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1 Games with Complete Information

Last lecture we have been considering the following general setup:

• A set of players I = {1, ..., I}, where one particular player was denoted by i ∈ I.

• A set of actions Ai for each player i ∈ I, where Ai = {a1
i , ..., a

K
i }. One particular

action for player i is denoted by ai ∈ Ai.

• A payoff function ui for each player i ∈ I that maps a tuple of actions, one by each

player, into the real numbers, i.e. ui(a1, ..., aI) ∈ R.

1.1 Iterated Elimination of Weakly Dominated Strategies

Now, the general setting will be extended to incorporate uncountable and infinite action-

sets, in particular R+. In the following, consider the Cournot duopoly-game:

Two firms need to make a decision about the non-negative quantity of an identical good

that they want to supply to the market.1 Denote the firm’s quantities by qi, for i ∈ {1, 2}.
The firms make their decision simultaneously and, according to their decision, the price

of the good is determined as

p = 1− q1 − q2.

Clearly, this pricing-function exhibits the intuitive property that the price decreases in

the quantity supplied. As an example for this situation, one may think of both firms as

steel-producers who supply into one steel-market.

The firm’s cost of producing are set to zero, i.e. one firms profit function is given by

Πi(qi, qj) = pqi

= (1− qi − qj)qi.

Here, i ∈ {1, 2} and j 6= i.

In order to determine the optimal quantity that a firm is supposed to supply, one can

optimize Πi with respect to qi. This yields the following FOC:

∂Πi(qi, qj)

∂qi

!
= 0

⇔ 1− 2qi − qj = 0

⇔ qi =
1− qj

2
.

Explicitly, one has computed the following result:

1The name ”duopoly” is derived from the situation that two firms are in a ”kind of monopolistic
situation”.
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• In response to firm 2 setting a quantity q2, firm 1 optimally sets

q∗1(q2) =
1− q2

2
. (1)

• In response to firm 1 setting a quantity q1, firm 2 optimally sets

q∗2(q1) =
1− q1

2
. (2)

Now, the Nash-equilibrium of the game can be determined as the solution to the system

of equations given by (1) and (2). Hence

q∗i =
1

3
, q∗j =

1

3
. (3)

Graphically, the Nash-equilibrium can be determined as the intersection of the two lines

that are described by (1) and (2). As can be expected, the intersection is located at the

point (1
3
, 1

3
).
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In contrast to many situations in Computer Science, the solution of this game does not try

to minimize costs in any way. Quite the contrary, the firms’ sole objective is to maximize

their profits.

In the following, an alternative derivation of the solution to the Cournot Duopoly will

be presented. This derivation is based on an iterative procedure that subsequently elimi-

nates weakly dominated strategies. Heavy use will be made of the fact that any player’s

optimal response is monotonely decreasing in the quantity that the other player supplies.

Given this property, one obtains boundaries on reasonable quantity-choices given that the

opponent will only choose from a specific interval.

First of all, the fact that the optimal response functions q∗1(q2) = 1−q2

2
and q∗2(q1) = 1−q1

2

depend on the quantity supplied by the other firm rules out the existence of a dominant

strategy. So, the question arises whether one can possible rule out any weakly dominated

strategies. This will be done in the following iterative manner:

1. Define the sets

S0
1 := R+, S0

2 := R+.

That is, both S0
1 as well as S0

2 are set to the player’s full action-set.

2. For q2 = 0, the best-response functions (1) prescribes that player 1 will optimally

never choose to supply more than 1
2
. Therefore, all quantities in the set S0

1 that are

located above 1
2

are weakly dominated for player 1. The same argument applies to

player 2 facing of player 1 choosing q1 = 0. Hence, one can construct sets S1
1 and

S1
2 from S1

1 as well as S1
2 by eliminating weakly dominated strategies:

S1
1 :=

[
0,

1

2

]
, S1

2 :=

[
0,

1

2

]
.

3. Now, by the methodology of the iteration, player 2’s actions are now restricted to

S1
2 . Because player 2 can never choose a quantity bigger than 1

2
, it follows from

player 1’s optimal response function via

q∗1

(
1

2

)
=

1

4
,

that player 1 will never choose a quantity smaller than 1
4
. That is, the interval [0, 1

4
)

contains weakly dominated actions for player 1. The identical argument applies to

player 2 facing player 1 choosing from the set S1
1 . Hence, the elimination of weakly

dominated strategies implies

S2
1 :=

[
1

4
,
1

2

]
, S2

2 :=

[
1

4
,
1

2

]
.
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4. Player 2’s actions are now restricted to S2
2 . Because player 2 can never choose a

quantity smaller than 1
4
, it follows from player 1’s optimal response function via

q∗1

(
1

4

)
=

3

8
,

that player 1 will never choose a quantity bigger than 3
8
. That is, the interval (3

8
, 1

2
]

contains weakly dominated actions for player 1. The identical argument applies to

player 2 facing player 1 choosing from the set S2
1 . Hence, the elimination of weakly

dominated strategies implies

S3
1 :=

[
1

4
,
3

8

]
, S3

2 :=

[
1

4
,
3

8

]
.

5.

S4
1 :=

[
5

16
,
3

8

]
, S4

2 :=

[
5

16
,
3

8

]
.

6.

S5
1 :=

[
5

16
,
11

32

]
, S5

2 :=

[
5

16
,
11

32

]
.

7. etc.

The described procedure has an algorithmic feature that appears easily implementable.

The only assumption that one needs to impose in order to get the iteration going deals

with the rationality of the players. Since the iteration involves repetitive reasoning it is

required that

• Both players are rational.

• Both players know that their counterpart is rational.

• Both players know that their counterpart knows that they are rational.

• etc.

Outcomes that survive this iterated elimination of weakly dominated strategies are called

rationalizable. In the particular situation of the Cournot duopoly, the rationalizable

outcome coincides with the Nash-equilibrium.

In general, the set of rationalizable outcomes is a superset of the set of Nash-equilibria.

For example, in the case of the Battle of the Sexes there is no outcome that can be

eliminated by the iterative procedure outlined above. That is, all outcomes of the game

are rationalizable, whereas there are only three Nash-equilibria. The iterated removal of

weakly dominated strategies imposes very strong rationality-assumptions on the players
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which make the elimination of outcomes more difficult than under the procedure to find

Nash-equilibria.

The reason why the iterated elimination of weakly dominated strategies has worked so

well for the situation of the Cournot Duopoly has to do with the mutual relationship

between the quantities in the best-response functions (1) and (2). Explicitly, q1 and q2

are strategic substitutes because one player’s optimal response function is decreasing in

the other player’s quantity.

2 Games with Incomplete Information

Instead of games with complete information, the focus will now be shifted towards games

of incomplete information, i.e. games where some players are uncertain about the payoffs

(own or others), the strategies or the players in the game. This will be made explicit

by the consideration of so-called types. Instead of the previous specification of a utility

function as a mapping ui(a1, ..., aI) for every player i ∈ I, we will specify

ui(a1, ..., aI ; t1, ..., tI︸ ︷︷ ︸
types

).

Hereby, the type of player i is denoted by ti. ti captures private information that is only

available to player i. As an example, ti may capture the valuation that a certain bidder

in an auction has for a specific painting. Before any action is taken in a game, no player

besides player i knows the specific value of ti, but there will be a general assessment about

the distribution of types in the population. But in the course of the game it may well

be possible that players reveal (part of) their private information to other players by the

way in which they act. To introduce private information of players appears to be highly

reasonable if one thinks about situations like the Internet as a place with highly dispersed

information-structure.

The new notion of a Bayesian game that captures incomplete information consists of

the following elements:

• A set of players I = {1, ..., I}.

• A set of actions Ai for every i ∈ I. A particular action for player i is denoted by

ai ∈ Ai.

The set of all tuples of actions that may arise in the game is denoted by A =

A1 × ...× AI .
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• A set of types Ti for every i ∈ I. A particular type for player i is denoted by ti ∈ Ti.

The particular type for player i is this player’s private information.

The set of all tuples of actions that may arise in the game is denoted by T =

T1 × ...× TI .

• A common prior, also called common prior distribution, denoted by

p : T → [0, 1],

such that
∑
t∈T

p(t) = 1.

• Payoff-functions

Definition 1 A Bayesian game ΓB is given by

ΓB :=
{
I, {Ai}I

i=1, {Ti}I
i=1, p, {ui}I

i=1

}
. (4)

Remark 1 The two additional elements that distinguish a Bayesian game from the setting

previously considered are the type-spaces {Ti}I
i=1 and the common prior p.

Starting from the common prior, every player can make use of his private information

ti ∈ Ti to update p via Bayes’ rule to obtain

p(ti|ti),

i.e. player i can form a conditional belief2 on the distribution of the other players’ type

given what he knows about himself. As an example for this reasoning from the prior to

the conditional belief consider the following distribution of p:

Player a
tla

tha

Player b

tlb thb

1
4

1
4

1
4

1
4

Here, the game consists of two players, player a and player b. Each of the players has two

possible types, a low type and a high type, i.e.

T ∈ {tla, tha} × {tlb, thb}.
2This is sometimes referred to as the posterior belief.
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The numbers in the fields of the matrix stand for the probability by which the corre-

sponding pair of types appears according to the common prior. In the example above,

each of the pair of types (tla, t
l
b), (tla, t

h
b ), (tha, t

l
b) and (tha, t

h
b ) comes up with probability 1

4
.

Unfortunately, this structure of the probability distribution does not allow any inference

at all, because the type-distributions of the two players are independent from each other.

This can be seen from the fact that the probability distribution in the matrix can be

represented as the product of two marginal distributions. Explicitly, if one assumes that

each player’s distribution over just his types is given by (1
2
, 1

2
) and both type-distributions

are independent, then one would obtain the above matrix-representation via

p((tla, t
l
b))

Indep.
= Prob(type a is tla) · Prob(type b is tlb) =

1

2
· 1

2
=

1

4
.

p((tla, t
h
b ))

Indep.
= Prob(type a is tla) · Prob(type b is thb ) =

1

2
· 1

2
=

1

4
.

etc.

An example where the conditioning role of private information manifests itself is given by

the following common prior distribution:

Player a
tla

tha

Player b

tlb thb

1
3

1
6

1
6

1
3

Obviously, the previous argument about not being able to draw any inference does not

apply anymore. So, it makes sense to compute

p(tlb|tla).

This is done by Bayes’ rule as follows:

p(tlb|tla) =
p((tla, t

l
b))

p((tla, t
l
b)) + p((tla, t

h
b ))

=
1
3

1
3

+ 1
6

=
2

3
.
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Similarly, one can compute the following conditional probability

p(tla|thb ) =
p((tla, t

h
b ))

p((tla, t
h
b )) + p((tha, t

h
b ))

=
1
6

1
6

+ 1
3

=
1

3
.

A simple example of a Bayesian game is given by:

Player 1
Up

Down

Type t12 of Player 2

Left Right

1,1 0,0

0,1 1,0

Up

Down

Type t22 of Player 2

Left Right

1,0 0,1

0,0 1,1

Player 1 is choosing between ”Up” and ”Down” without knowing whether the left or the

right matrix is played. Before making any decision, player 2 observes whether she has

type t12 or t22. According to her type, player 2 knows whether the left or the right matrix

is played. Then, she makes a decision between ”Left” and ”Right”. Player 2’s type is the

uncertain variable in this Bayesian game. Player 2 knows whether he has type t12 or type

t22, but from the point of view of player 1 this type is uncertain. So, there is a common

prior on player 2’s type given by3

p(t12) = α, p(t22) = 1− α.

Observe the following characteristics of the game:

• Player 1 obtains the same payoff in both matrices.

• For player 2, action L is a dominant strategy if she has type t12, whereas R is a

dominant strategy if she has type t22.

Before we can solve for the equilibrium of the above game, we need to formally define the

notion of a strategy in a Bayesian game:

3Because there is no uncertainty about player 1’s type, his type will be omitted as an argument of the
common prior p for notational convenience.
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Definition 2 A pure strategy for player i ∈ I in a Bayesian game is given by

si : Ti → Ai.

A mixed strategy for player i ∈ I in a Bayesian game is given by

si : Ti → ∆(Ai).

So, a strategy is always a mapping from the player’s type-set into the action-set. That

is, for player i, the mapping si assigns an action ai (or a probability distribution over

actions) to any type-realization ti. This definition incorporates the idea of a contingent

plan. It can be seen as a list of instructions of how to behave in response to any possible

type-realization.

If there is only one type - a situation that we have faced in the games of complete

information analyzed before - then the above notion of a strategy simply prescribes one

action or one probability distribution over actions. This is consistent with the way in

which we have used the notion of a strategy before.

Remark 2 The question may arise why one needs to specify the whole contingent plan

of an player. If player i already knows his type, then she can also determine her action

according to this one type and she may not see any need to determine the full strategy-

mapping beyond this one type-action-pair. But notice that, as the other players are still

uncertain about the specific player’s type, they will need to determine a probability dis-

tribution over player i’s actions, depending on her type. So, the specification of a whole

function is important for the definition of every player’s strategy in a consistent way.

Now, we want to come back to the initially studied Bayesian game. The solution-concept

to be used is that of a Bayesian Nash equilibrium, which is a simple generalization of the

idea of mutual best responses to the situation of incomplete information. For the analysis,

the probability α ∈ [0, 1] will be fixed. As already outlined in Remark 4 of Lecture I, an

Expected-Utility model will be used in this uncertain environment:

Player 2’s best-response-strategy is given by

s∗2(t2) =

{
L if t2 = t12
R if t2 = t22

.

Player 2’s best response is irrespective of any action of player 1 because player 2’s action

is a dominant strategy for any of his type. In the left matrix, player 2 always wants to

choose ”Left” and in the right matrix it is ”Right”.

Player 1’s best response to player 2’s action will now depend on the probability α. Player 1

only has one type, so her strategy will simply be one action (or one probability distribution
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to choose). She already knows that she will face the choice ”Left” in the left matrix and

”Right” in the right matrix. Now, the decision for any alternative depends on which

matrix will actually be played, i.e. on the probability α. Player 1 compares the following

two payoffs:

for ”Up” : α · 1 + (1− α) · 0, (5)

for ”Down” : α · 0 + (1− α) · 1. (6)

The logic of the computation is as follows:

From the point of view of player 1, the left matrix is played with probability α. Here,

player 2 will choose ”Left”. So, ”Up” yields a payoff of 1 and ”Down” yields 0. The right

matrix is chosen with probability 1 − α. Here, player 2 will choose ”Right”. So, ”Up”

yields a payoff of 0 and ”Down” yields 1. As one can see from (6) and (5), the choice ”Up”

is favorable for α > 1
2

and the choice ”Down” is favorable for α < 1
2
. For α = 1

2
, both

choices yields the same payoff, so any convex combination between ”Up” and ”Down”

yields an identical payoff. Summarizing, player 1’s best response is given by

s∗1 =


U if α > 1

2
,

λU + (1− λ)D for any λ ∈ [0, 1] if α = 1
2
,

D if α < 1
2
.

A Bayesian Nash-equilibrium of the above game is now given by the pair (s∗1, s
∗
2(s

∗
1)).
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