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1 Outline

The review of basic microeconomic theory will be organized as follows:

1. Games with Complete Information

2. Games with Incomplete Information

3. Mechanism Design

The first two parts take the structure of the game as given and characterize solutions. In

this context, ”a game is a description of strategic interaction that includes the constraints

on the actions that the players can take and the players’ interests, but does not specify the

actions that the players do take. A solution is a systematic description of the outcomes

that may emerge in a family of games.”1 Part 2. distinguishes itself from part 1. in that

it analyzes games where some players are uncertain about the payoffs (own or others),

the strategies or the players in the game.

The last part 3. reverses the logic of the previous two parts. Now, a planner has a certain

outcome to be realized in his mind and wants to create a game to be played by the

agents such that the particular outcome is materialized. Moving away from a centralized,

planned situation, the question is asked how a desired outcome can still be achieved in a

decentralized environment in which agents pursue their self-interest, e.g. on the Internet.

Historically, game theory takes off with John von Neumann and his article ”On the

Theory of Parlor Games” from 1928. These ideas were incorporated in the book ”Games

and Economic Behavior” that he has written together with Oskar Morgenstern in 1944.

Their ideas were significantly extended by John Nash in 1950 and 1951. After the work

of these founding fathers, a large body of research has developed, that has achieved its

latest climax with Eric Maskin, Leo Hurwicz and Roger Myerson being awarded the Nobel

Prize in Economics in the year 2007 for the development of mechanism design.

1.1 Literature

The following two textbooks contain an accessible and detailed description of the material

covered in this introduction to microeconomic theory:

• Martin Osborne and Ariel Rubinstein: ”A Course in Game Theory”, [OR94].

• Martin Osborne: ”An introduction to Game Theory”, [Osb04].

1See page 2 of the textbook by Martin Osborne and Ariel Rubinstein.
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2 Games with Complete Information

2.1 Components

A game with complete information consists of the following components:

• A set of players I = {1, ..., I}, where one player is denoted by i ∈ I.

• A set of actions Ai for each player i ∈ I, where Ai = {a1
i , ..., a

K
i }. One particular

action for player i is denoted by ai ∈ Ai.

• A payoff function ui for each player i ∈ I that maps a tuple of actions, one by each

player, into the real numbers, i.e.

ui : A1 × ...× AI → R.

If one wants to refer to the possible tuples of actions that can be taken by the entity of

players, one writes

A := A1 × ...AI .

A typical element from A is denoted by a. Under certain circumstances it makes sense to

distinguish between actions taken by a particular player i and all other players involved

in the game, denoted by −i. Notationally, one refers to an action taken by any player but

player i as

a−i := {a1, ..., ai−1, ai+1, ..., aI}.

So, a typical element a ∈ A can be written as

a = (ai, a−i)for any i ∈ I.

John von Neumann analyzed so-called zero-sum games, i.e. games with I = 2 (two-player

games) which satisfy the condition

u1(a) + u2(a) = 0.

These are situations in which any player’s gain or loss is exactly offset by the other player’s

loss or gain. It was John Nash who extended the setting under consideration to I > 2

and to non-zero-sum games. In a sense, John von Neumann’s thinking corresponds to

the political circumstances - the Cold War - that were present after the publication of his

book with Oskar Morgenstern. Involving two opposing parties, the analogy to zero-sum

games is almost immediate. John Nash’s extension corresponds much more to modern

economic thinking. For example, trading activity between two countries involve gains that

do not fit the description of a zero-sum game, with the possibility that the gains from

trade are bigger for one party than for another. As another example, the application of

these game-theoretic settings to computer science involve I >> 2.
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Definition 1 A game in normal form Γ is given by

Γ =
{
I, {Ai}I

i=1, {ui}I
i=1

}
.

Remark 1 For non-economists the use of a utility-function in the definition of a game

in normal form might appear alienating. In fact, this concept can be underpinned choice-

theoretically. One can start with a binary preference relation �. In this context, x � y

means that a person likes x (weakly) more than y. It was John von Neumann who has

shown that, if a preference relation on a finite set of choices satisfies

• completeness

(From the underlying set that contains all possible choices, any two possible elements

can be ”sorted” by �.)

and

• transitivity,

(For any three elements x, y, z from the underlying set of choices satisfying x � y

as well as y � z, it follows that x � z.)

then the player’s preference-relation can be represented by a utility function.

There is a multitude of extensions to this result, involving non-finite sets over which the

preference-relation is defined etc.

Remark 2 An important point to be made is the fact that the structure of the game is

always common knowledge among the players, i.e. known to anyone involved in the game.

2.2 Solution-Concepts

Subsequent to the structure of the games under consideration, the focus will be shifted

towards reasonable predictions that can be made about the outcome of a particular game.

Different solution-concepts and their usefulness will be outlined along the lines of different

examples.

2.2.1 Dominance-Solvability

Consider the following famous game, the so-called Prisoner’s Dilemma2:

2Caveat: The analogous game in the textbook ”Algorithmic Game Theory”, [NRTV08], is formulated
in terms of costs. In order to obtain utility, one needs to multiply the costs by −1.
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Row-Player
Silent

Confess

Column-Player

Silent Confess

3,3 0,4

4,0 1,1

This so-called payoff-matrix must be read as follows:

There are only two players involved in this game, a row-player and a column-player. Each

of these players has two choices available, ”Silent” or ”Confess”. For any pair of actions

that can be taken by the two players, the corresponding field of the payoff-matrix shows

the pair of playoffs for the players. By convention, the row-player’s payoff is listed first

and the column-player’s payoff is listed second.

The following story can be used to motivate this game:

The two players are accused of conspiring in two crimes, one minor crime for which their

guilt can be proved without any confession, and one major crime for which they can be

convicted only if at least one confesses. The prosecutor promises that, if exactly one

confesses, the confessor will be go free now (utility 4) but the other will get a severe

sentence (utility 0). If both confess, then they will get a sentence that is only slightly less

severe (utility 1). If neither confesses then they both get a light sentence for the minor

crime (utility 3).3

If one looks at the situation of the row-player, one can observe that he always receives

a strictly higher payoff from ”confess” than from ”silent”. If the column-player plays

”Silent”, the row-player receives 4 from ”Confess”, but only 3 from ”Silent”. If the

column-player plays ”Confess”, the row-player receives 1 from ”Confess”, but only 0 from

”Silent”. The situation for the column-player is completely analogous because the game

is symmetric.

This argument motivates the following definition:

Definition 2 An action ai ∈ Ai is a dominant strategy for player i iff

ui(ai, a−i) > ui(a
′
i, a−i) ∀a′i 6= ai,∀a−i. (1)

Hence, an action ai ∈ Ai is a dominant strategy if, irrespective of the other players’ actions

(∀a−i), it yields a strictly higher payoff than any other action a′i for player i.

3The previous description of the Prisoner’s dilemma is taken from the textbook by Roger Myerson,
[Mye97].
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Clearly, in the Prisoner’s dilemma the action ”Confess” is a strictly dominant strategy

for both players. Hence, the outcome (”Confess”,”Confess”) is called an equilibrium in

dominant strategies.

Sometimes, the strict inequality in (1) is too strict as a condition to the payoff-structure.

The following definition comprises a slightly weaker notion of dominance:

Definition 3 An action ai ∈ Ai is a weakly dominant strategy for player i iff

ui(ai, a−i) > ui(a
′
i, a−i) ∀a′i 6= ai,∀a−i. (2)

and ∃a′−i such that

ui(ai, a
′
−i) > ui(a

′
i, a

′
−i) ∀a′i 6= ai. (3)

This definition allows for equality of certain payoffs. As long as there is at least one

action by the other players for which the action ai is strictly better than all other actions

available to player i, the notion of dominance can still be applied.

2.3 Best Responses

Now consider the following game, the so-called Battle of the Sexes:

Bruce

Opera

Football

Sheila

Opera Football

1,2 0,0

0,0 2,1

The following story can be told about the Battle of the Sexes :

Imagine a couple, Bruce and Sheila, who are making plans for the weekend. They can

either go to the opera or attend a football-game. Bruce’s favorite is the football-game, but

Sheila’s favorite is the opera. Nevertheless, both prefer being together with their partner

over attending one of the events on their own. The decision where to go has to be made

simultaneously and is irreversible.

This game exhibits the following characteristics:

• This is an interactive component to this game since there is no dominant strategy

for each of the players:
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– For Bruce, O is NOT a better choice than F irrespective of what Sheila is

doing. If she chooses F , O gets Bruce a strictly worse payoff than F .

– On the other side, for Bruce, F is NOT a better choice than B either. If she

chooses O, then Bruce receives a strictly lower payoff from F than he would

get from O.

– The same argument applies for Sheila. Due to the symmetry of the game, you

simply have to exchange the name-labels ”Bruce” and ”Sheila” in the previous

two arguments.

So, it will depend on the other player’s action which action gives a player the highest

payoff.

• There is an element of conflict in that each player obtains an extra-surplus for his

own favorite choice.

• There is also an element of coordination in that both players receive a payoff of 0 if

the players’ choices do not agree.

• There is no natural way to make an assumption about the other person’s action

before the decisions need to be submitted.

• Comparing the Prisoner’s dilemma to the situation of the Battle of the Sexes, one

obtains:

If the game has ended up at an unfavorable outcome, i.e. an outcome where both

players can actually be better off at another outcome.4 this corresponds to the

outcome (1, 1) in the Prisoner’s dilemma and (0, 0) in the Battle of the Sexes. In the

Prisoner’s dilemma, the players would have to coordinate themselves and deviate

jointly in order to achieve the outcome (3, 3), whereas in the Battle of the Sexes

unilateral deviations are sufficient to move the outcome to either (1, 2) or (2, 1).

So, the solution-concept that will be applied to characterize the desired outcomes of this

game is the concept of a Nash-equilibrium. But in order to formally define this concept,

one first needs to characterize a player’s best response to another players’s strategy:

Definition 4 ai is a best response to action profile a−i iff

ui(ai, a−i) > ui(a
′
i, a−i), ∀a′i ∈ Ai. (4)

In words, one fixes one particular action of the other players a−i and looks for the best

action given a−i. In contrast to a dominant strategy, being a best response is only a local

4This is the notion of Pareto-inferiority.
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property of an action.

From the definition of a best response, one obtains the notion of a Nash-equilibrium

as follows:

Definition 5 a∗ = (a∗1, a
∗
2, ..., a

∗
I) is a (pure strategy) Nash-equilibrium iff for all

players i ∈ {1, ..., I}

u(a∗i , a
∗
−i) > u(ai, a

∗
−i), ∀ai ∈ Ai. (5)

Inherent to the definition of a Nash-equilibrium is a notion of stability. None of the

players wants to choose another action than the action of the Nash-equilibrium because

no player can make himself strictly better off by choosing another action. Put differently,

a Nash-equilibrium is a collection of mutual best responses for all players of the game.

The best-response correspondence BRi(a−i) of player i ∈ I is defined by

ai ∈ BRi(a−i) :⇔ ui(ai, a−i) > ui(a
′
i, a−i).

So, this correspondence simply picks out the best response for player i given the other

players’ action-profile a−i. All players’ best-responses correspondences are stacked into

the correspondence BR that is defined as follows:

BR(a) = (BR1(a−1), ..., BRI(a−I)).

Now, the definition of the action-profile a∗ being a Nash-equilibrium corresponds to a∗

being a fixed point of the best-response correspondence BR:

a∗ ∈ BR(a∗).

The fact, that a tuple of dominant strategies for each player is a Nash-equilibrium, is

evident from the definition of dominant strategies and that of Nash-equilibria. So, the

outcome (”Confess”,”Confess”) is also a Nash-equilibrium of the Prisoner’s dilemma.

Hence, it makes sense to scan for dominant strategies before one attempts to find Nash-

equilibria.

There are two possible justifications for the notion of a Nash-equilibrium as a solution-

concept:

• A Nash equilibrium is a steady state if players are subject to certain social norms

and conventions.

• A Nash equilibrium is the result of a mutual inductive process of reasoning.
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In practice, Nash-equilibria (in pure strategies) can be computed as follows:

One needs to determine the outcomes that are mutual best responses. One can start with

any action that any player can take. So, for example, fix Sheila’s choice ”Opera”. Now,

it is Bruce’s best response to Sheila’s choice O to choose O. This choice will be marked

with a little dash:

Bruce

Opera

Football

Sheila

Opera Football

1,2 0,0

0,0 2,1

Now, fix Sheila’s choice ”Football”. It is a best response for Bruce to Sheila’s choice F to

play F . Mark it with another dash:

Bruce

Opera

Football

Sheila

Opera Football

1,2 0,0

0,0 2,1

Now, we are done with all of Sheila’s actions. So, one switches to Bruce and fixes, for

example, his choice O. For Sheila, it is a best response to Bruce’s choice O to choose O.

So, put another dash below Sheila’s payoff from O in the field (O,O):

Bruce

Opera

Football

Sheila

Opera Football

1,2 0,0

0,0 2,1

Fixing Bruce’s action F , it is a best response for Sheila to this action to choose F , too.
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This completes the analysis of the player’s best responses:

Bruce

Opera

Football

Sheila

Opera Football

1,2 0,0

0,0 2,1

Now, you have found a Nash-equilibrium if there is a payoff-combination where both

numbers have dashes. In other words, such a field is a strategy-pair that consists of

mutual best responses.

Hence, in the Battle of the Sexes, the set of (pure-strategy) Nash-equilibria is given by

{(0, 0), (F, F )}.

For each of these pairs of outcomes, none of the players has an incentive to choose any

other action given the other player’s action. Put differently, no player has a profitable

deviation.

Remark 3 The following elementary procedure only works for games in normal form,

i.e. games that can be represented by a payoff-matrix. Furthermore, it will only find pure-

strategy Nash-equilibria.5 But, it will find all pure-strategy Nash-equilibria, i.e. a pair of

actions is NOT a pure-strategy Nash-equilibrium, if (at least) one payoff does not have a

dash.

As another example for the solution-concept of Nash-equilibrium consider the so-called

game of Hawk vs. Dove, which is sometimes also referred to as the Game of Chicken:

Player 1
Hawk

Dove

Player 2

Hawk Dove

0,0 7,2

2,7 6,6

5Mixed-strategies will be introduced below.
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With respect to the name Game of Chicken the following story in rememberance of James

Dean can be told:

Imagine two car-drivers that drive fast towards each other on a narrow road. At the point

where they will meet each other, there are small parking booths on either side of the

road. If one of the drivers decides to drive into the booth, then the car has to be stopped

completely until the other car has passed. If none of the cars stops, then there will be

an accident on the narrow road (both drivers receive utility 0). If one car stops, then the

driver of the car that can continue to drive fast on the road feels enthusiastic (utility 7),

whereas the driver of the stopped car is glad not to have had an accident (utility 2). If

both cars stop at their booths, the drivers gently smile at each other and drive slowly

past each other (both receive utility 6).

Applying the previously outlined procedure will yield the (pure-strategy) Nash-equilibria

of this game:

Start, for example, with player 2’s choice of ”Hawk”. Then, it is a best response for player

1 to this action to choose ”Dove”:

Player 1
Hawk

Dove

Player 2

Hawk Dove

0,0 7,2

2,7 6,6

Fixing the action ”Dove” for player 2, it is a best response for player 1 to player 2’s action

”Dove” to choose ”Hawk”:

Player 1
Hawk

Dove

Player 2

Hawk Dove

0,0 7,2

2,7 6,6

Now, fix player 1’s action ”Hawk”. Then, it is a best response for player 2 to this action

to choose ”Dove”:
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Player 1
Hawk

Dove

Player 2

Hawk Dove

0,0 7,2

2,7 6,6

Fixing player 1’s action ”Dove”, it is a best response for player 2 to this action to choose

”Hawk”:

Player 1
Hawk

Dove

Player 2

Hawk Dove

0,0 7,2

2,7 6,6

So, the set of (pure-strategy) Nash-equilibria of Hawk vs. Dove is given by

{(H, D), (D, H)}.

In other words, none of the players has a profitable deviation from one of the two (pure-

strategy) Nash-equilibria.

2.4 Mixed Strategies

There are games which do not have pure-strategy Nash equilibria. As an example, consider

the following game, which is called Matching Pennies:

Player 1
Heads

Tails

Player 2

Heads Tails

1,-1 -1,1

-1,1 1,-1
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The following story can be told for this game:

Imagine player 1 and player 2 are both holding a penny in their hand. Each of the coins

has a head-side and a tail-side. On a specific command, both players simultaneously have

to open their hand so that one side of their penny shows upward. If the two sides of the

pennies match, then player 1 receives player 2’s penny. If they do not match, then player

2 receives player 1’s penny.

Remarkably, this game is a zero-sum game, as it has been analyzed by John von Neumann.

This can be seen from the fact that the sum of the players’ payoffs in each matrix-cell is

zero.

This game does not have any Nash-equilibria in pure-strategies. Most easily, this can be

seen from the previously outlined procedure:

Player 1
Heads

Tails

Player 2

Heads Tails

1,-1 -1,1

-1,1 1,-1

None of the cells of the matrix bears a pair of dashes below the pair of payoffs, implying

the non-existence of pure-strategy Nash-equilibria.

In view of the previous result, one would like to generalize the notion of a strategy to

involve randomization over different actions. Formally, this yields the notion of mixed

strategies defined as follows:

Definition 6 Let a player’s set of pure actions be given by Ai = {a1
i , ..., a

k
i }. Then, a

mixed strategy σi is defined as

σi : Ai → [0, 1],

such that ∑
ai∈Ai

σi(ai) =
k∑

l=1

σi(a
k
i ) = 1.

So, by playing a mixed strategy, a player i ∈ I does not choose a single action but chooses

a probability distribution over a certain amount of actions. Obviously, the notion of a

pure strategy is incorporated into the definition of mixed strategies by putting all the

probability mass on one single action.
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Remark 4 Every time that mixed strategies will show up in the following, it will be as-

sumed that all players compute their utility according to the Expected-Utility specification.

Concerning notation, the −i-notation for the strategy of all players but player i trivially

carries over to mixed strategies. The notion of a best response carries over to mixed

strategies if one simply replaces ai by σi in (4). Furthermore, the definition of a Nash-

equilibrium can be extended to capture mixed strategies by replacing a∗ = (a∗i , a
∗
−i) by

σ∗ = (σ∗
i , σ∗−i) in (5).

The fact that the probability-simplex over any finite set of actions is always a compact

set may raise questions about the computability of Nash-equilibria (optimization over

compact sets) or the existence of Nash-equilibria for general games (fix-point arguments).

Concerning the computability, it was John von Neumann who, without defining Nash-

equilibria explicitly, has given a characterization of Nash-equilibria via linear programming

in the context of zero-sum games. Concerning the existence of Nash-equilibria, John Nash

has used the compactness of the probability-simplex to apply Kakutani’s fix-point theo-

rem, an elaborate version of Brouwer’s fix-point theorem, to demonstrate the existence of

Nash-equilibria for fairly general finite games.

Now, we will come to the question of how to actually compute mixed-strategy Nash-

equilibria. A property that is fundamentally important for this computation is the fol-

lowing:

Any player must be indifferent between all the actions that receive positive weight in the

player’s mixed strategy.

This can be seen as follows:

Suppose σ∗ is a Nash-equilibrium. Fix the other players’ strategy to be σ−i. If σi involves

player i putting positive weight on two actions a1
i and a2

i , then it is impossible that, for

σ−1, a1
i yields a strictly higher payoff than a2

i or vice versa. If this were the case, then

it would never be a best response to mix over the two actions, but it would be strictly

better to choose the ”preferred” action for sure.

Now, the procedure to determine mixed strategy Nash-equilibria will be outlines in the

context of the Matching Pennies game:

Start with any player, for example player 1. How can this player be made indifferent

between H and T? Suppose that player 2 puts probability-weight β ∈ [0, 1] on H (hence,

weight 1− β on T). Then, player 1’s payoffs are:

for H : β · 1 + (1− β) · (−1),

for T : β · −1 + (1− β) · 1.
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Indifference between H and T therefore requires:

β · 1 + (1− β) · (−1) = β · (−1) + (1− β) · 1,

β =
1

2
.

So, for a mixed-strategy Nash-equilibrium one requires player 2 to play 1
2
H + 1

2
T .

Now, consider player 2. How can this player be made indifferent between H and T?

Suppose that player 1 puts probability-weight α ∈ [0, 1] on H (hence, weight 1−α on T).

Then, player 2’s payoffs are:

for H : α · (−1) + (1− α) · 1,
for T : α · 1 + (1− α) · (−1).

Indifference between H and T therefore requires:

α · (−1) + (1− α) · 1 = α · 1 + (1− α) · (−1)

⇔ α =
1

2

So, for a mixed-strategy Nash-equilibrium one requires player 1 to play 1
2
H + 1

2
T . In

summary, the Nash-equilibrium (there is in fact only this one) for Matching Pennies is

given by (
1

2
H +

1

2
T,

1

2
H +

1

2
T

)
.

Coming back to the game Battle of the Sexes, one can find another, a mixed-strategy

Nash-equilibrium of this game via the following graphical argument:

Assume that Sheila puts probability weight σS on ”Opera”, i.e.

σS := σS(O).

Then, Bruce’s payoff is:

for O : σS · 1 + (1− σS) · 0,
for T : σS · 0 + (1− σS) · 2.

In order for Bruce to be indifferent between ”Opera” and ”Football”, one therefore needs

σS · 1 + (1− σS) · 0 = σS · 0 + (1− σS) · 2

⇔ σS =
2

3
.

Hence, for σS < 2
3
, Bruce obtains a strictly higher payoff from ”Football” than from

”Opera”. In contrast, for σS > 2
3
, Bruce obtains a strictly higher payoff from ”Opera”
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than from ”Football”. Denoting by σB the probability weight that Bruce puts on ”Opera”,

i.e.

σS := σS(O),

one can formulate Bruce’s best-response correspondence σ∗
B as follows:

σ∗
B(σS) =


0 for σS < 2

3
,

λO + (1− λ)F for any λ ∈ [0, 1] if σS = 2
3
,

1 for σS > 2
3

.

Now, Sheila’s payoff for any probability σB that Bruce puts on ”Opera” is:

for O : σB · 2 + (1− σB) · 0,
for T : σB · 0 + (1− σB) · 1.

In order for Sheila to be indifferent between ”Opera” and ”Football”, one therefore needs

σB · 2 + (1− σB) · 0 = σB · 0 + (1− σB) · 1

⇔ σS =
1

3
.

Hence, for σB < 1
3
, Sheila obtains a strictly higher payoff from ”Football” than from

”Opera”. In contrast, for σS > 1
3
, Sheila obtains a strictly higher payoff from ”Opera”

than from ”Football”. Hence Sheila’s best-response correspondence σ∗
S is given by:

σ∗
S(σB) =


0 for σS < 1

3
,

λO + (1− λ)F for any λ ∈ [0, 1] if σS = 1
3
,

1 for σS > 1
3

.

Depicting both best-response correspondences graphically, one obtains the three Nash-

equilibria of the game (2 in pure strategies, 1 in mixed strategies) as he intersections of

the best-response correspondences (i.e. as point that are mutually best responses):
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6

-
0

1
3

2
3

1

1

σB

σS

u

u

u

σ∗
S(σB)� A

A
A

A
AK

σ∗
B(σS)

?

PPPPPPPPq

Summing up, the set of Nash-equilibria for the game Battle of the Sexes is given by{
(O,O), (F, F ),

(
1

3
O +

2

3
F,

2

3
O +

1

3
F

)}
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