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1. Bayesian Game.

(a) Give a general description of a Bayesian game (i.e. a game with incomplete information) and the
notion of a pure strategy in a Bayesian game.
We defined a Bayesian game as a tuple

ΓB =
{
I, {Ai}i∈I , {Ti}i∈I {ui}i∈I , p

}
where I = {1, ..., I} is the set of players and Ai is the set of pure actions, Ti the set
of types and p (t) the common prior probability distributions over types. A pure
strategy Bayesian Nash equilibrium is si : Ti → Ai.

(b) Define the notion of Bayes-Nash equilibrium. Define the notion of an ex post (Bayes-)Nash
equilibrium and of a (Bayes-) Nash equilibrium in dominant strategies. (In all cases, it is sufficient
to describe the notion of a pure strategy, and you do not have to describe the mixed strategy
version).
A Bayes-Nash equilibrium is s∗ (t) = (s∗1 (t1) , ..., s∗I (tI)) such that∑

t

p (t) ui

((
s∗i (ti) , s∗−i (t−i)

)
, (ti, t−i)

)
≥

∑
t

p (t) ui

((
s′i (ti) , s∗−i (t−i)

)
, (ti, t−i)

)
,

for all i and all s′i (ti).
An ex post Bayes-Nash equilibrium is s∗ (t) = (s∗1 (t1) , ..., s∗I (tI)) such that

ui

((
s∗i (ti) , s∗−i (t−i)

)
, (ti, t−i)

)
≥ ui

((
ai, s

∗
−i (t−i)

)
, (ti, t−i)

)
,

for all i and all ai and all t.
A Bayes-Nash equilibrium in dominant strategies is s∗ (t) = (s∗1 (t1) , ..., s∗I (tI)) such that

ui ((s∗i (ti) , a−i) , (ti, t−i)) ≥ ui ((ai, a−i) , (ti, t−i)) ,

for all i and all a and all t.

(c) Briefly discuss the main differences between these equilibrium notions and their relationship to
each other.
We have the following relationship

BNEd ⊆ BNEep ⊆ BNE

and in most games the inclusion is strict. The Bayes Nash equilibrium is requiring
optimality in expectation, the ex post Bayes-Nash equilibrium requires optimality
with respect to the equilibrium strategy and all possible type profile realization,
and finally the Bayes Nash equilibrium in dominant strategy requires optimality
irrespective of the type and the actions of all of the other players.
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2. Consider the following single unit auction, often called an all pay auction. There are two bidders,
i ∈ {1, 2} and the valuation vi of each bidder is private information. The common prior distribution
is identical and independently distributed by vi ∼ U [0, 1]. Each bidder is asked to submit a bid bi

(knowing his own valuation but not the valuation of his opponent). The rules of the auction are that
the highest bidder receives the object, but that each bidder has to pay his own bid, irrespective of
winning or loosing. (If by chance, the two bidders submit the same bid, then the assignment of the
object is determined by chance with equal probability for each agent).

(a) Carefully describe the ex post payoff function, i.e. the net utility of each bidder (as a function of
his type, his bid and the bid of his opponent). Define a pure strategy for each player.
The ex post utility is given by

ui (vi, bi, bj) =

 vi − bi if bi > bj ,
1
2vi − bi if bi = bj ,
−bi if bi < bj ,

and a strategy is
bi : [0, 1] → [0, 1] .

(b) Does there exist a dominant strategy for each agent in the all pay auction, argue carefully for or
against.
No. Suppose there exists one, then it could not be bi (vi) = 0 for all vi > 0, because if
the bid bj > 0 of the opponent were lower than vi, then vi would like to make a bid
a bit above bj. But on the other hand, bidder i would only like to make a zero bid
if the opponent bids above vi, hence there does not exists a dominant strategy for
bidder i.

(c) Derive a Bayes Nash equilibrium with symmetric strategies of the form bi (vi) = cv2
i ; in particular

determine the value of c.
If agent i bids bi, he get

vi Pr (bi > bj)− bi

and inserting we get

vi

√
bi

c
− bi

and the first order condition is

1
2
vi

√
1

bic
− 1 = 0

or
1
c

(
1
2
vi

)2

= bi

and hence by symmetry
1
c

(
1
2

)2

= c

or
c =

1
2
.
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3. Consider the following version of a job scheduling problem as a combinatorial auction. There are three
bidders, each bidder i needs to have a computing job completed at a central computing facility. Each
single computing job takes 24 hours and thus at any given day at most one job can be started and
completed. The computing facility does not allow parallel computing. The value of the job for bidder
i is

vi · δt

where δ ∈ (0, 1), and t = 1, 2 is the number of days that bidder i has to wait to see his computing job
scheduled. Thus if the job of bidder i is accepted today, t = 0, and if it is accepted tomorrow then
t = 1, and so on... . The value of each computing job vi is private information to bidder i.

(a) Suppose that the social planner would like to maximize the sum of the utilities, adjusted for the
discount factor δt, i.e.

δ0 · vk + δ1 · vl + δ2 · vm

What would the efficient order of the jobs be so that the social welfare is maximized (if the social
planner were to know the true valuations of the bidders).
Since δ ∈ (0, 1), it will be efficient to rank the alternatives so that v1 > v2 > v3 and the
job with the higher valuation would be scheduled first.

(b) Suppose the bidders all arrive at t = 0 and are asked to report their valuations. Define the
Vickrey-Clarke-Groves payments scheme in t = 0, which would induce the bidders to report their
valuation truthfully in a dominant strategy. Explain in a few words the nature of the transfer
price and how it relates to the social externality of each bidder.
The transfer payment would be

p1 = v2 + δ (v3 − v2) + δ2 (−v3)
p2 = δv3 + δ2 (−v3)
p3 = 0

The payment reflects the opportunity cost, which is the direct opportunity cost less
the improvement in future allocations which comes from the presence of a highly
valuable job.

4. (a) In the AS graph in Figure 1, directed edges point from customers to providers, and undirected
edges are peer edges. The destination node is d, and the source nodes are 1, 2, 3, 4, 5, and 6. All
source nodes export all routes they know about to all of their neighbors.
Route-selection policies are such that ASes 1, 4, 5, and 6 value shortest routes to the destination
more highly than all others, AS 2 values customer routes more highly than all others, and AS 3
values peer routes more highly than all others.
Identify a dispute wheel in this interdomain-routing instance. You need not specify the wheel
formally in terms of the relations Θ1 and Θ2 in Chapter 14. Simply identify the nodes that are
in dispute and explain why their route-selection policies lead to a dispute.
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The dispute wheel has 1, 2, and 3 around the “rim” d in the middle, spoke “routes
1− 4− 5− d, 2− d, and 3− 6− d. The nodes involved in the dispute are 1, 2, and 3. 1
prefers to route through 2, because 1 − 2 − d is shortest. 2 prefers to route through
3, because 3 is its only customer. 3 prefers to route through 1, because 1 is its only
peer.

(b) In the AS graph in Figure 2, directed edges point from customers to providers, and undirected
edges are peer edges. The destination is d.
Suppose that the route-export policies of source nodes 1, 2, and 3 obey the Gao-Rexford con-
straints. Suppose further that, under normal operating conditions, AS 2 uses the route 2−d, and
AS 3 uses 3− d. Why would AS 2 be able to switch to 2− 1− d if the link 2− d goes down but
AS 3 not be able to switch to 3− 1− d if the link 3− d goes down?
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According to the Gao-Rexford “scoping” constraints, AS1 will export its peer route
1− d to its customer AS 2 but not to its provider AS 3.

(a) Figure 3 shows a selfish-routing instance in which one unit of flow (r = 1) is to be routed from s
to t. What is the price of anarchy in this instance?

In the equilibrium flow f , a flow of 1/2 goes across each edge with cost x. The cost of
these paths is then 1/2, which is less than the cost, 1, of the third path. This satisfies
the equilibrium conditions. The cost of f is C(f) = (1/2)(1/2) + (1/2)(1/2) = 1/2.
The optimal flow f∗ is identical to the equilibrium flow. The marginal cost of the
paths of cost x is then 2(1/2) = 1. The marginal cost of the path with cost function
1+x is 1. This satisfies the conditions for the optimum. The cost of f∗ is C(f∗) = 1/2.
Therefore the price of anarchy is 1.

(b) Recall the network-formation game of AGT, §19.2:
Players in the local connection game are identified with nodes in a graph G on which the network
is to be built. A strategy for player u is a set of undirected edges that u will build, all of which
have u as one endpoint. Given a strategy vector S, the set of edges in the union of all players’
strategies form a network G(S) on the player nodes. Let distS(u, v) be the length of the shortest
path (in terms of number of edges) between u and v in G(S). The cost of building an edge is
specified by a single parameter α. Each player seeks to make the distances to all other nodes
small and to pay as little as possible. More precisely, player u’s objective is to minimize the sum
of costs and distances αnu +

∑
v dist(u, v), where nu is the number of edges bought by player u.

We say that a network G = (V,E) is stable for a value α if there is a stable strategy vector S that
forms G.
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Prove that the graph of Figure 4 is not stable, i.e., is not a Nash Equilibrium of this game,
regardless of the edge cost α.

Consider the edge (v1, v7). Assume without loss of generality (as we can do because of
the symmetric nature of the graph) that v7 paid for this edge. Player v7 could lower
his cost by not buying (v1, v7) and instead buying (v4, v7). After having made this
change, he would pay the same amount in edge cost as he did before, his distance to
each node in v8, v9, . . . , v18 would be unchanged, and the sum of his distances to the
nodes in v1, . . . , v6 would be 15 instead of 21; therefore, his total cost would be lower.
If the graph G in Figure 4 is G(S), where S = (s1, . . . , s7, . . . , s8), and player v7 can
lower his cost by playing a different strategy that results in a different graph, then
s7 is not a best response to s−7, and G(S) is not stable.
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