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STEPHEN B. SLADE
Yale Artificial Intelligence Project,
Yale Department of Computer Science,
New Haven, Connecticut

~ view the future ofartificial intelligence from three perspectives: scientific. technological.
andeducational. Thecommon theme among these views is the central importance of learning.
particularly in problem domains where case-based reasoning seems appropriate. From a
scientific perspective, an adequate model of the mind must account for the phenomena of
learning. Learning must also be considered a technological requirement for computer systems
both to facilitate the initial knowledge acquisition and ultimately to adapt to new situations.
Finally, a scientific model of learning. together with AI technology, can form the basis for a
new mode of education. This technology can be applied to instruction for a wide range of
subjects.

LEARNING FROM EXPERIENCE

In predicting the future, we look to the past. When faced with a new prob
lem to solve, we are often reminded of previous similar episodes, the solutions
to which may be adapted to the current problem. When we find ourselves in an
unfamiliar situation, we recognize it as such precisely because we have no ap
propriate remindings. A novel situation has no exemplars. Such a situation
primes the mind for learning: we want to remember this new situation as being a
special circumstance, so that we can recall this episode in the future. Often we
will not recognize a situation as being different from some past episode until an
expectation generated by the earlier case fails in the new case. This failure
triggers the learning for the new case. In short, this process comprises learning
from experience, or case-based learning, which we will discuss below in the
section on scientific goals.

Case-based learning in AI has been explored in recent years (Hammond,
1986; Lebowitz, 1980; Schank, 1982; and Schank, 1986) along with the
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underlying paradigm of case-based reasoning (Bain, 1986; Kolodner et aI.,
1985; Simpson, 1985). The case-based reasoning model can be contrasted to the
rule-based, production system approach in which knowledge is encoded as if
then rules. We discuss some of these differences below in the section on technol
ogy.

A psychological model of learning is useful not only in building computer
programs that learn, but also for designing computer programs that teach. We
discuss the application of the theory of case-based learning to programs for
intelligent computer assisted instruction (ICAI) in the section on educational
goals.

However, before we delve into specific aspects of case-based reasoning, we
can briefly illustrate its use in examining the future of AI and its impact on
society. This, after all, is our only recourse: it is unlikely that we have many
rules that can tell us what the future of Al will be, or how AI will affect society.
However, we do have relevant experience indicating how AI has progressed in
the past, and what the societal impact of that progress has been, as well as
similar developments in analogous and allied areas.

Here are some case-based analyses of the future of AI:

• Progress in hardware has been more steady and reliable than progress in
theories or software. Lisp machines, inexpensive workstations, and mammoth
connection machines are technological realities. We can forecast continued
improvement in hardware performance. Given the regularity of improvements
in hardware, some observers have formulated actual rules for predicting ma
chine performance. For example, Gordon Bell has suggested that memory
chip capacity in year X will be 2X

-
I962 bits.

• Major theoretical breakthroughs are unlikely, though not impossible. Results
in AI in the past decades have not been as breathtaking as in other areas of
computer science. The apparent lesson is: the problems are a lot harder than
most people originally imagined.

• While failing to "solve the intelligence problem ," Al will continue to address
smaller niche problems. Thus, successful programs for expert systems, natu
ral language, speech recognition, robotics, and vision will achieve that suc
cess by limiting themselves to narrow domains. Faster hardware alone will
not provide wider coverage.

• Inexpensive hardware for AI will have a dramatic effect on the market for AI,
and vice versa. One relevant reminder is the advent of spreadsheets and per
sonal computers. The success of the Apple II computer was largely due to the
VisiCalc spreadsheet program. The public is even more ready today to accept
an AI program that addresses a real need. However, progress as measured by
market acceptance can be illusory. The definition of what constitutes AI
changes. In the 1950s, FORTRAN was considered automatic programming-
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an AI domain. Today, practically every software product to appear makes
some claim to contain AI.

• AI's impact on employment will no doubt be analogous to that of other pro
ductivity aids. The obvious comparison is to automation. One can argue that
the introduction of computers has brought vast expansion to numerous indus
tries (particularly the computer industry itself), and thus stimulated employ
ment for certain economic sectors. However, it is not hard to find cases to
support the other side of the argument. For example, in agriculture, the intro
duction of modem fertilizers, pesticides, hybridization, and mechanization led
to dramatic increases in farm productivity, with concomitant reductions in
farm employment. There may be areas of the economy for which AI may
have a similar effect. Today's so-called industrial nations are in fact postin
dustrial. They are service economies, with services accounting for two-thirds
of their employment and two-thirds of their GNP.It is therefore likely that AI
will make its major impact in the service sectors of the economy, including
finance, medicine, and education. A particular contribution of AI to employ
ment should be in improved training, making it easier for people to learn a
trade.

It is impossible to axiomatize the world. You cannot predict the future of AI
from first principles. What can you do? You can rely on experience. However,
experience can be hazy or ambiguous or even contradictory. Reasoning from
cases does not guarantee a correct answer, since it is often possible to find
compelling precedents that reach the opposite conclusions.

Consider the practice of law. Two opposing attorneys may cite different
precedents to support their conflicting claims. The judge must decide which
argument is better-which precedent is more relevant. The judge must reason by
analogy from the precedents ..

Consider the practice of medicine. A physician may have a patient display
ing symptoms with two possible diagnoses that require conflicting treatments.
The doctor may compare the patient with similar cases that he or she has seen or
read about or discussed with colleagues. The doctor reasons by analogy from
previous cases.

Finally, consider the actions of a politician-actions that have a direct impact
on society. Most political decisions entail choices between conflicting alterna
tives. There are rarely rules that may be applied with guaranteed success. Usu
ally, it is possible to reason from past cases to support either side of the question.
The ultimate outcome of the decision may in fact be less important than the
degree to which the politician can justify his or her action by arguing from
appropriate precedents.

We suggest that the mode of reasoning by analogy is ubiquitous and that
furthermore, it is not without errors. People will make mistakes when they
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reason from cases. However, we shall see that there is a silver lining: Case
based reasoning may lead to errors, but those errors should result in learning.

SCIENTIFIC GOALS

We view AI as a specific enterprise focused on the human mind. The mind is
largely a black box. There is a vast gap between overt, observable cognitive
behavior and the microscopic world of neurons. AI provides us with both a tool
and a metaphor for examining the mind. The tool is the computer. The metaphor
is made explicit in the physical symbol system hypothesis (Newell and Simon,
1981).

As scientists, we seek to understand the nature of understanding; to learn
how people learn; to create theories of creativity. We bring to this task a compu
tational bias. We believe that our theories must be computationally plausible
not because our computers must be able to embody the theories, but because
people must. To us, psychological validity implies computability. Problems of
understanding, learning, and creativity seem to converge in a central issue: how
is human memory organized so as to be computationally feasible?

Our theories of learning and understanding have emerged from over 15 years
of experience in writing AI programs that model human cognitive processing
(Schank and Abelson, 1977; Schank, 1972; Schank, 1982; and Schank, 1986).
Our research has demonstrated that learning starts from the failure to understand
and that explanation of those failures can lead to important generalizations. Thus,
when you encounter a problem in executing a plan that normally works, you
notice the plan failure and try to account for it in a way that will let you anticipate
that problem in the future, and possibly avoid it. People learn from their mistakes.
Understanding a new situation requires incorporating it into your memory. If there
is anything to be learned from the new situation, it will require that you recognize
the differences in the new case and can account for them.

Much of our current work focuses on the development of a computational
model of explanation that would allow a computer program not only to make
observations about the world, but also to analyze the data and produce a causal
hypothesis to account for the data.

The general reasoning process underlying this approach to learning and of
understanding is as follows:

1. Detect a failure.
2. Generate questions to examine the failure.
3. Generate explanations to account for the failure.
4. Generalize the questions beyond the current case.
5. Verify the generalization through reminding of past cases.
6. Incorporate the new generalization into memory.
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In the absence of failures, new episodes are simply incorporated into mem
ory with their existing exemplars. Learning is minimal in that case. As the
number of exemplars increases, the cases become distilled into a rule, as in the
earlier example of the observed steady improvement in hardware performance.

In proposing this framework, we cannot of course claim to have solved the
problem of learning. We are proposing a hypothesis. As the details of the model
become more specific, aspects will be realized in a variety of computer pro
grams. We hope that psychologists will formulate experiments to test particular
aspects of the model.

TECHNOLOGICAL GOALS

In many peoples' minds, AI is more technology than science. AI and expert
systems are often thought to be one and the same. The goal is to build smart
machines. It does not matter if they simulate human cognitive behavior as long
as they get the job done. What does the future hold for expert systems and their
alternatives?

We must first ask: How is an expert system different from a regular com
puter program? One simple contrast is disturbing: Expert systems will make
mistakes. Now, we all know that other computer programs make mistakes too,
but the point is that most computer programs are the embodiment of an
algorithm-a precise method for performing a procedure. An expert system is
not an algorithm. It is a collection of rules, or heuristics, that individually spec
ify the performance of some fraction of a procedure. However, there is nothing
to guarantee the correctness of their aggregate behavior. Generally, we prefer
algorithms to heuristics. We do not have expert systems for arithmetic or sorting
or searching. We have algorithms. We tum to expert systems (and AI in general)
when we do not know what the algorithms are for a given problem. Thus, for
example, medical diagnosis and investment planning do not lend themselves to
algorithmic analysis, so expert systems are the tools of choice. In a sense, it
does not matter if an expert system makes mistakes, as long as it performs the
task comparably to a human. No doubt the human expert made mistakes as well.

The most common approach in AI for endowing a computer program with
expertise is to provide the program with some large set of rules-conditional
test-action pairs-for solving some particular class of problems. These rule
based expert systems have achieved moderate success in narrow domains, but
they fail to capture the most significant aspect of human intelligence: the ability
to learn. In particular, a program should learn from experience. A program
should adapt to new problems. Here are three specific instances in which rule
based expert systems fail because of their inability to use experiential knowl
edge.
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• Knowledge acquisition. To build an expert system, you need an expert and a
knowledge engineer. The knowledge engineer tries to discover the rules that
the expert uses to solve problems in the given domain. A typical expert sys
tem may comprise several hundred such rules. The problem is that it is ex
tremely difficult for experts to express their knowledge as rules. However, a
human expert finds it easy to recount episodes about specific cases. This
suggests that humans do not in fact encode knowledge as rules, but as cases.
Furthermore, it should be easier to extract knowledge from an informant as
cases, rather than as rules. Thus, the knowledge-acquisition bottleneck for
expert systems could be allayed if the programs could assimilate cases, rather
than requiring explicit rules.

• Reuseability. If a rule-based expert system is presented with a problem, it may
fire dozens or hundreds or thousands of rules and finally come up with an
answer. If exactly the same problem is then presented to the program again,
the program will again fire the same set of rules and come up with the same
answer. This outcome should not be surprising, given what we know about
computers. However, given what we know about people, we should take
pause. A person in that situation would no doubt remember having solved the
problem before and not have to recalculate the result. A case-based computer
system would perform this way by design: each of its own experiences would
become part of its knowledge base. Solving an old problem would be easier
than solving a new problem. The program would remember solving the prob
lem.

• Robustness. If a rule-based system is given a problem that ultimately does not
match any of its rules, the system must give up. It has no further alternatives.
However, a human expert must be able to handle novel situations. In such
cases the person would reason by analogy from one or more cases to try to
piece together a solution for the unique problem. Similarly, a case-based com
puter program should be able to reason analogically to formulate an answer.

The technology of expert systems is critically limited by the nature of the
rule-based knowledge representation. The central feature of expertise is experi
ence. An expert is someone who has vast, specialized experience, who has
witnessed numerous cases in the domain, and who has generalized this experi
ence to apply it to new situations. When confronted with a problem, the expert is
reminded of previous, similar problems and their respective resolutions. It may
be that the expert has so many exemplars for a given problem that the experi
ences have been distilled into a general rule to be applied.

In the production system paradigm, the rule is hard-wired into the system. If
a rule fails, the system generally requires human intervention to revise the rule.

·This makes the system more fragile and less robust.
An expert system that can extract information from its experience will be
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able to grow and acquire knowledge on its own. This is a crucial step for the
long-range success of the expert system concept in AI. There are so many tasks

. to which automated reasoning power might be applied that it is absolutely neces
sary to develop a mechanism that can assimilate new knowledge directly from
experience.

The development of technology for case-based systems has begun. Our pre
vious work has included a variety of programs that reason from specific cases.
CYRUS (Kolodner, 1980) used cases to answer questions about former Secre
tary of State Cyrus Vance. IPP (Lebowitz, 1980) read news stories about terror
ist acts and developed its own set of generalizations of terrorist behavior based
on these specific cases. JUDGE (Bain, 1986) simulated a judge's sentencing
behavior based on prior cases, and CHEF (Hammond, 1986) created new plans
(recipes) based on similarities of prior plans to new requirements.

IPP and CHEF both learn from experience. IPP read news stories about
terrorism-bombings, kidnappings, shootings. The program started with generic
knowledge about terrorist acts and after reading hundreds of stories developed
its own set of generalizations about terrorism that it could apply to new stories.
For example, when the program reads two stories about IRA terrorism in North
ern Ireland, it notices that the victims are establishment, authority figures (po
licemen and soldiers), and that the terrorists are members of IRA. IPP then
reads a third story about a shooting in Northern Ireland, and the program infers
that the unidentified gunman is a member of the IRA. The types of generaliza- .
tions that IPP formed were based on the similarities among stories, not a coher
ent, causal explanation. IPP would form erroneous generalizations that were
based on coincidences. For example, after reading two stories about bombings
in a certain country in which two people were killed, IPP would conclude that
any bombing in that country would result in the death of exactly two people. We
realized that a person would most likely disregard the similarity as a coinci-
dence, rather than a predictable feature. .

Unlike IPP, CHEF learned about events in the world based on a causal
model. We have recently argued against the adequacy of the purely inductive
model of learning, such as is found in IPP, in favor of explanation-based learn
ing, such as is found in CHEF (Schank et al., 1986). CHEF tried to develop
explanations for unexpected events, and use its explanations to correct for er
rors. The CHEF program developed new plans based on its own (simulated)
experience in the domain of cooking. When faced with the task of preparing a
dish for which it had no appropriate plan (recipe), CHEF would modify an
existing plan to fit the new situation and then try to detect and correct any errors
that resulted. CHEF would learn from its own mistakes.

Recent work includes the IVY system (Hunter, 1989), which simulates a
pathologist diagnosing lung tumor cases. The knowledge base for IVY com
prises thousands of cases collected over many decades by Dr. Raymond Yesner,
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an eminent Yale pathologist specializing in lung cancer. The cases are repre
sented with both patient data and microscopic slide images that are displayed
from an interactive videodisk indexed by computer. The NY system is designed .
to make diagnoses by reasoning from its experiential knowledge base.

We view these programs as experiments. As we see our technology im
prove, our experiments can become more sophisticated and exacting. We see
some clear trends in this technology.

• The knowledge bases must grow to comprise hundreds, if not thousands, of
cases before we can begin to approximate the organizational complexity of
human memory even for limited domains. The problems of indexing and
search do not exist in a memory with a dozen cases.

• To grow to a large number of cases, the systems must be able to assimilate
cases on their own. For example, IPP was able to read news stories about
terrorism.

• Eventually, the systems must be able to expand into other domains. People
have the valuable ability to generalize their knowledge across domains. That
is, they can apply general principles acquired in one setting to a situation
involving quite different specific knowledge. This transfer of knowledge
across domains remains a significant technological goal.

EDUCATIONAL GOALS

Most educational methods are passive. Reading a book is passive. Listening
to a lecture is passive. The student is not directly involved: there is very little

. interaction. By contrast, in learning motor skills, we clearly need interactive
feedback. It is hard, if not impossible, to learn to play the piano or drive a car or
play tennis simply by reading a book or listening to someone else explain how
they do it. Similarly, cognitive skills benefit from the same interactive practice
and feedback.

Experiential or case-based learning is ubiquitous in everyday life, but is
rarely seen in the schools: its power remains largely untapped in formal educa
tion. There are few applications outside certain professional schools, and there
are no appropriate tools available for teaching from cases. Traditional classroom
instruction often involves teaching rules and formulas that have little applicabil
ity elsewhere and are quickly forgotten because they are not grounded in per
sonal experience. In contrast, experiential learning allows students to formulate
their own rules in response to some specific case. Students learn the limits of
these rules by applying them in new circumstances, making the rules more
appropriate and more memorable.

At Yale, we developed a prototype ICAI system for teaching decision mak
ing (Farrell, 1988). The system was designed to foster learning from experience
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by letting students explore historical cases, confronting them with decisions that
require use of past experience, and challenging them to make broad generaliza
tions based on their successes and failures. The computer program contained a
number of related episodes. The program controlled an interactive videodisk
containing numerous images from newsreels, magazines, and newspapers to
illustrate and amplify the cases. Our research suggests that the more vivid and
rich the experience, the more readily will the student learn. Thus, we want the
learning episode itself to be memorable, providing a wide variety of converging
experiences. The student's interaction with the system then becomes a signifi
cant case that provides a ready index to the historical cases.

Our approach resembles the case-based method used widely in law and
business schools. The methods we propose should be applicable to teaching
management science, economics, public policy, and a host of other domains
where experience plays a major role in performing a task. This approach has
recently been advocated specifically for problems in national decision making by
Neustadt and May (1986).

Moreover, this same approach should apply to traditional scientific disci
plines as well, In sciences, such as physics or biology, the basic task is to
formulate hypotheses to explain observed phenomena. New hypotheses are
tested against experience-they must be consistent with our previous observa
tions. Competing hypotheses may cause us to reexamine past experiences to
look for additional features. Or a new hypothesis may lead us to conduct a new
experiment or make a new observation to test our theory. We argue that this
process of hypothesis formation and testing that forms the foundation of the
scientific method is, in fact, an instance of case-based reasoning.

A failure is seen to be an anomaly-something that requires explanation.
Hence, a teaching system should force students to fail by putting them in chal
lenging situations. Our program will place students at points in history where
important decisions must be made. It will let the student try a plan and see the
outcome. Because the historical cases used involve difficult decisions, the stu
dents will often fail. We believe that putting students in situations where they
will fail is critical to the learning process. Part of the task of building our system
is having the program pick cases that will challenge students just enough to
make them fail, but not so much that they don't understand why they failed after
seeing the outcome.

If a student is to learn from experience, he or she should be encouraged to
follow up on his or her failures by explaining what went wrong. In our program,
students will be asked to evaluate the outcomes of their decisions and then
decide what they would do differently in the future. This will force them to
explain what went wrong with an eye toward formulating a decision-making rule
for the future. Learning occurs when these explanations, constructed from par
ticular cases, are generalized to be more widely applicable. This generalization
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is mediated by considering past cases to which these generalizations might apply.
Our program will confront students with past cases during this generalization
phase, forcing them to consider similarities and differences from the current
case and pushing them to formulate a more appropriate decision-making rule.

We view this program as a prototype for a new instructional paradigm with
the following principles:

• Teach questions, not answers. We want the students to learn how to think
critically about new problems, not simply to memorize answers. In most real
world situations, there are no right answers.

• Teach from examples. Take advantage of the fact that people are well-suited
for learning from experience. It is a natural form of cognition.

• Remove the stigma from failure. To learn from experience, the student must
first learn not to be afraid to fail. In this paradigm, failure is good in so far as
the student can learn from his or her mistakes.

We believe that case-based AI technology is well-suited for building such
systems and that they can be applied to a broad range of subjects.

CONCLUSION

. We are engaged in a study of human thought, in particular, how people
understand and learn about the world. We want to know how people think for
several reasons. First, as scientists, we find the question of intrinsic interest.
Second, we hope to use our models of learning to raise the standards and im
prove the capabilities of the next generation of AI applications. We want pro
grams that can learn and adapt. Finally, we want to create a new paradigm for
instruction that is grounded in a natural method of learning. We envision an
educational system in which a student's natural ability to learn from experience
becomes an advantage, not an impediment.

In short, we believe that the study of learning within the framework of
artificial intelligence will have a significant impact on science, technology, and
education.
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