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1 Bayesian Games

In the last lecture we have introduced the notion of a Bayesian game:

Definition 1 A Bayesian game ΓB is given by

ΓB = {I, {Ai}i∈I , {Ti}i∈I , p(·), {ui(a, t)}i∈I}. (1)

Remember the tuple-notation for a system of elements for every player in I:

• The set A := A1 × ...×AI denotes all possible tuples of actions. A typical element

a ∈ A contains an action ai for each player i ∈ I.

• The set A := A1 × ... × AI denotes all possible tuples of types. A typical element

t ∈ T contains an action ti for each player i ∈ I.

Once again, the elements constituting a Bayesian game can be verbalized as follows:

• There is a set I of players that are involved in the game.

• Each player i ∈ I has a set of actions available that she can possibly take.

• Capturing the essence of the Bayesianity of the definition, each player i ∈ I has an

element of private information about herself, the type-set Ti. Only player i knows

for sure which element ti ∈ Ti actually prevails.

• In contrast to player i ∈ I, all other players can only draw conclusions about the

type ti ∈ Ti for player i according to the common prior probability distribution p.

• Finally, each player has a utility function u. Observe that, at this level of generality,

the utility function depends on the pair (a, t), i.e. not only all players’ actions - as

captured by the vector a - influence the resulting utilities of the game, but also all

types of the players - as captured by the vector t - play a role. Put differently, the

actual realization of the type of another player can potentially affect my utility.

Taken the structure of any Bayesian game ΓB as given, the players formulate strategies,

i.e. for any possible realization of their private type ti ∈ Ti they determine which action

or which probability distribution over actions they will choose in the game.

Definition 2

A pure strategy si for player i ∈ I in the Bayesian game ΓB is given by

si : Ti → Ai. (2)

A mixed strategy σi for player i ∈ I in the Bayesian game ΓB is given by

σi : Ti → ∆(Ai). (3)

Remark 1 To denote a system of strategies, one for each player, we will simply write

every players’ strategy in a vector (as we have proceeded for the sets A and T .)
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1.1 Bayesian Nash Equilibrium (BNE)

Building on the notion of a (pure/mixed) strategy as defined above, it is possible to think

about equilibria of Bayesian games. We will use the notion of a Nash equilibrium from

the part on complete information games and generalize this notion to Bayesian games,

i.e. situations in which private or incomplete information plays a role.

Remark 2 As already mentioned in the previous lectures, we will adhere to the system

of Expected-Utility maximization.

Assumption 1 The common prior will be assumed to satisfy

p(t) > 0 ∀t ∈ T.

That is, every possible tuple of types among the players has some positive probability.

Remark 3 Assumption 1 is solely made in order to avoid unnecessary complications that

are related to conditioning on private information of players.

Definition 3 (Ex-Ante Pure-Strategy BNE)

A strategy profile s∗ = (s∗1, ..., s
∗
I) is called a pure-strategy ex-ante BNE iff

for all players i ∈ I∑
t∈T

p(t)ui

(
(s∗i (ti), s

∗
−i(t−i), t)

)
>

∑
t∈T

p(t)ui

(
(s′i(ti), s

∗
−i(t−i), t)

)
∀s′i. (4)

So, this definition looks at the strategies that constitute a BNE for each player separately.

For each player i, all opponents’ actions are taken as fixed (s∗−i(t−i) remains unchanged).

Now, one compares the actions that are prescribed by the equilibrium-strategy s∗i (ti) to

any other possible choice of actions s′i(ti). The concept of an ex-ante BNE refers to the

fact that the expectation is taken over all players’ types t ∈ T . So, one can argue that

player i has not yet learned her type and also evaluates all of her possible types according

to the common prior. She formulates a contingent plan s∗i (ti) that depends on the explicit

realization of her type that she will learn later on.

Definition 4 (Ex-Ante Mixed-Strategy BNE)

A strategy profile σ∗ = (σ∗
1, ..., σ

∗
I ) is called a mixed-strategy ex-ante BNE iff

for all players i ∈ I∑
t∈T

p(t)ui

(
(σ∗

i (ti), σ
∗
−i(t−i)), t

)
>

∑
t∈T

p(t)ui

(
(s′i(ti), σ

∗
−i(t−i)), t

)
∀s′i. (5)
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The difference between (4) and (5) is simply the fact that pure strategies have been

substituted by mixed strategies. Importantly, observe that one can restrict attention to

pure strategies if one checks for alternative strategies for player i. This relates to the fact

- emphasized in Lecture I - that a player needs to be indifferent to all pure strategies that

are involved in a mixed-strategy best response. So, if a player is already weakly better

off with a particular mixed strategy than with any possible pure strategy, one cannot

assemble any mixed strategy from the pure ones that will give the player a higher payoff

than the original mixed strategy.

Definition 5 (Interim Pure-Strategy BNE)

A strategy profile s∗ = (s∗1, ..., s
∗
I) is called a pure-strategy interim BNE iff

for all players i ∈ I and all types ti ∈ Ti∑
t−i∈T−i

p(t−i|ti)ui

(
(s∗i (ti), s

∗
−i(t−i)), t

)
>

∑
t−i∈T−i

p(t−i|ti)ui

(
(ai, s

∗
−i(t−i)), t

)
∀ai ∈ Ai. (6)

Compare (6) to (4). In contrast to the notion of an ex-ante BNE, the interim-notion

builds on the fact that player i already knows her type, her piece of private information.

So, player i can condition on ti in the common prior and needs only to consider the

expectation with respect to the other players’ types (over T−i). Furthermore, one does

not have to specify a different strategy s′i about what type ti of player i will do, but one

can simply take another action ai on the right-hand side of the optimality-condition.

Definition 6 (Interim Mixed-Strategy BNE)

A strategy profile σ∗ = (σ∗
1, ..., σ

∗
I ) is called a mixed-strategy interim BNE iff

for all players i ∈ I and all types ti ∈ Ti∑
t−i∈T−i

p(t−i|ti)ui

(
(σ∗

i (ti), σ
∗
−i(t−i)), t

)
>

∑
t−i∈T−i

p(t−i|ti)ui

(
(ai, σ

∗
−i(t−i)), t

)
∀ai ∈ Ai. (7)

Comparing (7) to (6), the same remarks apply as in the previous shift from (4) to (5).

Due to the characteristic property of the interim-notion, one does not have to worry

about alternative strategies anymore, but the fact that player i’s type ti is fixed in the

optimality-condition allows to restrict attention to alternative actions ai.

Remark 4 If the type-space Ti for each player i ∈ I is continuous, the sums in all the

above definitions have to be replaced by integrals over the corresponding sets. The essence

of the definitions remains the same.

As the following proposition shows, the notions of ex-ante- and interim-BNE are in fact

equivalent.
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Proposition 1

1. Every ex-ante-BNE (in pure or mixed strategies) is also an interim-BNE (in the

corresponding strategies).

2. Every interim-BNE (in pure or mixed strategies) is also an ex-ante-BNE (in the

corresponding strategies).

The proof of this proposition will be included in these lecture notes, once the first problem

has been submitted by all people who take the course for credit.

An important consequence of the proposition is the fact that one does not have to care

about the distinction between ex-ante- and interim-BNE. A solution according to one

notion will also be a solution according to the other notion. In practise, it is often

much more convenient to work with the interim-notion. In this case, one simply fixes one

player’s type and optimizes pointwise for this fixed type to obtain a player’s best-response

strategy. Repeating this exercise for all other players of the game yields an interim BNE.

To conclude the definitions relating to BNE, a final notion - ex-post BNE - is introduced.

Definition 7 (Ex-Post Pure-Strategy BNE)

A strategy profile s∗ = (s∗1, ..., s
∗
I) is called a pure-strategy ex-post BNE iff

for all players i ∈ I and all types t = (ti, t−i) ∈ T

ui

(
(s∗i (ti), s

∗
−i(t−i), t)

)
> ui

(
(ai, s

∗
−i(t−i), t)

)
∀ai ∈ Ai. (8)

The notion of an ex-post BNE corresponds to the situation in which all players’ types are

known by all players. Hence, there is no private information anymore. For player i, there

is no need to take expectations anymore, but she simply compares the utility from the

BNE to any other utility that may arise if she chooses another action ai.

Definition 8 (Ex-Post Mixed-Strategy BNE)

A strategy profile σ∗ = (σ∗
1, ..., σ

∗
I ) is called a mixed-strategy ex-post BNE iff

for all players i ∈ I and all types t = (ti, t−i) ∈ T

ui

(
(σ∗

i (ti), σ
∗
−i(t−i), t)

)
> ui

(
(ai, σ

∗
−i(t−i), t)

)
∀ai ∈ Ai. (9)

This definition generalizes in the same manner as previously outlined from its pure-

strategy analogue.

The following proposition shows that the notion of ex-post BNE implies the notion of

interim-BNE (and hence the notion of ex-ante BNE due to the equivalence from Propo-

sition 1).
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Proposition 2 Every ex-post-BNE (in pure or mixed strategies) is also an interim-BNE

(in the corresponding strategies).

Proof of Proposition 3 So, consider a mixed-strategy ex-post BNE, i.e. for all players

i ∈ I and all tuples of types t ∈ T , the inequality (9) holds.1 All of these inequalities will

remain valid if both sides are multiplied by the positive number (remember Assumption 1)

p(t−i|pti). Hence:

∀i ∈ I,∀t ∈ T : ui

(
(σ∗

i (ti), σ
∗
−i(t−i), t)

)
> ui

(
(ai, σ

∗
−i(t−i), t)

)
∀ai ∈ Ai

⇔ ∀i ∈ I,∀t ∈ T :

p(t−i|ti)ui

(
(σ∗

i (ti), σ
∗
−i(t−i), t)

)
> p(t−i|ti)ui

(
(ai, σ

∗
−i(t−i), t)

)
∀ai ∈ Ai

⇒ ∀i ∈ I,∀ti ∈ Ti :∑
t−i∈T−i

p(t−i|ti)ui

(
(σ∗

i (ti), σ
∗
−i(t−i), t)

)
>

∑
t−i∈T−i

p(t−i|ti)ui

(
(ai, σ

∗
−i(t−i), t)

)
∀ai ∈ Ai.

The last implication is simply due to the fact that the inequality-relation is preserved

if one takes the sum over T−i if all terms of the sum satisfy the analogous inequality.

Furthermore, observe that the last line is exactly the definition of a mixed-strategy interim-

BNE, concluding the proof.

Remark 5 The converse implication of Proposition 2 is not true. Not every interim-

BNE is also an ex-post BNE. This can be seen from the simple example of a Bayesian

game from Lecture II:

Player 1
Up

Down

Type t12 of Player 2

Left Right

1,1 0,0

0,1 1,0

Up

Down

Type t22 of Player 2

Left Right

1,0 0,1

0,0 1,1

Without explicitly mentioning it, we have found an interim BNE for every possible com-

mon prior that may occur in this game as follows:

s∗1 =


U if α > 1

2
,

λU + (1− λ)D for any λ ∈ [0, 1] if α = 1
2
,

D if α < 1
2
.

1Once established for mixed strategies, the result follows trivially for pure strategies, because any pure
strategy is a degenerate mixed strategy, where all probability is concentrated on one element.
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s∗2(t2) =

{
L if t2 = t12,

R if t2 = t22.

So, assume that α = 1
4
. In this case, player 1 chooses ”Down”. But for player 2 being

of type t12 (implying that player 2 will definitely choose ”Left”), player 1 will not play a

best response. Thus, we have found a violation of the definition of an ex-post BNE for an

equilibrium that clearly satisfies the definition of an interim BNE.

1.2 First-Price Sealed-Bid Auction

Imagine the following situation:

An auction involving 2 bidders is conducted for a specific object, say a painting. Each

bidder has a specific valuation for the painting that is her private information. The bidders

are asked to submit their bids simultaneously in a sealed envelope. These envelopes will

be opened by the auctioneer who awards the painting to the person who has submitted

the highest bid. This bidder has to pay exactly her bid for the object.

In the following, this fairly general story will be translated very precisely into the general

setting of Bayesian games as outlined above. Hereby, the language of auctions involving

bidders and bids will be used in place of the game-theoretic language of players and

strategies:

• The set of players I is given by the set of bidders (1, 2).

• The set of possible actions Ai for each player i ∈ {1, 2} is given by R+. An action

for player i is a specific bid - a non-negative number - that a player/bidder submits.

• The set of possible types Ti for each player i ∈ {1, 2} is given by the set [0, 1].

Hereby, the interval [0, 1] is a modeling-choice that makes some of the following

computations a little bit easier. A type for player i is a particular number between

0 and 1.

• The common prior p on the set of possible types T1 × T2 is given by

ti ∼ iid U [0, 1].

That is, both bidders’ valuations are distributed uniformly on [0, 1] and they are

independent from each other.

• In order to properly define the bidders’ utility functions u1, u2, one needs a proper

assessment of the bidders’ bidding strategies. Hence, we will first define those:
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For i ∈ {1, 2}, bidder i’s bidding strategy bi - we have called these elements si before

- is given as a mapping from types to actions, i.e.

bi : [0, 1] → R+.

• According to the distinctive principle of a First-Price auction (highest player wins

and pays her own bid), the utility-function ui((bi, bj), (ti, tj)), i, j ∈ {1, 2}, i 6= j, is

defined as follows. Explicitly, player i’s utility is described as

ui((bi, bj), (ti, tj)) =


ti − bi if bi > bj
1
2
(ti − bi) if bi = bj

0 if bi < bj

. (10)

In the following, the terms ”utility” and ”payoff” will be employed exchangeably.

Observe that we do not put the players actions a as an argument of the utility-

function, but the players’ bids. This is due to the construction of the agents’ strate-

gies as mappings from types to actions, i.e. together with the types the bidding

function denotes the action chosen by the player. The first case of the utility-

function corresponds to player i winning the auction (by submitting the highest bid

(bi > bj)). In this case, i receives her valuation for the good (”the pleasure of owning

the item from now on”), but has to pay the price bi. The third case corresponds to

the player i losing the auction. In this case, she does not receive her valuation for

the good, but she does not have to pay anything either. The second case refers to

the situation where the bidders are tied with their bids (both submit equal bids).

In this situation, one has to decide about a tie-breaking rule. The most common

and also most intuitive rule is to split the benefit of getting the good (the quantity

ti − bi) between the two players.

The utility-function above has been specified at the ex-post level, i.e. for known types

ti, tj of both players. But in order to solve the First-Price auction, we need to derive a

system of best-response correspondences that either satisfy the definition of a Bayesian

Nash equilibrium at the ex-ante- or the interim-level. This is due to the fact that the

ex-post-notion is not equivalent to either the ex-ante- or the interim-notion.

Comparing the ex-ante- and the interim-notion, it is more convenient - as discussed above

- to work with the interim notion. So, the question arises of how to obtain the interim-

payoff function from the ex-post-payoff?

This transition is performed by taking the expectation of the ex-post payoff-function with

respect to all the elements of the other player, i.e. tj and bj. So, player i is interested in

maximizing the following expression

max
bi

Etj ,b∗j
[ui ((bi, bj), (ti, tj)) |ti, bi] . (11)
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So, player i averages over those elements that she does not have any control over. She

does not know the other player’s type and, hence, she has no idea about the value b∗j . This

will be the value of the bid that player j submits which is a function of player j’s private

information tj. Since we are interested in a BNE, i.e. in mutual best responses, player i

already takes the optimality of player j’s bidding behavior into account. According to the

interim-notion of a BNE, player i already knows about her type ti. So, she can condition

on this element of private information. Furthermore, player i will derive the specific bid

bi as a function of her private information ti. This will also be privately known to her.

Summarizing, player i’s objective is to choose the bid bi optimally as to maximize the

expression (11). Now, (11) can be rewritten as

(ti − bi) · P
[
bi > b∗j(tj)

]
+

1

2
(ti − bi) · P

[
bi = b∗j(tj)

]
+ 0 · P [bi < bj(tj)] (12)

= (ti − bi) · P
[
bi > b∗j(tj)

]
+

1

2
(ti − bi) · P

[
bi = b∗j(tj)

]
. (13)

The first step of the preceding transformation is done according to the following rule on

conditional expectations and/or probabilities:

E[X] = E [X|Y > 0] P[{Y > 0}] + E [X|Y = 0] P[{Y = 0}] + E [X|Y < 0] P[{Y < 0}].

Explicitly, set X to be our payoff-function and Y to be the difference bi − bj.

In the next step of the analysis, we aim at ”inverting” the opponent’s bidding function,

i.e. we would like to infer the type from the bid. This will allow us to further simplify

the interim-payoff function because player i has a probability-assessment about the other

bidder’s type (but, importantly, not about the other bidder’s bid; hence the ”inversion”-

procedure). In general, any bidder’s bidding function will be given by a function that

may look similar to the following graph.
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It is an important feature of the concept of a BNE that we are aiming at determining a

whole optimal bidding-function. In the following, a couple of properties and their intuition

will be described that are considered desirable for the bidding function that represents an

optimum in the context of a First-Price auction.

We want the bidding function to satisfy the following characteristics:

• At 0, we want the bidding function to be equal to zero. If the object is not worth

anything to a bidder, then the bidder optimally does not give a positive bid.

• The dashed line in the graph represents the 45-degree line. This corresponds to the

situation where the bid is exactly equal to the valuation of a bidder. If a bidder

exactly places a bid on this line, then she obtains zero utility, which leaves her

indifferent to not participating in the auction at all.

• The bidding-function will be located below (or at) the dashed line. This is due to

the fact that players will make losses if they announce a bid above their valuation

(above the 45-degree line in the graph) and are actually awarded the object. The
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distance between the private type ti and the bid bi(ti), i.e. the distance between the

dashed line and the bidding curve, is sometimes referred to as bid shedding. This

distance stands for the amount by which the bid is distorted away from the truth.

In the context of the First-Price auction, positive bid shedding corresponds to the

possibility of getting strictly positive utility in the case that the bidder actually

receives the object.

• We want the bidding function to be strictly increasing. That is, if we compare two

types of one bidder, then we want the higher type of the bidder to put in a strictly

higher bid.2

Incorporating all the above reflections on bidding functions, we will guess a functional

form of the opponent’s bidding function that appears in the representation of the interim

payoff function (12). The guess is that a BNE can be found in linear bidding strategies:

bi(ti) = αi + βiti, (14)

bj(tj) = αj + βjtj. (15)

This means that we are restricting attention to situations of linear bidding strategies.

This does NOT mean that there are no potential other BNE involving non-linear bidding

strategies. In the following, our task is to verify that the guess of linear bidding strategies

is indeed a BNE and to determine the coefficients αi, αj, βi, βj.

But how do we use the guess to transform the above expression

(ti − bi) · P
[
bi > b∗j(tj)

]
+

1

2
(ti − bi) · P

[
bi = b∗j(tj)

]
.

for the interim-expected-payoff of player i?

We will plug in the guess for player j’s bidding function in this expression. This is actually

the only element that we can replace. We are not allowed to tamper with the bidding

function bi because this function will solely be determined from optimality-considerations

and we do not want to restrict the set over which we optimize. In the end, we need

to check whether the optimality-condition that we will derive for bi actually is a linear

function. So, we obtain

(ti − bi) · P
[
bi > b∗j(tj)

]
+

1

2
(ti − bi) · P

[
bi = b∗j(tj)

]
= (ti − bi) · P [bi > αj + βjtj] +

1

2
(ti − bi) · P [bi = αj + βjtj]

= (ti − bi) · P [bi > αj + βjtj] .

2The increasingness-property appears to be very reasonable. In contrast, the strictness is an assump-
tion, but a very convenient one.
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Observe that in the last step we have dropped the second summand. This is due to the

fact that we restrict attention to strictly increasing bidding functions. In this case, the

event that a bidding function (here, bi) equals a specific value (here, αj + βjtj) is a P-null

event, i.e. it has probability zero.

Now, we have finally obtained an expression that only involves the other bidder’s type and

no longer his bidding function. In the next step, we will transform the above expression

in order to be able to apply the distributional assumption (the common prior) for tj:

(ti − bi) · P [bi > αj + βjtj]

= (ti − bi) · P
[
tj <

bi − αj

βj

]
.

Given that tj ∼ U [0, 1], it follows that

P
[
tj <

bi − αj

βj

]
=

bi − αj

βj

.

So, finally, player i’s objective function is given by

max
bi

{
(ti − bi)

bi − αj

βj

}
. (16)

So, player i’s objective is to maximize the product of her realized surplus ti − bi and

the probability of winning
bi−αj

βj
. Hereby the player faces the tradeoff to increase her

probability of winning (by choosing a higher bid bi) only at the cost of decreasing her

surplus. The FOC for (16) is given by

−b∗i − αj

βj

+
ti − b∗i

βj

!
= 0

⇔ 2b∗i = αj + ti

⇔ b∗i =
ti + αj

2
.

In summary, player i’s best-response bidding function b∗i is given by

b∗i (ti) =
1

2
αj +

1

2
ti. (17)

Observe two important features of this optimal response:

• Making use of the fact that the opponent’s bidding strategy is linear, but NOT

assuming anything about player i’s bidding strategy, one obtains linearity of b∗i in

ti. This is the property that we needed to check in order to make sure that there is

a BNE in linear bidding strategies.
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• As a consequence of the uniform distribution in the common prior of both players,

the best responses do not depend on the slope βj opponent’s bidding strategy.

Due to the symmetry of the underlying structure, player j’s best response can be obtained

from (17) by exchanging i and j:

b∗j(tj) =
1

2
αi +

1

2
tj. (18)

The last step that needs to be taken is the elimination of any element from the opponent’s

bidding strategy from the best-response-functions b∗i (ti) and b∗j(tj). This will be done by

comparing (17) and (18) to the linearity-conditions (14) and (15) of the bidding strategies.

So, comparing the best response

b∗i (ti) =
1

2
αj +

1

2
ti

to the general functional form of b∗i

bi = αi + βiti,

one obtains the following two conditions:

1

2
αj = αi,

1

2
= βi.

Analogously, one obtains the following conditions for bidder j:

1

2
αi = αj,

1

2
= βj.

All these four equations have to be satisfied simultaneously. Therefore, it follows that

βi = βj =
1

2
.

as well as

αi = αj = 0.

Summarizing, a BNE in linear bidding strategies is given by

b∗i (ti) =
1

2
ti, (19)

b∗j(tj) =
1

2
tj. (20)

Remark 6 If one does not choose the prior to be independent uniform distributions on

[0, 1], the idea for the solution will be the same as above. The only condition that one

needs to assume is strict monotonicity for the bidding function in the type of a bidder to

infer types from bids. In the end, the optimality-condition for any bidder will be described

by a differential equation.



Economics and Computation Fall 2008 Lecture III 13

1.3 Second-Price Sealed-Bid Auction

The setting and the rules of this auction are - with one exception - identical to those of

the First-Price auction. The exception is the amount that the winning bidder - who is

still the one having submitted the highest bid - has to pay. She no longer has to pay her

own bid, but the bid of the other bidder. That is, the utility-function for player i, where

her opponent is denoted by j, is given by

ui((bi, bj), (ti, tj)) =


ti − bj if bi > bj,
1
2
(ti − bj) if bi = bj,

0 if bi < bj.

(21)

If the general setting is generalized to include more than one bidder, then the second-price

auction refers to the situation in which the winning bidder (having submitted the highest

bid) pays the second highest bid.

This auction-format is also called Vickrey-auction, after William Vickrey - another

awardee of the Nobel-prize in Economics - who first brought forward this auction-format

in 1962.

The search for Bayesian Nash equilibria is particularly simple in this auction-format, as

it will be shown below. This derives from the fact that an equilibrium is not given in

Bayesian strategies, i.e. those that take into account the opponent’s actions and type-

space, but in weakly dominant strategies. In other words, there will be a strategy for each

player that is optimal for this particular player irrespective of the opponent’s type. This

equilibrium will be summarized in the following theorem:

Theorem 1 In a second-price auction, the best-response function for any bidder i ∈
{1, 2} is given by

b∗i (ti) = ti,

irrespective of the type of the other bidder.

In short, in Second-Price auctions, it is optimal for both bidders to simply reveal the

truth, i.e. to report their valuation as it really is. In comparison, bidders do not reveal

the truth about their valuation by bidding in a First-Price auction (they only report half

of their valuation).

Intuitively, in a Second-Price auction - as it is a simultaneous-move game as all the games

that we have discussed so far - a player does not derive any direct utility from bidding

higher, since this only affects the other player’s utility, but not her own. Hence, it makes

sense to obtain bidding-functions that are not distorted in any way.

Remark 7 The Second-Price auction and the First-Price auction share a common fea-

ture: In both formats, the object is allocated to the person with the highest valuation, i.e.
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the allocation is efficient - it cannot be improved upon from a social-choice perspective.

This is due to the fact that those bids will be winning the auction that come from the

highest types, which can trivially be seen from the functional form of the optimal bidding

functions. Interestingly, the First-Price auction is able to establish efficiency without the

players reporting their true types.

Proof of Theorem 1 Wlog, consider player 1 and fix his type at t1. It will now be shown

that player 1’s optimal bid is given by b∗ := b1(t1) = t1. In the following, player 2’s bid

will be denoted by b2.
3 Now, different cases will be examined and it will be shown that in

every case player 1 cannot make herself strictly better off by changing her bid away from

b∗:

• Assume that b2 > b∗(= t1):

In this case, the object is awarded to player 2. Player 1 gets utility 0. Changing her

bid to any other b < b2 does not change player 1’s utility at all. She still does not

receive the object, hence her utility is still 0. But if player 1 chooses either b = b2

or b > b2 , then she will either receive utility 1
2
(t1 − b2) (from the tie-breaking rule)

or (t1− b2) (from winning the object). In both bases, this expression is negative due

to the assumption that b2 > b∗ = t1, so player 1 is strictly worse off than in the

situation where she bids b∗ (and gets 0 utility).

• Assume that b2 = b∗(= t1):

In this case, the object is awarded to player 1 as well as player 2. Player 1 gets

utility 1
2
(t1 − b2) = 1

2
(t1 − b∗) = 0. Changing her bid to any other b < b2 causes

player 1 to lose the auction. Hence, the resulting utility for her will be 0, which

leaves her indifferent. But if player 1 chooses b > b2 , then she will always win

the auction and receive utility (t1 − b2). Because b2 = t1, this expression equals 0,

leaving player 1 indifferent to the original choice of b∗.

• Assume that b2 < b∗(= t1):

In this case, the object is awarded to player 1. Player 1 gest utility t1−b2. Changing

her bid to any other b2 < b does not change player 1’s utility at all. She still receives

the object and gets the same utility t1 − b2. But if player 1 chooses either b = b2 or

b < b2 , then she will either receive utility 1
2
(t1 − b2) (from the tie-breaking rule) or

0 (from not winning the auction). In both cases, her utility is strictly less than in

the previous situation of bidding b∗.

So, for any possible constellation between b∗ and b2, player 1 will not find it profitable to

deviate from bidding b∗ = b1(t1) = t1, concluding the proof.

3In slight abuse of notation, we do not consider b2 as a function of player 2’s type, but it will simply
be an arbitrary number that player 2 may announce. This will actually yield the desired component that
player 1’s bidding strategy is optimal independent from player 2’s type.
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2 Mechanism Design

For the following discussion, we need to augment the current notation by the tuple of sets

M = M1 × ...×MI . Each of the sets Mi, i ∈ I, refers to messages that player i can send.

These elements can also be seen as reports or little pieces of information that player i can

unilaterally disclose. Again, m ∈ M will refer to a specific tuple of messages, one for each

player.

Now, consider the following diagram which captures the essence of Mechanism Design:

(t1, ..., tI)

private information

f : T → Y

social choice function

si : Ti → Mi, i ∈ I
strategies

(m1, ...,mI)

messages, reports

g : m 7→ y

outcome function

(y1, ..., yI)

social allocation
-

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
JĴ
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The logic behind this diagram can be described as follows:

• Essentially, the diagram aims at describing ways to map tuples of private infor-

mation into allocations. So, given the types of the players from the set I, who
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are predominantly called ”agents” in this context, one seeks to decide about an

allocation among the players.

• There are two ways to accomplish this mapping from types (t1, ..., tI) to allocations

y1, ..., yI :

– There is a direct way via the social choice function f . This is referred to as

a direct mechanism. There is an instance - known as the social planner

- who knows the private information of all players. According to the types of

the agents, the social planner decides about an allocation.

– The concept of social planning sounds like a very artificial concept at first.

The question naturally arises how the social planner can ever elicit the agents’

private information. Will the agents not have an incentive to hide their private

information in order to influence the allocation? As an example, consider

the case of an auction and imagine that the auctioneer will simply ask all

present bidders who wants to obtain the object.4 In other words, the auctioneer

tries to find the bidders’ valuations by simply asking them. But every bidder

knows that only the highest valuation will actually receive the object. So,

it is completely natural for every bidder to shamelessly exaggerate on their

valuations. Due to this effect, there is a second way to get from types to

allocations:

– Players first have certain strategies according to which they send messages.

This is represented by the si-mapping, i ∈ I, which originates from types and

maps into sets of messages. Each player decides on his own (and, in his own

interest) which message to send.

– From the tuple of messages that originates from the players’ strategies there is a

mechanism g that maps messages into social allocations. This mechanism is in

fact a game that is to be designed, the reason for the term ”Mechanism Design”

per se. It takes the reports of the players as given and yields a particular social

allocation as its result. It is a complete list of the rules of a game which uses

the players messages as its input. The output will be an equilibrium of the

game that will reflect a certain allocation among the players.

• Importantly, the game with all its rules and possible consequences is known to the

agents at any stage in the diagram, i.e. in particular when they decide on their

strategic action to report messages. Of course, it will be the specification of the

game is decisive for each players’ strategy in the first place. Knowing that their

4This question does not involve any money to be paid. It is really just the simple question: What is
your valuation? Meaning: Do you want to receive the good?
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messages will be plugged into the game strongly determines which kind of message

the players want to send.

• So, as already argued in the beginning of this whole introduction, Mechanism Design

reverts the logic of Game Theory. Whereas Game Theory takes the structure of the

game as given and aims at determining the consequences of the game in the form of

equilibria, Mechanism Design aims at creating a game such that a specific outcome

function is implemented. Put differently, Mechanism Design has to reverse-engineer

a game with specific equilibria in mind.

• The challenge of the task of Mechanism Design is the implementation of the game

although nothing is a priori known about the specific types of the agents and the

strategic considerations they make (their strategy-mapping).

• As it can be seen from Remark 7, there is certainly more than one way to achieve

a certain social allocation:

– The First-Price and the Second-Price auction in their general setup as described

above correspond to certain choices of g.

– Given the structure of the respective game, the players/bidders have to reflect

on the optimal strategy (their optimal bid), corresponding to the arrow from

types to messages. For the First-Price auction, we have concluded that it is

optimal to bid half of one’s valuation. Whereas in the Second-Price auction,

the strategy-mapping is simply the identity-mapping. That is, for the Second-

Price auction, the bidders find it optimal to simply report their true valuation

and not distort their valuation in any way.

– Both mechanisms or games allocate the object to the person with the highest

valuation, i.e. the social choice function f for both mechanisms is identical.

An important result is hidden in the context of a Second-Price auction. As argued above,

the strategy-mapping of each of the agents is simply the identity-mapping, implying that

truth-telling is optimal. Under fairly general circumstances, one can restrict the search

for an optimal mechanism, one that implements a specific social choice function, to those

mechanisms that take the agents’ types (and NOT their messages) as an input, i.e. one

can pre-suppose si = id. This is the so-called Revelation Principle. Put differently, one

restricts attention to direct mechanisms. Hereby, directness refers to mapping types

directly into allocations, and hence skipping the message-step.
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