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ABSTRACT

We consider a privacy threat to a social network in which
the goal of an attacker is to obtain knowledge of a significant
fraction of the links in the network. We formalize the typical
social network interface and the information about links that
it provides to its users in terms of lookahead. We consider a
particular threat where an attacker subverts user accounts
to get information about local neighborhoods in the network
and pieces them together in order to get a global picture. We
analyze, both experimentally and theoretically, the number
of user accounts an attacker would need to subvert for a
successful attack, as a function of his strategy for choosing
users whose accounts to subvert and a function of lookahead
provided by the network. We conclude that such an attack is
feasible in practice, and thus any social network that wishes
to protect the link privacy of its users should take great care
in choosing the lookahead of its interface, limiting it to 1 or
2, whenever possible.

Categories and Subject Descriptors

F.2.2 [Theory of Computation]: Analysis of Algorithms
and problem complexity—Nonnumerical Algorithms and Prob-
lems; J.4 [Computer Applications]: Social and behav-
ioral sciences; H.2.8 [Information Systems]: Database
Management—Database applications[Data mining]

General Terms

Theory, Experimentation, Security, Design

1. INTRODUCTION
Participation in online communities is becoming ubiqui-

tous. Not only do people keep personal content such as their
journals, photos, bookmarks and contacts online, they also
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increasingly interact online, both socially and professionally.
In online communities whose primary goal is social network-
ing, such as MySpace, Facebook, and LinkedIn, each user’s
set of trusted users is of paramount importance to their ac-
tivity on the site. For example, in the case of LinkedIn, an
online network of professionals, each connection signifies a
professional relationship between two individuals, such as
having worked together in the past. One’s connections, and
connections’ connections, and so on, form a network that an
individual has access to and can tap to foster professional
connections or to find potential collaborators, clients, em-
ployers and subject experts.

A major part of the value of participating in an online so-
cial network or in a web-service with an online community,
such as LiveJournal, for a user lies in the ability to leverage
the structure of the social network graph. However, knowl-
edge of this social graph by parties other than the service
provider opens the door for powerful data mining, some of
which may not be desirable to the users. For example, an
employer might want to look at the network of a potential
employee in order to evaluate its size and quality, or to ap-
proach random former colleagues of the individual with a
request for references. An advertiser might want to look
at the profiles and interests of people in the user’s network
and extended network, in order to more accurately infer the
user’s demographic and interest information for use in tar-
geted advertisements.

Although some web-communities, such as LiveJournal, al-
low users to see all the links of any user in the network,
the motivation for this paper is networks such as LinkedIn,
where relationships between users may be sensitive to pri-
vacy concerns, and the link information is a valuable asset to
the user and to the network owner. In such networks, a user
is typically permitted only limited access to the link struc-
ture. For example, a LinkedIn user can only see the profiles
and friends lists of his friends and the profiles of friends
of friends. On Facebook, each user can specify whether to
make their friend list and profile information visible only to
their friends or to friends and friends of friends.

The most recent example of the value of link information
to social network owners and users is Facebook’s move to
suspend the access of Google’s Friend Connect program to
Facebook’s social graph [3] in May, 2008. Google’s Friend
Connect enables website developers to add social features to
their website by supplying them with information about the
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visitors’ friends from social networks, and Facebook felt that
”[that] doesn’t respect the privacy standards [their] users
have come to expect” [3]. Although a heated debate on Face-
book’s true motivation for suspending Google’s Friend Con-
nect ensued in the blogosphere [2], with some arguing that
Facebook’s move was motivated by their desire to prevent
other entities from obtaining the social graph they worked
hard to build rather than by their stated reason of user pri-
vacy, there is hardly any doubt that the desire for link pri-
vacy, from the perspective of the users or the social network
owner, was at the core of Facebook’s move.

Even though each user is given access only to a small part
of the social network graph, one could imagine a resource-
ful adversarial entity trying to stitch together local network
information of different users in order to gain global infor-
mation about the social graph. In this paper, we analyze
the methods one could employ to obtain information about
the link structure of a social network, and the difficulty of
doing that depending on the interface of neighborhood ac-
cess permitted by the social network. We focus on the case
in which an attacker, whose goal is to ascertain a significant
fraction of the links in a network, obtains access to parts of
the network by gaining access to the accounts of some select
users. This is done either maliciously by breaking into user
accounts or by offering each user a payment or a service in
exchange for their permission to view their neighborhood of
the social network. Both scenarios are realistic and common
in practice. For example, both LiveJournal and Facebook
have experiences successful account hijacking attempts re-
cently [16], [14], and the accounts of other users might have
been accessed without their knowledge. An example when
a user voluntarily grants access to their friends list in ex-
change for a service is an addition of applications developed
by third parties through Facebook Platform or Bebo Plat-
form. More than 95% of Facebook users have used at least
one application built on Facebook Platform [1]. We describe
both experimental and theoretical results on the success of
such an attack in obtaining the link structure of a significant
portion of the network, and make recommendations for the
type of neighborhood access that a social network should
permit to prevent such an attack and protect the privacy of
its network and its users.

In Section 2, we discuss related work on privacy in social
networks and models of social network graphs. Section 3 lays
out a formal model of the kind of attacks we consider and the
goal of the attacker. We present experimental results of the
success of different attack strategies on both simulated and
real world social network graphs in Section 4, and present
a rigorous theoretical analysis in Section 5. We conclude in
Section 6 with recommendations of actions for web service
providers that would preserve user privacy.

2. RELATED WORK
There has been much recent interest in anonymized data

releases. Backstrom et. al. [6] consider a framework where
a social network owner announces the intention to release an
anonymized version of a social network graph, i.e., a copy
where true usernames are replaced with random ids but the
network structure is unchanged, and the goal of an attacker
is to uniquely identify the node that corresponds to a real
world entity in this anonymized graph. They show that, if
given a chance to create as few as Θ(log(n)) new accounts in
the network prior to its anonymized release, an attacker can

efficiently recover the connections between any Θ(log2(n))
nodes chosen a-priori. This is achieved by first finding the
new accounts that the attacker inserted into the network
and working through the connections established between
the attacker’s accounts and the chosen targets to identify
the targets. In [13], the authors experimentally evaluate
how much background information about the structure of
the neighborhood of an individual would be sufficient for
an attacker to uniquely identify the individual in such an
anonymized graph. In [25] the emphasis is on protecting the
types of links associated with individuals in an anonymized
release. Simple edge-deletion and node-merging algorithms
are proposed to reduce the risk of sensitive link disclosure.
[26] and [19] pursue the question of privacy as it relates to
social networks from various other perspectives.

While the privacy attack model of [6] is very interesting
and has received substantial research focus, in this paper we
study the privacy in social networks from an entirely differ-
ent angle. We consider a case where no underlying graph
is released, and, in fact, the owner of the network would
like to keep the entire structure of the graph hidden from
any one individual. An attacker we consider does not have
access to the entire anonymized structure of the graph, nor
is his goal to de-anonymize particular individuals from that
graph. In contrast, he aims to compromise the link privacy
of as many individuals as possible by determining the link
structure of the graph based on the local neighborhood views
of the graph from the perspective of several non-anonymous
users.

There has been considerable theoretical work in model-
ing the structure and evolution of the web graph and social
networks. In [7] and [17] the preferential attachment model
and the copying model are introduced as generative mod-
els for the web graph. Many variations and extensions of
these models have been proposed, such as [9] and [10]. It
has been observed that social networks are subject to the
small-world phenomenon [15] and models such as [24] have
been proposed to account for it. The model of [18] aims
to account for all of the commonly found patters in graphs.
The common theme in this research is a search for a random
process that models how users establish links to one another.
The various models succeed to differing extents in explain-
ing certain properties of the web graph and social networks
observed in practice.

In the attack strategies that we consider, the effective-
ness of the attack is likely to depend on the underlying so-
cial graph and the degree distribution of its nodes, which
is commonly known to be close to power law [23, 11]. In
our theoretical analysis of the effectiveness of an attack, we
use the configuration model of [8] and [5] that guarantees
a power law distribution. Unlike the evolutionary models
such as preferential attachment, this model does not con-
sider the process by which a network comes to have a power
law degree sequence; rather, it takes the power law degree
distribution as a given and generates a random graph whose
degree distribution follows such a power law (specifics of
graph generation according to this model are described in
Section 4.1.1). We could also use the preferential attach-
ment or copying models for analysis, but a static model such
as [8] or [5] suffices for our purpose and allows for simpler
analysis.

As a side note, our theoretical and experimental results
also have implications on the power of lookahead in speed-
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ing up web crawls studied in [20]. [20] analyzes a particular
crawling strategy where the crawler performs a random walk
on the graph. Some of the strategies proposed in our paper
can be potentially used for web crawling, and would pro-
vide larger coverage than a random walk crawler. A similar
problem has been studied in [4], but as pointed out by [20],
the main result of [4] does not hold.

3. THE MODEL
In this section we formalize the privacy threat drafted in

the Introduction. We first define the primary goal of the
privacy attack considered in this paper (Section 3.1); then
discuss the knowledge of social networks available to users,
and thus adversaries (Section 3.2); finally, we list possible
attack strategies (Section 3.3).

3.1 Goal of the Attack
We view a social network as an undirected graph G =

(V, E), where the nodes V are the users and the edges E
represent connections or interactions between users. Even
though some online social networks, such as LiveJournal, al-
low one-directional links, many others, and especially those
where the link information is sensitive and subject to privacy
considerations, such as LinkedIn and Facebook, require mu-
tual friendship. In those networks links between users are
naturally modeled as undirected edges, and thus we consider
undirected graphs in our subsequent discussion and analysis.

As was informally discussed in Section 1, the primary goal
of the privacy attack is to discover the link structure of the
network. Knowledge of the entire network is superior to
knowledge of connections of a subset of individual users be-
cause it allows seamless application of commonly used graph
mining algorithms, such as computation of the shortest path
between two people, clustering, or study of diffusion pro-
cesses. We measure an attack’s effectiveness using the no-
tion of node coverage, or simply coverage, which measures
the amount of network graph structure exposed to the at-
tacker.

Definition 1 (Node Coverage). The fraction of
nodes whose entire immediate neighborhood is known. We
say that a node is covered, if and only if the attacker knows
precisely which nodes it is connected to and which nodes it
is not connected to.

One may also consider measuring an attack’s effectiveness
using a notion of edge coverage, defined in one of the two
following ways:

1. Edge coverage: the fraction of edges known to the
attacker among all edges that exist in the graph. This no-
tion of edge coverage does not account for the attacker’s
knowledge about non-existing edges, and is therefore not a
comprehensive view of an attacker’s knowledge.

2. Edge coverage: among all pairs of users, the fraction of
pairs between which the attacker knows whether or not an
edge exists. As will become clear in the following sections,
our definition of node coverage is more sensible for the attack
strategies we consider and implies the knowledge of edge
coverage under this definition. Thus, throughout the paper
we will use node coverage as the primary measure of an
attack’s effectiveness.

3.2 The Network through a User’s Lens
As mentioned in Section 1, LinkedIn allows a user to see all

edges incident to oneself, as well as all edges incident to one’s
friends. An online social network could choose the extent to
which links are made visible to its users depending on how
sensitive the links are and we quantify such choices using
lookahead. We say that the social network has lookahead of
0 if a user can see exactly who he links to; it has lookahead 1
if a user can see exactly the friends that he links to as well as
the friends that his friends link to. In general, we say that
the social network has lookahead ! if a user can see all of
the edges incident to the nodes within distance ! from him.
Using this definition, LinkedIn has lookahead 1. In terms of
node coverage, a lookahead of ! means that each node covers
all nodes within distance ! from it; nodes at distance ! + 1
are seen (i.e., their existence is known to the user), but not
covered (i.e., their connections are not known to the user).

There are other variations on the type of access that a
user can have to the social graph structure. For example,
some networks allow a user to see the shortest path between
himself and any other user, some display the path only if it is
relatively short, some only display the length of the shortest
path, and others let the user see the common friends he has
with any other user. We ignore these additional options in
our discussion, while noting that the presence of any of them
reduces the difficulty of discovering the entire link structure.

In addition to the connection information, a typical online
social network also provides a search interface, where peo-
ple can search for users by username, name or other iden-
tifying information such as email or school affiliation. The
search interface returns usernames of all users who satisfy
the query, often with the numbers of friends of those users,
i.e., the degrees of the nodes corresponding to those users
in the social network graph, G. LinkedIn is an example of a
social network that allows such queries and provides degree
information.

We formalize the various aspects of social network inter-
faces that may be leveraged by attackers to target specific
user accounts below:

• neighbors(username, password, !): Given a username
with proper authentication information, return all users
within distance ! and all edges incident to those users
in the graph G;

• exists(username): Given a username, return whether
the user exists in the network;

• degree(username): Given a username, return the de-
gree (number of friends) of the user with that user-
name. Note that degree(username) implies
exists(username);

• userlist(): Return a list of all usernames in the net-
work.

In the above, only neighbors() requires authentication in-
formation, all other functions are publicly available. A social
network might expose some or all of these functions to its
users. For example, LinkedIn provides neighbors(username,
password, !) for ! = 0 or 1, but not for ! > 1; it also pro-
vides exists(username) and degree(username). Most social
networks do not expose userlist() directly; however, an at-
tacker may be able to generate a near complete user list
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through other functionalities provided by the network such
as fuzzy name search or public profiles.

A particular network may expose only a subset of the
above functions and even if all functions are available, their
costs may vary greatly. Therefore, when we discuss attack
strategies in the next section we list the functions required
by each strategy, and when we evaluate and compare strate-
gies there is a trade-off between the effectiveness of an attack
and the complexity of the available interface it requires.

3.3 Possible Attack Strategies
Recall that each time the attacker gains access to a user

account, he immediately covers all nodes that are at distance
no more than the lookahead distance ! enabled by the social
network, i.e., he learns about all the edges incident to these
nodes. Thus by gaining access to user u′s account, an at-
tacker immediately covers all nodes that are within distance
! of u. Additionally, he learns about the existence of (”sees”)
all nodes within distance ! + 1 from u. We call the users to
whose accounts the attacker obtains access bribed users.

A natural question that arises is how an attack’s success
or attained node coverage vary depending on the strategy
followed for picking the users to bribe. We list the strate-
gies we study in the decreasing order of information needed
for the attacker to be able to implement them and study the
success of attacks following these strategies both experimen-
tally and theoretically in Sections 4 and 5.

Benchmark-Greedy: From among all users in the social
network, pick the next user to bribe as the one whose per-
spective on the network will give the largest possible amount
of new information. More formally, at each step the attacker
picks the node covering the maximum number of nodes not
yet covered. For ! ≤ 1 this can be implemented if the at-
tacker can access the degrees of all users in the network.
However, for ! > 1 it requires that for each node the attacker
has access to all usernames covered by that node, which is
not a primitive that we consider available to the attacker.
Thus this strategy serves as a benchmark rather than as an
example of a feasible attack – it is the optimal bribing algo-
rithm that is computationally feasible when given access to
the entire graph G. Note that by reduction to set cover, find-
ing the optimal bribing set for a given G is NP hard, thus
the best polynomial-time (computationally feasible) approx-
imation algorithm is the greedy algorithm described.
Requires: G;

Heuristically Greedy: Pick the next user to bribe as
the one who can offer the largest possible amount of new in-
formation, according to some heuristic measure. The heuris-
tic measure is chosen so that the attacker does not need to
know G to evaluate it. In particular, we consider the follow-
ing strategy:

• Degree-Greedy: Pick the next user to bribe as the
one with the maximum“unseen”degree, i.e., its degree
according to the degree(username) function minus the
number of edges incident to it already known by the
adversary.
Requires: neighbors(username, password, !),
degree(username), userlist();

Highest-Degree: Bribe users in the descending order of
their degrees.
Requires: neighbors(username, password, !),
degree(username), userlist();

Random: Pick the users to bribe at random. Variations
could include picking the users uniformly at random, or with
probability proportional to their degrees, etc. In particular,
we study one strategy in this category:

• Uniform-Random: Pick the users to bribe uniformly
at random.
Requires: neighbors(username, pwd, !), userlist();

Crawler: This strategy is similar to the Heuristically
Greedy strategy, but the attacker chooses the next node to
bribe only from the nodes already seen (within distance !+1
of some bribed node). We consider one such strategy:

• Degree-Greedy-Crawler: From among all users al-
ready seen, pick the next user to bribe as the one with
the maximum unseen degree.
Requires: neighbors(username, password, !),
degree(username);

Note that the Degree-Greedy-Crawler and Uniform-
Random strategies are very easily implementable in prac-
tice on most social networks, since they do not require any
knowledge of nodes that are not within the neighborhood
visible to the attacker. Furthermore, the Degree-Greedy-
Crawler strategy could also be used by web crawlers to
crawl web pages more rapidly when each web page stores
information about its lookahead.

4. EXPERIMENTAL RESULTS
We present experimental results from the application of

the strategies from Section 3.3 to both synthetic and real
world social network data. At a high level, our experiments
explore the fraction, f , of nodes that need to be bribed by
an attacker using the different bribing strategies in order to
achieve 1 − ε node coverage of a social network with looka-
head !. Our experimental results show that the number of
users an attacker needs to bribe in order to acquire a fixed
coverage decreases exponentially with increase in lookahead.
In addition, this number is also fairly small from the per-
spective of practical attack implementation, indicating that
several of the attack strategies from Section 3.3 are feasible
to implement in practice and will achieve good results.

We implemented and evaluated the following five strate-
gies, ordered in the decreasing order of complexity of the
social network interface needed for them to become feasi-
ble: Benchmark-Greedy (abbreviated as Benchmark);
Degree-Greedy (abbrev. as Greedy); Highest-Degree
(abbrev. as Highest); Uniform-Random (abbrev. as
Random); Degree-Greedy-Crawler (abbrev. as
Crawler).

4.1 Results on Synthetic data

4.1.1 Generating Synthetic Graphs
In order to measure the effectiveness of the different at-

tack strategies, we generate random graphs with power-law
degree distributions and apply our strategies to them. Fol-
lowing the motivation of Section 2, we use the configuration
model in [5] to generate the graphs. The model essentially
generates a graph that satisfies a given degree distribution,
picking uniformly at random from all such graphs.

More specifically, let n be the total number of nodes in G,
α (2 < α ≤ 3) be the power law parameter; let d0 and dmax

292



be the minimum and maximum degree of any node in the
graph, respectively. First, we generate the degrees of all the
nodes d(vi), i = 1, . . . , n independently according to the dis-
tribution Pr[d(vi) = x] = C/xα, d0 ≤ x ≤ dmax, where C is
the normalizing constant. Second, we consider D =

P

d(vi)
minivertices which correspond to the original vertices in a
natural way and generate a random matching over D. Fi-
nally, for each edge in the matching, we construct an edge
between corresponding vertices in the original graph. As a
result, we obtain a random graph with a given power-law
degree distribution. The graph is connected almost surely
[12]. The graph has a few multi-edges and self-loops that we
remove in our experiments, without affecting the power law
degree distribution.

Furthermore, following the practice of [20], we cap dmax,
the maximum number of connections that a user may have
at

√
n, reflecting the fact that in a large enough social net-

work, a single person, even a very social one, cannot know
a constant fraction of all users.

We denote the fraction of nodes bribed by f , the number
of nodes bribed by k = fn, and the coverage achieved by
1 − ε = number of nodes covered

n .

4.1.2 Comparison of Strategies
We analyze the relative performance of five of the strate-

gies proposed in Section 3.3 on random power-law graphs
with 100, 000 nodes, α = 3 and dmin = 5. We run each
strategy on 10 power-law graphs generated as described in
4.1.1, with the aim of achieving coverage of 0.5 through 0.99.
For each strategy, we average across the runs the fraction of
nodes that need to be bribed with that strategy in order to
achieve the desired coverage. This gives us f as a function of
1− ε for each strategy. We present the results for lookahead
1 and 2 in Figure 1.

The experimental results show that Benchmark has the
best performance, i.e., to achieve a fixed coverage of 1 −
ε, Benchmark needs to bribe fewer nodes than any other
strategy. However, as mentioned previously, Benchmark
is not feasible to implement in practice because it requires
knowledge of the entire graph structure, and so it can only
serve as a benchmark upper bound on how good any given
strategy can be.

Some of the other observations we make are that Highest
and Benchmark perform almost equally well when the de-
sired coverage is less than 90%. However, the performance of
Highest deteriorates as the lookahead increases and desired
coverage increases.

Somewhat surprisingly, we find that Greedy performs
worse than Highest while Greedy and Crawler perform
equally well. Not surprisingly, Random performs the worst
out of all the strategies.

We choose the following three strategies to analyze in
more detail and show that they can pose serious threats
to link privacy: Highest and Crawler as a measure of per-
formance of somewhat sophisticated yet still implementable
strategies; and Random as the most easily implementable
attack strategy that can serve as a lower bound on how well
other strategies can work.

4.1.3 Dependence on the Number of Users
We analyze how performance of a bribing strategy changes

with an increase in the number of nodes in the graph. We
observe in Figure 2 that the number of nodes k that need
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Figure 1: Comparison of attack strategies. We plot
the fraction of bribed nodes against node coverage on syn-
thetic graphs (with 100,000 nodes), using the five bribing
strategies with lookahead 1 and 2. Lines for Crawler and
Greedy are almost overlapping.

to be bribed using the Highest strategy in order to achieve
a fixed coverage of 1 − ε is linear in the size of the network,
for various values of ε and lookahead of 2. The same was
observed for other values of lookahead but we omit those
graphs for lack of space. Since Highest has the best perfor-
mance among all the suggested realistically implementable
strategies, this implies that k is linear in n for other strate-
gies as well. However, it is worth observing that the slope
of the linear function is very small, for all ε not very close
to 1. As discussed in the next section, this makes all of the
strategies a realistic threat at lookaheads greater than 1.
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coverage 0.8, 0.9, 0.99.
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4.1.4 Dependence on Lookahead
The performance of all strategies substantially improves

with increase in lookahead. Consider, for example, the per-
formance of the Highest strategy, plotted in Figure 3 (a),
and also detailed in Table 1.

1-ε f1/f2 f2/f3

0.7 112.3 39.3
0.8 105.0 49.1
0.9 88.6 65.1
0.95 73.1 79.0
0.99 46.6 101.7

Table 1: Factors of improvement in performance of
Highest with increases in lookaheads.

With each increase in lookahead, the number of nodes k
that need to be bribed in order to achieve the same 1−ε cov-
erage decreases by two orders of magnitude. In an 800, 000-
user social network, Highest needs to bribe 36, 614 users
in order to achieve a 0.8 coverage in a network with looka-
head 1, but in the network of the same size with lookahead 2
Highest needs to bribe 348 users to achieve the same cover-
age, and only 7 users, if the lookahead is 3. In other words,
the number of nodes that need to be bribed to achieve fixed
coverage decreases exponentially in the lookahead, making
the Highest strategy attack a feasible threat at lookahead 2
in social networks with under 1 million users, and a feasible
threat at lookahead 3 in social networks with as many as
100 million users.
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Figure 3: Effect of lookahead. The figures show the
number of nodes needed to bribe to achieve 1 − ε cover-
age with various lookaheads, using Highest and Crawler
respectively. Note that y axis is log scale.

We observe a similar exponential decrease with increase in
lookahead in the number of nodes that need to be bribed for
Crawler (Figure 3 (b)) and for Random (Figure omitted).

4.2 Results on Real data
As we felt that bribing LinkedIn users with a goal of re-

covering the network’s structure would be inappropriate as a
research exercise, we used the LiveJournal friendship graph,
whose link structure is readily available, instead as a proxy.
We crawled LiveJournal using the friends and friend-of list-
ings to establish connections between users and extracted a
connected component of 572, 949 users.

The obtained LiveJournal graph has an average degree of
11.8, dmin = 1, dmax = 1974,α = 2.6.

4.2.1 Comparison of Strategies
Analogous to our discussion in Section 4.1.2 we compare

the performance of the different bribing strategies on the
LiveJournal graph at lookaheads of 1 and 2 in Figures 4 (a)
and (b). The relative performance of the different strategies
is the same as on the synthetic data, with the exception of
Highest performing worse than Crawler and Greedy at
lookahead 1. The Crawler and Greedy strategies also per-
form better on real data than on the synthetic data. Our
intuition is that these differences are due to the disparities
between properties of the graphs generated using the theo-
retical model and the real social network. The real social
network graphs tend to contain a larger number of triangles
than the graphs generated using the theoretical model (i.e.,
in practice, conditioned on edges (a, b) and (b, c), the edge
(a, c) is more likely than random), with this local property
likely leading to the Crawler and Greedy strategies being
more effective.
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Figure 4: Comparison of attack strategies on Live-
Journal data. We plot the fraction of bribed nodes against
node coverage on LiveJournal graph, using the four brib-
ing strategies with lookahead 1 and 2. The two lines for
Crawler and Greedy are almost overlapping.

4.2.2 Dependence on Lookahead
Furthermore, as on the synthetic data, the number of

nodes that need to be bribed in order to achieve fixed cover-
age of LiveJournal decreases exponentially with an increase
in lookahead (see Figure 5).

These experiments also confirm our hypothesis that while
none of the strategies are a truly feasible threat at looka-
head 1, some of them become feasible at lookahead 2, and
all of them become feasible at lookahead 3. For example, in
order to obtain 80% coverage of the 572, 949-user LiveJour-
nal graph using lookahead 2 Highest needs to bribe 6, 308
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Figure 5: Effect of lookahead on LiveJournal data.
The figures show the number of nodes needed to bribe to
achieve 1−ε coverage with different lookaheads, using High-
est and Crawler respectively. Note that y axis is log scale.

users, and to obtain the same coverage using lookahead 3
Highest needs to bribe 36 users – a number of users that
is sufficiently small given the size of the network, and thus,
feasible to bribe in practice.

5. THEORETICAL ANALYSIS FOR
RANDOM POWER LAW GRAPHS

In this section we provide a theoretical analysis of the
performance of two of the bribing strategies from Section 3:
Uniform-Random and Highest-Degree. We analyze the
fraction of nodes an attacker needs to bribe to reach a con-
stant node coverage with high probability for a power law
social network graph drawn from the configuration model
described in Section 4.1.1. We carry out the analysis for
power law graphs; for configuration models with other de-
gree distributions, our analysis technique still applies, but
the result depends on the specific degree distribution.

We use the same notation as in Section 4: n is the number
of nodes in the network; m is the number of edges; d0 is the
minimum degree of a node;

√
n is the maximum degree; α is

the power law parameter; C is the normalizing constant for

the degree distribution so that
P

√
n

d=d0
Cd−α = 1; the target

node coverage is 1− ε; f is the fraction of bribed nodes and
k = fn is the number of bribed nodes.

5.1 Analysis of Lookahead 1
Let us put ourselves in the shoes of an attacker and first

answer the following question: if in each trial we cover a
node randomly with probability proportional to its degree
(all trials being independent), after how many trials will
we have covered (1 − ε)n distinct nodes? Once we answer
this question, we will come back to estimating the number
of nodes to bribe by studying the rate at which different
bribing strategies cover nodes. This question is similar to
the well-known coupon collector problem if all nodes have
an equal probability of being covered.

Lemma 1. [21] (Coupon Collector) Consider an unlim-
ited supply of coupons of n distinct kinds. At each trial if
we collect a coupon uniformly at random and independently
of previous trials, then after t trials, the number of distinct
coupons collected has the expectation n(1 − e−t/n) and is
sharply concentrated.

In our problem formulation, each node has a different
probability of being covered (collected), thus it can be viewed
as an instance of a weighted coupon collector problem.

Schelling studied this problem in 1954 [22] when the prob-
ability of sampling each coupon is explicitly given. In our
problem, not only do we need to consider the random choices
of coupon collection, but also the random realization of the
graph.

Lemma 2. In each trial we cover a node randomly with
probability proportional to its degree, independently of pre-
vious trials. After − ln ε0

d0
2m trials, the number of distinct

nodes covered is at least n(1−ε−o(1)) with high probability,

where ε =
P

√
n

d=d0
εd/d0

0 Cd−α.

The proof can be found in the Appendix. Both ε and
ε0 are between 0 and 1, and we can show that ε is always
smaller than ε0. Table 2 gives some values of ε and ε0; for
example, when α = 3 and d0 = 5, ε = 0.4 gives ε0 = 0.534.

We now come back to the original question: how many
nodes do we need to bribe in order to cover a 1−ε fraction of
the graph, using different bribing strategies with lookahead
1? Remember that with lookahead 1 we cover a node only
if it is a direct neighbor of a bribed node.

Pick a node to bribe using any strategy. Consider one edge
of the bribed node, the other endpoint of the edge can be any
node v and the probability of it being v is d(v)/2m if we ran-
domize over all graphs with the given degree sequence (this
argument can be formalized using the Principle of Deferred
Decisions [21]). Therefore, if we bribe a node with degree d
and cover all its neighbors, it is equivalent to having made
d trials to cover nodes in the graph. And if we bribe nodes
b1, b2, . . . , bk and cover all their neighbors, it is equivalent
to having made D =

Pk
i=1 d(bi) such trials. However, not

every trial covers a node v with the same probability propor-
tional to its degree: if v was already covered in a previous
trial, the probability of covering it again decreases, whereas
if it was not covered in a previous trial, the probability of
covering it with each new trial increases. More formally, the
events that a node is covered (collected) in different trials
are negatively correlated. This only increases the number
of distinct nodes we expect to cover and, therefore, the re-
sult in Lemma 2 on the number of distinct nodes collected
can still serve as a lower bound. In summary, we have the
following Theorem:

Theorem 3. Bribe nodes b1, b2, . . . , bk (all bis distinct)
selected using an arbitrary strategy. Denote the sum of their
degrees by D =

Pk
i=1 d(bi). If D = − ln ε0

d0
2m, then the node

coverage is at least 1 − ε − o(1) with high probability under

lookahead 1, where ε =
P

√
n

d=d0
εd/d0

0 Cd−α.

Theorem 3 establishes the connection between the total
degree of bribed nodes (regardless of the strategy for choos-
ing nodes to bribe) and the attained node coverage. In order
to complete the analysis of particular bribing strategies it re-
mains to analyze the total degree of k nodes bribed by that
strategy.

We first analyze the strategy of bribing nodes uniformly at
random without replacement. In any graph, a node chosen
uniformly at random has expected degree d̄ = 2m/n, and
bribing k nodes yields expected total degree D = 2mk/n.
Plugging this expected total degree into Theorem 3 we ob-
tain the following Corollary:

Corollary 4. If an attacker bribes − ln ε0

d0
n nodes picked

according to the Uniform-Random strategy, then he covers
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at least n(1 − ε − o(1)) nodes with high probability, where

ε =
P

√
n

d=d0
εd/d0

0 Cd−α.

Next we analyze the Highest-Degree strategy. To apply
Theorem 3, we compute the expected total degree of the top
k = fn nodes, where f is a constant. Let d be such that

√
n

X

x=d+1

Cx−α < f ≤

√
n

X

x=d

Cx−α

When n is large we can use integration to approximate the
sum and get the equation

Z

√
n

d

Cx−αdx = f

Recall that C is the normalizing constant satisfying
Z

√
n

d0

Cx−αdx = 1.

Solving the equation, we get C ≈ (α − 1) · dα−1
0 and d ≈

d0k
1/(1−α). When n is large and f is a constant, the smallest

degree of the top fn nodes is sharply concentrated around d;
thus, we can roughly assume it is d. Now the top fn nodes
have a maximum degree

√
n and a minimum degree d, and

the probability of having degree x is proportional to x−α.
Therefore, the expected sum of degrees of the top fn nodes
is

fn

P

√
n

x=d xx−α

P

√
n

x=d x−α
≈ nC

Z

√
n

d

xx−αdx ≈ α− 1
α− 2

d0nk
α−2

α−1

On the other hand, the overall total degree

2m =

√
n

X

x=d0

xCx−αn ≈ α− 1
α− 2

d0n

Therefore, the expected sum of the degrees of the top fn

nodes is D = 2mk
α−2

α−1 . When n is large and f is a constant,
the smallest degree of the top fn nodes sharply concentrates
around d and the above analysis holds with high probability
with a lower order error. Note that sharp concentration may
not hold when f = O(1/n), hence the assumption that f is
a constant. We omit the detailed proof for lack of space.

Corollary 5. If an attacker bribes (− ln ε0

d0
)

α−2

α−1 n nodes
picked according to the Highest-Degree strategy, then he
covers at least n(1 − ε − o(1)) nodes with high probability,

where ε =
P

√
n

d=d0
εd/d0

0 Cd−α.

Even though Corollaries 4 and 5 only give lower bounds
on the attained node coverage, our simulation results in Sec-
tion 5.3 indicate that the analysis is close to being tight.

Compare the two strategies: to cover a certain fraction of
the nodes, an attacker needs to bribe much fewer nodes when
using the Highest-Degree bribing strategy than when us-
ing the Uniform-Random bribing strategy. For example,
when α = 3, if an attacker bribes an f fraction of the nodes
with the Uniform-Random strategy, then he only needs
to bribe an f2 fraction of the nodes using Highest-Degree
strategy to attain the same coverage. On the other hand,
the bad news for an attacker targeting a social network that
provides only lookahead of 1 is that even if he has the power
to choose the highest degree nodes for an attack, a linear

number of nodes will need to be bribed in order to cover a
constant fraction of the whole graph (since the number of
nodes needed to bribe is linear in n in both Corollaries).

5.2 Heuristic Analysis of Lookahead ! > 1

Finally, we consider a social network with lookahead ! > 1.
As before, we analyze the fraction of nodes f that need to
be bribed in order for the attacker to get a constant (1− ε)
coverage.

Our heuristic analysis shows that using the Uniform-
Random strategy, f needs to be approximately − ln ε0

d0b" to
attain 1 − ε coverage, where ε and ε0 satisfy the equation
in Lemma 2 and b is of the order ln n. When using the
Highest-Degree strategy, the attacker needs to bribe ap-
proximately f = (− ln ε0

d0b" )2, if α = 3, fraction of users. The
detailed heuristic analysis is included in the Appendix.

The heuristic analysis shows that the number of nodes
needed to bribe decreases exponentially with increase in
lookahead !. For example, with lookahead ! = ln lnn, bribing
a constant number of nodes is sufficient to attain coverage of
almost the entire graph, making the link privacy attacks on
social networks with lookahead greater than 1 truly feasible.

5.3 Validating Theoretical Analysis
With Simulation

We validate our theoretical analysis by simulation.
When the lookahead is 1, our theoretical analysis shows

that in order to achieve a certain fixed node coverage, the
number of nodes needed to bribe is linear in the total number
of nodes in the social network, i.e., f is a constant with
varying n. This matches and confirms our simulation results
from Section 4.1.3.

Next we check whether the f values predicted by Corol-
laries 4 and 5 match simulation results (see Table 2). We
observe that the f values obtained through simulation are
smaller than those predicted in Corollaries 4 and 5. This is
because Theorem 3, on which Corollaries 4 and 5 rely, gives
a lower bound on the number of covered nodes. There are
two factors responsible for the underestimation of the cov-
erage attained in our theoretical analysis: (1) the different
trials cover uncovered nodes with higher probability; (2) we
did not count the bribed nodes as covered. The second fac-
tor responsible for the underestimation is more severe when
the number of bribed nodes is not negligible in comparison
to the number of covered nodes, which is especially true in
the case of the Uniform-Random strategy. We can rem-
edy this by taking into consideration the bribed nodes and
refining our analysis. Using the same parameters as in Ta-
ble 2, for ε = 0.4, 0.2, 0.1, the refined predicted fs for the
Uniform-Random bribing strategy are 0.110, 0.204, 0.305
respectively, which are closer to the simulation results, indi-
cating that our theoretical analysis is fairly tight.

For lookahead ! > 1, both the theoretical analysis and
simulation results indicate that f decreases exponentially
with the increase of lookahead !. The predicted values are
not too far from the actual results, although not as close as
in case of lookahead 1. For example, for Uniform-Random
with lookahead 2, to get 0.8-coverage (ε = 0.2), we predict
f = 0.0092, while the simulation result is f = 0.0145.
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Uniform-Random Highest-Degree
ε ε0 fp fs fp fs

0.4 0.534 0.125 0.103 0.016 0.015
0.2 0.309 0.235 0.183 0.055 0.045
0.1 0.173 0.350 0.259 0.123 0.090

Table 2: Predicted values vs simulation results. We
compute f for varying ε, with two bribing strategies. We
compute f : (1) by solving the equation in Corollary 4 and
5, shown in the column“fp”; (2) by simulation, shown in the
column “fs”. We use α = 3 and d0 = 5 in the table.

6. CONCLUSIONS
In this paper we provided a theoretical and experimen-

tal analysis of the vulnerability of a social network such as
LinkedIn to a certain kind of privacy attack, namely, the link
privacy attack. We proposed several strategies for carrying
out such attacks, and analyzed their potential for success as
a function of the lookahead permitted by the social network’s
interface. We have shown that the number of user accounts
that an attacker needs to subvert in order to obtain a fixed
portion of the link structure of the network decreases expo-
nentially with increase in lookahead provided by the network
owner. We conclude that social networks interested in pro-
tecting their users’ link privacy ought to carefully balance
the trade-off between the social utility offered by a large
lookahead and the threat that such a lookahead poses to
link privacy. We showed that as a general rule, the social
network owners should refrain from permitting a lookahead
higher than 2. Social networks may also want to decrease
their vulnerability by not displaying the exact number of
connections that each users has, or by varying the looka-
head available to users depending on their trustworthiness.
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APPENDIX

A. DETAILED PROOFS

A.1 Proof of Lemma 2
First, consider all nodes with degree d0 in the graph. Let

c0 be the fraction of such nodes; c0 = Θ(1) with high prob-
ability (see, for example, [20]). In each trial, the probability
of covering a node with degree d0 is c0nd0/2m (since the to-
tal sum of degrees is 2m). In − ln ε0

d0
2m trials, in expectation,

there are −c0n ln ε0 trials choosing nodes with degree d0, and
by Chernoff bound [21], there are at least −(c0−o(1))n ln ε0

such trials with high probability. All nodes with degree d0

have an equal probability of being covered, so it is a clas-
sic coupon collector problem if constrained on such trials.
By Lemma 1, the expected number of nodes with degree d0

collected is at least

c0n(1 − e(c0−o(1))n ln ε0/c0n) = c0n(1 − ε0 − o(1))

and by sharp concentration, the number of such nodes col-
lected is at least c0n(1 − ε0 − o(1)) with high probability.

Now consider nodes with degree di = Θ(1). Let ci be
the fraction of such nodes and again ci = Θ(1) with high
probability. By an argument similar to the above, there
are at least −(ci − o(1)) di

d0
n ln ε0 trials choosing nodes with

degree di, and the number of such nodes collected is at least
cin(1 − εdi/d0

0 − o(1)).
Finally, for all the remaining nodes with degree ω(1), the

total number of such nodes is o(n), so we miss at most o(n)
such nodes.

In total, with high probability we miss at most
P

di
cinε

di/d0

0 + o(n) nodes after − ln ε0

d0
2m trials. In the

power law random graph model, ci = Cd−α
i +o(1) with high

probability, therefore, we miss at most
P

√
n

d=d0
Cd−αnεd/d0

0 +
o(n), i.e., we collect at least n(1 − ε− o(1)) nodes. !

A.2 Heuristic Analysis with Lookahead ! > 1

For simplicity, we use α = 3; the analysis can be general-
ized to any α > 2.

Denote by B the set of bribed nodes; by N#(B) the set of
nodes whose shortest distance to B is exactly !. Our goal is
to estimate the number of nodes within distance !, denoted
by D#(B) = |

S

0≤i≤# Ni(B)| – then we have f = |B|/n,
where D#(B) = (1 − ε)n.

Let us first assume N#(B) is small enough such that there
is no loop, i.e.,

S

0≤i≤#+1 Ni(B) is a forest rooted at B. In
reality there may exist a few loops, but it does not intro-
duce too much error in estimating D#(B) when N#(B) is
very small. Under this assumption, |N#(B)| is much larger
than all |Ni(B)|s (i < !), so we can use |N#(B)| as an ap-
proximation to D#(B). To compute |N#(B)|, we first study
the expansion rate from N# to N#+1, denoted by b(!) =
|N#+1(B)|/|N#(B)|. Under the no-loop assumption, b(!)
equals to the average degree of nodes in N#(B) minus 1 (we
need minus 1 to exclude the edges coming from N#−1(B)).
Note that nodes in N#(B) are not chosen uniformly at ran-
dom; rather, they are chosen with probability proportional
to their degrees because of the random realization of the
graph. Therefore, the probability that such a node has de-
gree x is proportional to xCx−3, and consequently the ex-
pected degree of such node is

P

√
n

x=d0
xxCx−3

P

√
n

x=d0
xCx−3

≈ d0 ln

√
n

d0

Thus we have the expansion rate b = d0 ln
√

n
d0

− 1, indepen-
dent of !. It follows that d#(B) ≈ |N#(B)| ≈ b|N#−1(B)| ≈
b#−1|N1(B)|.

When b|N#(B)| is large, we can no longer use the above
assumption to estimate |N#+1(B)|: we still have b|N#(B)|
edges incident to N#+1(B) but now some of the edges may
share the same endpoints. This is the same as the weighted
coupon collector problem in Lemma 2, so we can apply the
result: if b|N#(B)| = − ln ε0

d0
2m, then |N#+1(B)| ≈ n(1 − ε).

Now we compute the fraction of bribed nodes for 1 − ε
node coverage, i.e., compute f = |B|/n, where B satisfies
D#(B) = n(1 − ε). We need b|N#−1(B)| = − ln ε0

d0
2m by

Lemma 2, or |N#−1(B)| = − ln ε0

d0
2m/b. For large n, b =

Θ(lnn) is also large, so |N#−1(B)| is already small and we use
the approximation |N#−1(B)| = b#−2|N1(B)|. Thus we have
|N1(B)| = − ln ε0

d0
2m/bl−1. For the strategy of Uniform-

Random, |N1(B)| = d̄fn, so approximately we need f =
− ln ε0

d0b" . For the strategy of Highest-Degree, |N1(B)| =

2
√

fd0n (given α = 3), so we need f = (− ln ε0

d0b" )2.

298


