n) =

∑
n∈{1,...,k+1}\{j}

vn.

– By the definition of tVCG
j , it follows that

tVCG
j = vk+1.

• For any agent j ∈ {k + 1, ..., N}:

– According to the rules of the auction, she will not receive the object, so her

valuation is zero.

– Social utility is v∗ =
∑k

n=1 vn in the program that includes her.

– Because agent j’s valuation is zero, v∗ remains unchanged if agent j’s valuation

is subtracted. Therefore, it follows that∑
n6=j

vn(S∗
n) =

k∑
n=1

vn.

– Now, assume that agent j is excluded from the social program. Then, it will

still be agents 1, ..., k who receive one unit of the object to be auctioned off. In

consequence, social utility equals the sum of agent 1’s to k’s valuation, i.e.∑
n6=j

vn(S∗
−j,n) =

k∑
n=1

vn.
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– By the definition of tVCG
j , it follows that

tVCG
j = 0.

Therefore, it is agents 1, ..., k who have to make a payment and these payments equal

the (k+1)-highest bid/valuation. This is a generalization of the notion of a Second-Price

auction, which is called (k + 1)th Price auction.
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