
Economics and Computation

ECON 425/563 and CPSC 455/555

Professor Dirk Bergemann and Professor Joan Feigenbaum

Lecture IV

In case of any questions and/or remarks on these lecture notes, please

contact Oliver Bunn at oliver.bunn(at)yale.edu.

Economics and Computation Fall 2008 Lecture IV 1

1 Introduction to the Theory of Computation

The theory of computation pursues the following goals:

• Formulate mathematical models of ”computation”.

• Formally address issues such as:

– What is or is not computable?

– What is ”efficient computation”?

– Efficient computational solutions, or ”algorithms”, for problems of interest.

– Proofs that there are no efficient algorithms for some problems of interest

(including some for which there are inefficient algorithms).

– Proofs that two problems are ”equivalent” in computational difficulty or that

one problem is harder than the other.

The theory of computation was initiated by Alan Turing, [Tur36a] and [Tur36b]. The fas-

cinating and ultimately tragic life of Turing is chronicled brilliantly in the play ”Breaking

the Code”, [Whi]. In 1936, the date of Turing’s seminal papers, there were no actual

computers, and so Turing was not concerned with efficiency. Formal treatment of efficient

computation was initiated by Juris Hartmanis and Richard Stearns, [HS65].

The ”Nobel Prize of Computer Science” is the Turing Award, which Hartmanis and

Stearns won for their paper [HS65].1

1.1 Administrative Information

Yale courses on the basics of computational theory are:

• CPSC 365,

• CPSC 468/568.

Standard introductory textbooks that deal with computational theory are:

• Cormen, Leiserson and Rivest: Introduction to Algorithms, [CLR01].

• Garey and Johnson: Computers and Intractability: A Guide to the Theory

of NP-Completeness, [GJ79].

1Turing Award winners’ names are in red throughout these notes.

Economics and Computation Fall 2008 Lecture IV 2

2 Computational Complexity

2.1 Building Blocks

A computational problem is a precise statement of a general question to be answered,

usually possessing several parameters or free variables. One specifies a problem by

giving:

• precise descriptions of all parameters;

• a precise statement of the properties that a solution must satisfy.

An instance of the problem is obtained by specifying particular values for all parameters.

Example 1 [Traveling Salesman Problem (TSP)]

The parameters are:

• a finite set {c1, ..., cm} of cities,

• the distance d(ci, cj) ∈ R+
0 between city ci and city cj for each pair of cities (ci, cj).

A solution is an ordering (or ”tour”)

〈cπ(1), ..., cπ(m)〉

that minimizes [
m−1∑
i=1

d(cπ(i), cπ(i+1))

]
+ d(cπ(m), cπ(1)),

where π : {1, ...,m} → {1, ...,m} is a bijective (one-to-one and onto) mapping.

As an example, consider the following instance that will be called ∗ for further reference:

Economics and Computation Fall 2008 Lecture IV 3

c2 c4

c3

c1

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

@
@

@
@

@
@

@
@

@
@

@@

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

9

10 9

6 3

5

In instance ∗ of the TSP, the tour 〈c1, c2, c4, c3〉, edges of which are labeled in red, has

length 27 and is a solution (i.e., an optimal or minimum-length tour).

Note that there are TSP instances on m cities for any m > 2. The fact that a problem

is defined on an infinite family of instances is crucial to computational theory. An al-

gorithm that solves a problem is a step-by-step procedure that, for any instance, is

guaranteed to produce a solution.

In this course, it will suffice to think of an algorithm as a program in a standard pro-

gramming language such as Java or C++ and of ”steps” as native commands in that

language. In fact, we will usually describe algorithms in even higher level notation than

that and count as ”steps” instructions that correspond intuitively to atomic operations

on a computer, e.g. reading or writing a memory location, performing an arithmetic

or logical operation, sending a packet across a network link, etc. These components of a

computational model can be made completely formal with the notion of a Turing-machine

model.2

Instances are encoded as finite strings of symbols from a finite alphabet. For example,

2See Appendix A for a definition of the Turing-machine model.

Economics and Computation Fall 2008 Lecture IV 4

one can encode TSP instances as strings over the alphabet

{c, [,], /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The encoding instance of instance ∗ would then be

c[1]c[2]c[3]c[4]//10/5/9//6/9//3.

2.2 Computational Complexity

The length or size of an instance is the number n of symbols needed to encode it. Intu-

itively, we expect an algorithm to spend more computational resources on larger instances

of a problem than on smaller instances. The following two natural measures capture the

computational complexity of a problem:

• ”Time Complexity” T (n)

T (n) denotes the maximum number of steps needed to solve an instance of length

n.

• ”Space Complexity” S(n)

S(n) denotes the maximum number of memory cells needed to solve an instance of

length n.

One may also consider some less traditional measures, e.g. bandwidth consumed during

a distributed computation over a network.

Definition 1 A problem is called polynomial-time solvable iff

it can be solved in time

T (n) = O(nc),

for some c ∈ N.

In the following, conjunctive-normal-form formulas (exact definition below) will be pre-

sented as a structure to examine the concept of time-complexity in more detail.

2.2.1 Conjunctive-Normal-Form Formulas (CNF)

Let {x1, ..., xm} be a set of Boolean variables, i.e. variables that can take the values T

or F (true or false). A literal is either a variable xi or its negation x̄i. A clause Cj is

a disjunction of literals, e.g. x1 ∨ x̄17 ∨ x̄20. A Conjunctive-normal-form (CNF) formula

is a conjunction of clauses, e.g. C1 ∧ C2, where C1 = (x̄2 ∨ x5) and C2 = (x1 ∨ x3 ∨ x̄4).

An assignment ε1, ..., εm of truth values to the variables x1, ..., xm in a CNF formula C
is a satisfying assignment if C(ε1, ..., εm) evaluates to T . For example, (T, F, T, T, T) is a

satisfying assignment of C1 ∧ C2 above, but (T, T, F, T, F) is not.

Economics and Computation Fall 2008 Lecture IV 5

Example 2 (Verification of Satisfiability)

An instance is a pair (C,~ε), where C is a CNF formula on m variables with k clauses,

and ~ε = (ε1, ..., εm) is an assignment to the variables of C. The solution is ”yes” if ~ε is a

satisfying assignment of C and ”no” otherwise.

Observe that one is given a formula and an assignment. So, example 2 is solely about

determining a true/false-statement.

To see why this problem is solvable in polynomial time, observe that, under a reasonable

encoding, the length of an instance is at least proportional to m + k and at most propor-

tional to mk (the former applies if all clauses are short and the latter if they are long).

On the other hand, the formula can be evaluated at ~ε by a program that performs O(mk)

logical operations.

Definition 2 (The Class P)

The class of ”yes/no” (or decision) problems that are solvable in polynomial time is

denoted by P .

Instead of the verification from Example 2, one might also be interested in finding/determining

a satisfying assignment if one is given a CNF. This is captured by the following example:

Example 3 (Solving for Assignment in SAT - Search Version of SAT) An instance

of this problem is a CNF formula C on Boolean variables x1, ..., xm. A solution is a sat-

isfying assignment ε1, ..., εm of C if one exists.

Observe that in this case, an assignment is no longer part of the input, but part of the

solution. Instead of simply deciding whether a particular assignment is true or false, a

satisfying assignment needs to be determined. If a solution to Example 3 is found, then

one can use the logic as outlined in the sequel of Example 2 to quickly verify a solution.

This leads to the following definition:

Definition 3 Nondeterministic-polynomial-time problems are those for which cor-

rect solutions, if they exist, can be verified in polynomial time.

Hence, nondeterministic-polynomial-time problems are solely characterized by the effi-

ciency of the verification of their solution.

Note that the search version of the satisfiability problem is a partial relation on the set

of CNF formulas, in that it is not defined on unsatisfiable formulas (i.e. those formulas

C(x1, ..., xm) on which all assignments evaluate to F). Hence, it is natural to consider the

following example that considers the ”decision version” of the satisfiability problem:

Economics and Computation Fall 2008 Lecture IV 6

Example 4 (Decision Version of SAT) Here, an instance is once again a CNF for-

mula C, but a solution is simply ”yes”, if C is satisfiable (i.e. if ∃~ε : C(~ε) = T) and ”no”

if C is unsatisfiable.

An important technique in the study of computational complexity is reducing search to

decision. In the context of the satisfiability problem, this means that, if there were a

polynomial-time algorithm for the problem in Example 4, there would be one for the

problem in Example 3.

To see this, note that, if C(x1, ..., xi, ..., xm) is a CNF formula on m Boolean variables,

then both

Ci,T (x1, ..., T, ..., xm)

and

Ci,F (x1, ..., F, ..., xm)

are CNF formulae on m−1 variables. Both can be computed quickly by ”plugging in”the

appropriate truth value for the Boolean variable xi and ”simplifying” the result.

For example, if

C(x1, x2, x3) = (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3),

then

C1,T = (x2 ∨ x̄3) ∧ (x̄2 ∨ x3)

and

C1,F = (x2 ∨ x̄3).

Let ”decide-sat()” be an algorithm that takes as input a CNF formula, outputs ”yes” if

the input is satisfiable, and outputs ”no” otherwise. Observe that the following algorithm,

which uses ”decide-sat()” as a subroutine, solves the search version of the satisfiability

problem:

Economics and Computation Fall 2008 Lecture IV 7

find− sat(C)
{

Ψ← C;
for i← 1 to m

{
if (decide-sat(Ψi,T) == yes)

{
εi ← T ;

Ψ← Ψi,T ;

}
else if (decide-sat(Ψi,F) == yes)

{
εi ← F ;

Ψ← Ψi,F ;

}
else OUTPUT(”C is unsatisfiable”);

}
OUTPUT(ε1, ..., εm)

}

To see that this reduction of ”find-sat()” to ”decide-sat()” is correct, note that, if C is

satisfiable, one or both of the following statements must be true:

• ”C has a satisfying assignment in which x1 = T , and C1,T is also satisfiable.”

• ”C has a satisfying assignment in which x1 = F , and C1,F is also satisfiable.”

In the first execution of the for-loop in ”find-sat()”, one discovers whether both of these

statements are false; if they are, the algorithm terminates and declares C to be unsatis-

fiable. If at least one of these statements is true, the algorithm records the first bit of a

satisfying assignment and proceeds on a formula on m− 1 variables. Iterations 2 through

m of the for-loop perform the analogous computation for variables x2 through xm.

To see that this is a polynomial-time reduction, note that the size n of input C is

greater than m. ”find-sat()” makes at most 2m < 2n calls to ”decision-sat()”. Thus, if

”decision-sat()” ran in time3 O(nc), ”find-sat()” would run in time O(nc+1).

3Note that this hypothesis is believed to be false, i.e., it is not expected that the problem of Example
4 is in P.

Economics and Computation Fall 2008 Lecture IV 8

2.3 The Class NP

The notion of nondeterministic-polynomial time (see Definition 3) can now be fleshed

out to yield a formal definition of the class NP . Recall that a computational problem is

characterized by a set of X of instances and a set Y of solutions. We generalize our earlier

notion of ”computational problem” by allowing for the possibility that some instances have

no solutions. Let |x| and |y| denote the sizes of strings x ∈ X and y ∈ Y .

Definition 4 (The Class NP)

The class NP of nondeterministic polynomial-time decision problems are those in which

the sets X and Y have the following properties:

• There is a polynomial p such that

|y| 6 p(|x|),

whenever y is a solution to the instance x.

• The decision problem ”is y a solution to the instance x” is in P.

The set of ”yes-instances”, i.e. the set of all x for which there exists at least one solution

y, is called an NP set or an NP language. The corresponding NP search problem is

”given an instance x, find a solution y if one exists”.

The language SAT of satisfiable CNF formulas is a canonical NP set. Example 1 gives

an optimization version of the TSP. The TSP can be formulated as a nondeterminis-

tic polynomial-time decision problem. An instance of this decision problem is a triple

(C, d, K), where C is a set of cities and d a distance function (as before), and K is a

positive, real number. (C, d, K) is a yes-instance if there exists a tour of (C, d) that has

total length at most K. The corresponding search problem is ”given an instance (C, d, K),

find a tour of (C, d) that has total length at most K if one exists.”

Central to the study of computational complexity is the notion of an NP-complete set.

Definition 5 (NP-completeness) The set S is NP-complete iff it is in NP and is

”a hardest set in NP” in the following sense:

For any set T ∈ NP , there is a polynomial-time computable function f such that

x ∈ T ⇔ f(x) ∈ S.

Note that the existence of f means that, if S were in P , then T would be in P . Equiv-

alently, if S is NP-complete, and S ∈ P , then P = NP . The search and optimization

Economics and Computation Fall 2008 Lecture IV 9

problems that correspond to an NP-complete set S are called NP-hard; if they can be

solved in polynomial time,4 then P = NP .

SAT is an NP-complete set. So is the set of yes-instances of TSP described above. Lit-

erally, tens of thousands of problems that arise naturally in mathematics, science, engi-

neering, economics, and other fields have been proven to be hard NP-hard. One of them

is the ”Combinatorial Auction Problem” that will be studied later in this course.

NP-completeness was first formulated by Steven Cook, [Coo71], who also showed (in the

same paper) that SAT is NP-complete. The fact that natural NP-complete problems

abound was demonstrated shortly thereafter by Richard Karp, [Kar72].

Extraordinary effort has gone into the quest for polynomial-time algorithms that solve

NP-hard problems of practical importance, and yet no such algorithm has been found.

Furthermore, it seems intuitively clear that verifying the correctness of a solution, should,

in general, be easier than finding a solution, in other words, it seems clear that P (NP .

Surprisingly, no proof of this claim has been found.

Conjecture 1 (Fundamental Conjecture of Computer Science)

P 6= NP.

2.4 The Class PSPACE

After restricting attention to computational complexity as measured by T (n), the last part

of this lecture will focus on the concept of space-complexity as captured by S(n). Analo-

gous to the definition of polynomial-time solvability, the following definition captures the

notion of polynomial-space solvability:

Definition 6 Polynomial-space solvable problems are those solvable by algorithms

whose space complexity satisfies

S(n) = O(nc),

for c ∈ N.

An enormously important class of examples of polynomial-space solvable problems is given

by quantified Boolean formulas:

4This is a question of ongoing interest, but computer scientists do not believe that NP-hard problems
can be solved in polynomial time.

Economics and Computation Fall 2008 Lecture IV 10

Example 5 (Quantified Boolean Formula (QBF))

An instance is a quantified Boolean formula Ψ, i.e. an expression of the form

∃x1∀x2∃x3∀x4...∃xm−1∀xm C(x1, ..., xm),

where C is a quantifier-free CNF formula. A solution is simply ”yes” if Ψ is a true

quantified Boolean formula and ”no” if Ψ is false. The language of yes-instances of this

language is denoted by TQBF.

Definition 7 (The Class PSPACE)

If a decision-problem is solvable in polynomial time, and L is the set of yes-instances of

that problem, then we say that

L ∈ LSPACE.

The QBF problem crystallizes two important properties of the complexity class PSPACE

and of space-bounded computation in general:

1. Space is a more powerful computational resource than time in the sense that an

algorithm can reuse space but cannot reuse time.

2. There is an intimate relationship between the class PSPACE and games. Each

QBF instance can be interpreted as a perfect-information game between the ”exists”-

player, whose goal is to satisfy the formula C, and the ”forall”-player, whose goal is

to falsify C. The yes instances of QBF are the games in which the ”exists”-player

has a winning strategy.

These two properties will be outlined separately in the following two parts.

2.4.1 Space as a Powerful Computational Resource

To illustrate the fact that ”space is a more powerful computational resource than time”,

we give a polynomial-space algorithm to decide QBF:

We represent the truth values F/T as bits 0/1 and use the fact that 0 < 1. Recall the

notion of the lexicographic order of the Cartesian product A × B of two totally ordered

sets A and B:

(a, b) < (a′, b′)⇔ a < a′ or (a = a′ and b < b′).

Repeated application of this construction imposes a total lexicographic order on {0, 1}k
for any k. For example, the lexicographic enumeration of {0, 1}3 is given by

000, 001, 010, 011, 100, 101, 110, 111.

Economics and Computation Fall 2008 Lecture IV 11

If ~ε is a bit string in {0, 1}k − {1}k, let next(~ε) be the string that follows ~ε in the lexico-

graphic enumeration; next(~ε) is undefined and denoted by some symbol ⊥6∈ {0, 1}k.

decide−QBF (Ψ)

{
OddBits ≡ (ε1, ε3, ..., εm−1)← 0m/2

L1 : EvenBits ≡ (ε2, ε4, ..., εm)← 0m/2

L2 : If C(ε1, ε2, ..., εm−1, εm) == 1

{
If EvenBits== 1m/2, OUTPUT(YES);

Else

{
EvenBits ← next(EvenBits);

Goto L2;

}
}
Else

{
If OddBits== 1m/2, OUTPUT(NO);

Else

{
OddBits ← next(OddBits);

Goto L1;

}
}

}

In the outer loop of decide-QBF, we consider in turn each assignment ε1, ε3, ..., εm−1 to

the existentially quantified Boolean variables x1, x3, ..., xm−1. In the inner loop, we check

whether for all possible assignments ε2, ε4, ..., εm to the universally quantified variables

x2, x4, ..., xm the formula C is true. If the inner loop completes successfully for any assign-

ment ε1, ε3, ..., εm−1, we have proven that Ψ is true, and hence we halt and output YES.

Otherwise, we have proven that no assignment has this property, and we output NO.

The crucial point about the space complexity of this procedure is that there is no need to

allocate fresh space when the function ”next()” is called. The same bits that were used

to store ε1, ε3, ..., εm−1 (ε2, ε4, ...εm, respectively) can be re-used to store next(ε1, ε3, εm−1)

(next(ε2, ε4, ...εm), respectively). Time cannot be used the same fashion. Indeed, ”decide-

Economics and Computation Fall 2008 Lecture IV 12

QBF()” will run for time Ω(2m) in the worst case.

2.4.2 PSPACE and Games

The second point crystallized by the QBF problem is the relationship between PSPACE

and games. Each QBF instance can be interpreted as a perfect-information game between

the ”exists”-player, whose goal is to satisfy the formula C, and the ”forall”-player, whose

goal is to falsify C. Here, one builds upon the notion of extensive-form games, which

have not been covered in the introductory lectures on game theory. In short, these games

have an additional time-component. A player can wait and observe the other player’s

action before making a move by herself. Clearly, this is a generalization of the concept of

simultaneous-move games in which all players act at the same time. The yes instances of

QBF are the games in which the ”exists”-player has a winning strategy. 5

For example, consider the following yes instance Ψ of QBF:

∃x1∀x2∃x3 (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3).

5For the clarity of the exposition, the term ”strategy” is used in an informal manner in this context.
According to the strict economic definition, a strategy in an extensive-form like the one displayed below
assigns an action to every node in the game-tree, no matter whether this node is reached or not.

Economics and Computation Fall 2008 Lecture IV 13

1 1 0 1 1 1 1 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 1

¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

• • • •¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢

A
A

A
A

A
A

A
A

A
A

AA

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢

A
A

A
A

A
A

A
A

A
A

AA

x2 = 1 x2 = 0 x2 = 1 x2 = 0

• •¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

@
@

@
@

@
@

@
@

@
@

@@

x1 = 1 x1 = 0

•

∃

∀

∃

∃ moves at the top level, ∀ at the second level, and finally ∃ at the third. ∃ can create

a winning outcome for herself by playing x1 ← 1 combined with x3 ← 0 with the latter

play being irrespective of player ∀’s choice.6 This strategy is displayed in red in the above

game tree.

Note that the game-tree has size exponential in m and, hence, cannot be built explicitly

during the execution of a polynomial-space algorithm. The algorithm ”decide-QBF()”

shows that we need not build the whole tree: We can explore it one branch at a time,

keeping track of whether we have found a winning strategy for ∃.

2.4.3 PSPACE-Completeness of QBF

QBF is in fact a PSPACE-complete set:

For any set T ∈ PSPACE, there is a polynomial-time computable function f such that,

for all instances x

x ∈ T ⇔ f(x) ∈ QBF.

6There are other choices for player ∃ that create a desired outcome for her.

Economics and Computation Fall 2008 Lecture IV 14

Many other perfect-information, polynomial-depth games correspond to PSPACE-complete

sets as well, including polynomial-depth n×n GO and polynomial-depth n×n-CHECKERS.

Indeed, in a sense that is beyond the scope of this course, all PSPACE-complete sets rep-

resent games.

2.5 Relationship among Complexity Classes

We have the following relationships among complexity classes:

P ⊆ NP ⊆ PSPACE.

Amazingly, it is not known whether either of these inclusions is proper; the seemingly

bizarre possibility that P = PSPACE has not been ruled out (but is, of course, believed

to be false).

Economics and Computation Fall 2008 Lecture IV 15

A Turing-Machine model of Computation

Deterministic k-tape Turing machine M .

· · ·· · · σk · · · · · ·

· · ·· · · σ3 · · · · · ·

· · ·· · · σ2 · · · · · ·

· · ·· · · σ1 · · · · · ·

q

δ

6

?

?

?

· · ·

...

There is one read-only input tape (on top) and k − 1 read-write work/output tapes.

M is a triple Γ, Q, δ that is defined as follows:

• Γ is the tape alphabet, a finite set of symbols. Assume 2 (”blank” symbol), .

(”start” symbol), 0 and 1 are four distinct elements of Γ.

• Q is the state set, a finite set of states that M ’s control register can be in. Assume

qstart and qhalt are two distinct states in Q.

• δ is the transition function, a finite table that describes the rules (or program)

by which M operates:

δ : Q× Γk → Q× Γk−1 × (L, S, R)k.

Economics and Computation Fall 2008 Lecture IV 16

δ(q, (σ1, ..., σk)) = (q′, (σ′2, ..., σ
′
k), (z1, ..., zk)) means that, if M is in state q, and the

read (or read/write) tape heads are pointing at the cells containing σ1, ..., σk, then

the following ”step” of the computation is performed:

– the read/write tape symbols σ2, ..., σk are replaced by σ′2, ..., σ
′
k;

– tape head i moves left, stays in place or moves right, depending on whether zi

is in L,S or R;

– the control-register state is changed to q′.

When M starts its execution on input x = σ1, ..., σn, we have

• q = qstart

• input tape

· · ·. σ1 σ2 · · · σn 2 2 · · ·

• all other tapes

· · ·. 2 2 2 2 2 2 · · ·

Meaning of qhalt:

δ(qhalt, (σ1, ..., σk)) = (qhalt, (σ2, ..., σk), S
k) ∀(σ1, ..., σk).

Designate one of the read/write tapes as ”the output tape”.

Turing machine M ”computes the function f”, if for all x ∈ Γ∗ the execution of M on

input x eventually reaches the state qhalt, and when it does, the contents of M ’s output

tape is f(x).

M ”runs in time T” if for all n and all x ∈ Γn M halts after at most T (n) steps.

Economics and Computation Fall 2008 Lecture IV 17

References

[CLR01] T.H. Cormen, C.E. Leiseron, and R.L. Rivest. Introduction to Algorithms. MIT

Press and McGraw Hill, 2nd edition, 2001. 1st Edition published in 1990.

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. Proceedings of the

Third Symposium on the Theory of Computing, Association of Computing Ma-

chinery, pages 151–158, 1971.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.

[HS65] J. Hartmanis and R. Stearns. On the computational complexity of algorithms.

Transactions of the MAerican Mathematical Society, 117:285–306, 1965.

[Kar72] R.M. Karp. Reducibility among Combinatorial Problems, in Miller and Thatcher

(eds.), Complexity of Computer Computations. Plenum, 1972. pp. 85-103.

[Tur36a] A. Turing. On computable numbers with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, Series 2,

42:230–265, 1936. article I/II.

[Tur36b] A. Turing. On computable numbers with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, Series 2,

43:544–546, 1936. article II/II.

[Whi] H. Whitmore. Breaking the code. First performed in London’s West End in

1986 and New York City’s Broadway in 1987, both times with Derek Jacobi

playing the part of Alan Turing.

	Introduction to the Theory of Computation
	Administrative Information

	Computational Complexity
	Building Blocks
	Computational Complexity
	Conjunctive-Normal-Form Formulas (CNF)

	The Class NP
	The Class PSPACE
	Space as a Powerful Computational Resource
	PSPACE and Games
	PSPACE-Completeness of QBF

	Relationship among Complexity Classes

	Turing-Machine model of Computation

