Forecasting Broadway Show Gross Revenue
OIT 367 final project

Tan Boneysteele, Konstantine Buhler, James Kernochan, Mike Mester, and Soren Sudhof

You can keep our project for future use

STANFORDA§;
BUSINESS:

Executive Summary

In this project, our team took on the task of predicting and identifying drivers of weekly gross revenue for Broadway
shows. One group member’s experience working with Broadway producers revealed the need for rigorous, data-
driven analysis and decision making in the Broadway industry, which traditionally has not employed sophisticated
quantitative analysis extensively. Broadway is a big business, with total annual ticket revenue above one billion
dollars and a large number of Broadway-dependent businesses in New York’s Theatre District contributing even
more economic impact. Broadway shows also draw significant investment interest. Use of more advanced statistical
models remains relatively rare on Broadway, however, with many producers relying primarily on domain expertise,
experience, and intuition to make decisions. With this project, we hope to supplement those decision making
methods with quantitative analysis.

Our key task was to predict weekly Broadway gross revenue, both on an aggregate basis across all shows and
on an individual, per-show basis. Gross revenue is highly variable from week to week and influences many of the
decisions producers and other Broadway stakeholders make. Predicting weekly gross within a commercially useful
margin of error would therefore enable better decision making across the Broadway ecosystem, as well as revealing
drivers of commercial success or failure of shows. To improve the accuracy of our predictions and to uncover novel
relationships, we cast a wide net in selecting predictors. In addition to basic time series and show capacity /
frequency data, we examined the predictive power of show genre, seasonality and holidays, weather and financial
indicators, and social data in the form of Google Trends search popularity. Our goal was to use these predictors to
generate a predictive model with minimum root-mean-squared error (RMSE).

Although our project used only public datasets available on the Internet, data collection and processing proved
to be a large hurdle. No comprehensive, machine-readable database of Broadway shows exists, so we had to generate
our own dataset by scraping Broadway industry websites. Similarly, collecting search popularity posed difficulties
given the opaque nature of the Google Trends data and the lack of a convenient way to programmatically query
the Google Trends database. The data we collected was also large in scale: weekly gross revenue for 1,087 shows
back to 1985 with run lengths ranging from a few weeks to several years, for a total of nearly 39,000 individual rows
of data. Including lag terms, interaction terms, and binned categorical variables, our final comprehensive model
contained over 4,000 predictors for each of these rows, requiring a large amount of computational resources.

Our efforts resulted in impressive prediction accuracy for our comprehensive model. Our average out-of-sample
RMSE for total weekly Broadway gross across 20 cross-validation folds was $818k, less than 5% of a typical week’s
total gross. On a per-show basis, our average out-of-sample RMSE for weekly gross was $85.5k, relative to a
typical weekly gross for a larger show of above $1M. Interestingly, most of the model’s predictive power came
from autocorrelation and interaction terms on the basic time series and capacity data rather than the external
weather, economic, or search popularity data. The marginal accuracy provided by the external data was small to
nonexistent, well below any reasonable threshold for statistical significance.

These results suggest three key recommendations for the Broadway ecosystem. First, our project has proven
the viability of analyzing and predicting Broadway grosses quantitatively using multiple linear regression on a
broad set of public predictor datasets, and we recommend that Broadway stakeholders adopt similar methods. For
instance, Broadway producers could use our model’s predictions to help them determine when to shut a poorly-
performing show down and when to ride out a slow period in expectation of improved future performance. Second,
the predictable cyclicality of Broadway grosses indicates an opportunity for Broadway ticket sellers to vary ticket
pricing in response to expected demand, increasing revenue by charging more during peak periods and selling
more tickets at a lower price during demand lulls. Third, the relative unimportance of Google search volume to
Broadway grosses casts doubt on the viability of search keyword advertising for increasing Broadway ticket sales,
though further work is required to make a definitive recommendation on this point.

STANFORDA§
BUSINESS:

1 Introduction and Description of Problem

Broadway theater in New York City is one of the major attractions in one of the world’s most fashionable cities.
Broadway is, along with the West End in London, considered to offer the highest level of quality and exposure
for theatrical endeavors in the world. Shows on Broadway feature many of the world’s biggest star actors and are
massively popular both among residents in the New York metropolitan area and among tourists coming from all
over North America and from across the globe. Consumers have shown a remarkable willingness to pay premium
prices for a few hours of entertainment, with tickets prices approaching $500 a piece for exceptionally popular fare
such as The Book of Mormon.

“Broadway” specifically refers to a set of approximately 30 theaters either on or adjacent to the street Broadway
in midtown Manhattan. Every single show in a Broadway theatre must report, to the exact dollar, the amount
of revenue earned from ticket sales in a given week. These numbers are then publicly released every Monday
afternoon for anyone to peruse on the web. BroadwayWorld.com represents one news source for this data, providing
a particularly comprehensive portrait of show data each week. As can be seen at http://www.broadwayworld.
com/grosses.cfm, each show is listed by title along with its particular theatre’s name (e.g., The Book of Mormon
plays at the Eugene O’Neill Theatre), the current week’s ticket gross, the prior week’s gross, the difference between
the two, the average ticket price, the top ticket price (i.e., the highest price paid for the best seat in the house),
the number of performances in a week (usually eight, spread across six days), the number of available seats across
all the performances, the number of those seats for which tickets were purchased, the percentage of available seats
filled, and the percentage of maximum possible gross achieved. The last of these numbers is perhaps the trickiest to
determine and the easiest to abuse, as it is a complicated and sometimes shifting metric; shows have sliding scales
for ticket pricing, dipping as low as $20 for desperation-prompted discounts (below the “maximum” gross for the
seat) and vaulting as high as $475 for a premium seat (well above the supposed “maximum” non-premium price for
the seat).

Our project is looking to find the primary factors influencing ticket revenue for Broadway theater productions
in New York City between 1984 and today, the full range for which ticketing data are available on the web. One of
our target audiences is theatrical producers. This audience needs to understand revenue projections for their shows
for budgeting purposes, and finding the factors with the most predictive power will be very helpful for resource
allocation and planning. Shows must meet a given weekly running cost in order to stay open, and this often
involves moving past weak weeks wherein a certain amount of money is lost. Show producers can better plan for
these periods if they know how to predict revenue trends into the future. Producers can also get a sense of whether
advertising should be increased along certain avenues, as word of mouth may build below or above the pattern
given by our data analysis. Producers must also make critical decisions about ticket pricing, including whether
to feature their respective shows at discount-ticketing booths (such as the well-known “TKTS Booth” featured
prominently in Times Square). Most shows begin with very elaborate systems of discounting in order to pique
consumer interest, such as special arrangements with major corporations in the area and flyers mailed to homes of
previous patrons. More streamlined information about ticket revenue relative to benchmarks can provide producers
with useful decision-making tools about how to structure, curtail, or alter discount or premium ticketing schemes.

There is also a broader economic ecosystem around Broadway whose revenues are directly tied to business from
the shows. A large infrastructure of restaurants, gift shops, hotels, and convenience stores is situated in Midtown
West. These economic stakeholders have access to the publicly available information about Broadway grosses, and
so they could benefit from a general picture of how Broadway shows are likely to perform in a given week, taking
into consideration other relevant factors such as weather and time of year.

2 Data Collection

All of the data we used for this project was taken from publicly available websites: Broadway World (http:
//www .broadwayworld.com), the Internet Broadway Database or IBDB (http://www.ibdb.com), weather and
financial data from government sources, and Google Trends (http://www.google.com/trends). Unfortunately,
none of these sites offers a public API to access its data, requiring us to scrape each one individually. The Python
scripts we used to collect the data are presented in section §D. A complete copy of the processed, cleaned database
we used in our analysis is available at http://tinyurl.com/n6qfyfw.

The Broadway World database provides our primary response variable, weekly grosses, and several other basic
capacity and frequency data for shows, e.g., number of performances in a week, number of seats available, and
average and maximum ticket prices. The data is mostly complete, except for seat and ticket price data before
approximately 1996. Show runs often contain gaps and some shows leave Broadway for a long period before

STANFORDA§
BUSINESS:

http://www.broadwayworld.com/grosses.cfm
http://www.broadwayworld.com/grosses.cfm
http://www.broadwayworld.com
http://www.broadwayworld.com
http://www.ibdb.com
http://www.google.com/trends
http://tinyurl.com/n6qfyfw

returning. Generally, Broadway World treats a revival of an old show as a separate show from the original, and we
have followed that convention in our analysis.

There are 1,087 separate shows that have been on stage during the period from 1985 to the present. The shows
range from very short runs (three weeks for total failures) to what is among the most commercially successful shows
of all time, The Phantom of the Opera, which has run since 1988. In total, this dataset represents nearly 39,000
rows of data, each representing a week’s worth of grosses for a single show. Weather, general economic data, and
holidays are also incorporated into our analysis, in order to determine their particular impact on the flow of ticket
sales throughout the weeks.

Broadway World’s data is available by show at http://www.broadwayworld.com/grossesbyshow.cfm. Data
for each show appears in a relatively standardized HTML table containing several columns. The main grosses page
linked above contains an index of all shows available in the database. To collect this data, we wrote a Python script
(see Script 3). This script first creates a list of all the shows available by crawling the Broadway World index.
Then, the script issues an HTTP request for each of the shows and receives an HTML table containing Broadway
World’s data in response. The script then parses the HTML table using the BeautifulSoup Python library and
outputs the result to an XLSX file. We save each of these files locally to avoid overloading the Broadway World
site with requests each time we want to regenerate our data set. Finally, the script takes all of the per-show XLSX
files and concatenates them into a combined XLSX file, which forms the foundation of our data set. Each row of
this combined file represents a single week of a single show.

To supplement the Broadway World data, we added show type data from IBDB. Analogous to IMDB for movies,
IBDB provides a comprehensive database of Broadway shows, including cast, credits, theatre, and categorical data
about the show’s genre. IBDB’s data is based on playbills that accompany each production, provided by The
Broadway League.! Although IBDB’s data is rich, it is not structured in an easily machine-readable format.
Subtle and unpredictable mismatches between names of shows in Broadway World and IBDB further complicate
scraping of the IBDB dataset.? Given these complications, we focused on retrieving a single feature from IBDB:
the category of shows. There are three such categories: play, musical, or other (typically short-running specials).

Our IBDB scraping used another Python script (see Script 4), this time using the Mechanize library to emulate
a web browser. The script takes a list of show names (in our case, from Broadway World) and searches the IBDB
database for each show. Because IBDB sometimes contains multiple entries for each show with different categories,
we had to develop a heuristic for obtaining a single category. We chose simple majority voting, where we assigned
each show the category that appeared most frequently in the IBDB results page. For most shows, the voting was
unanimous, and spot-checking the non-unanimous shows indicated that the majority-rule heuristic was reasonable.
Searching IBDB returned no results for 138 of the shows in our dataset, mostly for revivals where the Broadway
World naming convention differs from IBDB. For these shows, we created a “NA” category to indicate missing data.

To include exogenous factors beyond Broadway itself, we supplemented the Broadway data with NOAA weather
data for New York City (the Central Park weather station in particular) and the closing price of the Dow Jones
Industrial Average stock index. We included weather predictors to test the intuitive hypothesis that poor weather
would negatively affect Broadway grosses. Similarly, we included stock market data to test the sensitivity of
Broadway revenue to broader economic trends. Given the important of the financial services industry to the New
York City economy, Broadway revenues could be highly sensitive to stock market performance, which would be an
important insight for prospective investors in Broadway shows.

The final data set we used was Google Trends data on search term popularity. We included Google Trends to
identify the importance of “social” popularity for Broadway grosses and to expand our set of predictors beyond
conventional Broadway data sources. Put simply, Google Trends data describes the relative popularity of search
terms on a weekly or monthly basis back to 2004. Data are available for many search terms, but some are so rare
that no Trends data exists.

Google Trends proved the most difficult of our four data sets to scrape, parse, and analyze. We focus here on
the scraping and parsing. We discuss the analysis of the Google Trends data separately in section 4.5. The only
public access to Google Trends data is through the interactive website http://www.google.com/trends, which is
designed for casual human use and not for automated scraping. No API for Google Trends is available, despite
Google announcements to the contrary. Examination of the Google Trends website, however, revealed a function
that produced a CSV of Trends data for specified search terms with a relatively simple HTTP GET request. We then
wrote a Python script to issue these requests for each of the shows in the Broadway World list (given that Trends
data is only available post-2004, many shows had no data at all). For each show name, we issued four requests

1See http://www.ibdb.com/about . php.
2For instance, Broadway World typically appends the opening year to the name of a show that has been revived whereas IBDB does
not.

STANFORD#s
BUSINESS:

http://www.broadwayworld.com/grossesbyshow.cfm
http://www.google.com/trends
http://www.ibdb.com/about.php

9

with different search queries: the show name, the show name plus “tickets,” the show name plus “Broadway,” and
all three of these queries together. The “tickets” and “Broadway” queries help to distinguish show-specific interest
from general interest in a search term. Since many show names are common searches on their own (e.g. Cats),
search interest in the show name alone may not be predictive. The final combined Trends request is needed to
handle the normalization of the Trends data that Google provides, which is discussed in detail in section 4.5.

While not expressly prohibited, mechanized querying of Google Trends is discouraged by Google. The nearly
5,000 total queries we needed to make to the Trends website fell well outside what Google’s unpublished quotas
allowed. As a result, our script was initially throttled after the first few dozen requests, effectively disabling our
access to the Trends dataset. To work around this limitation, we had our script wait between requests for between
10 and 30 seconds and we included cookies in our request that simulated a logged-in Google user. After some
experimentation, we were able to complete our queries for all 1,087 shows with the script presented here. Ongoing
retrieval of the Google Trends data would likely require either more sophisticated methods for avoiding throttling
or explicit cooperation with Google.

Our script then parsed the Google Trends CSVs and created a table of combined Trends data for each of the
four query types described above. To ease analysis of the data, we presented the Trends results for each show by
week, relative to the show’s opening. Weeks without Trends data were assigned a value of zero. Finally, we used
R to generate several predictor columns from these tables, which are described in section 4.5.

3 Methodology

After we collected the data, we divided our analysis into two stages. First, we examined the predictive power
and effect of each category of predictors separately: the basic capacity and time series data (section 4.2), show
categories (section 4.2), seasonality and holidays (section 4.3), weather and financial data (section 4.4), and Google
Trends data (section 4.5). These separate analyses helped reveal which of the many predictors we collected actually
pertained to Broadway and which were not useful, which in turn guided our predictive model building. The analyses
also helped us to understand the drivers of Broadway grosses, which provides useful insight for Broadway producers
managing shows. We discuss each of these analyses individually and then discuss our final comprehensive predictive
model (section 4.6).

For our initial analyses, we used multivariable linear regressions, usually with autocorrelation terms. Due to
the large number of predictors involved, we switched to a LASSO linear regression for our comprehensive model.

All models were evaluated using mean RMSE from 20-fold cross-validation. The cross validation was performed
by taking random starting points in the data set and then selecting the first 5,000 rows after that point as a training
set and the following 2,500 rows as a test set for determining RMSE. This process was repeated 20 times for each
model, using the same splits by setting a common random seed, and the model’s RMSE was estimated as the mean
of the RMSEs from the cross validation.

4 Analysis and Results

4.1 Baseline model

To facilitate our analysis of the various predictors, we created a simple baseline model of total weekly gross
containing only three autocorrelation terms, basic capacity data like number of seats and performances, and a
summary of the genres of the shows currently playing. This model produced an RMSE of 1.73e+06, and its code
and results are presented in Figure 13.

4.2 Capacity predictors and autocorrelation

We started our detailed analysis of the data by examining the basic macro factors that potentially drive Broadway
total gross sales. As we hypothesized that total gross sales would be increasing over the years (as Broadway has
proved to be a growing industry), we started by regressing total gross sales on Week (our variable for time, see
Figure 14). As we hypothesized, this was statistically significant and showed that total gross sales increased over
time. This simplistic model had an RMSE of $2.98M and, realizing the power of intuition, we added the week of the
year (as Broadway is seasonal), total number of performances, and number of shows being performed to the linear
regression model (Figure 15). This showed that all factors were statistically significant and drastically improved the
RMSE to $2.01M. As might be expected, the number of performances of a show in a week is positively correlated
with total gross, showing that volume outweighs dilution effects. Contrary to expectation, though, the number

STANFORDA§
BUSINESS:

of different shows playing at once was negatively correlated with total gross, showing potential dilution effects.
Given the significance of the number of shows being performed, we added number of musicals being performed
to the linear regression (Figure 16). This indicated that while the number of shows is negatively correlated with
total gross, the number of musicals is positively correlated. After seeing the significance of this effect, we added
in the ratio of the number of musicals to the number of all types of shows (Figure 17). This left RMSE relatively
unchanged at $2.02M in both models. Indeed, while this may suggest that the ratio is the key driver, removing the
number of musicals being performed reduces the RMSE of the model and lowers the statistical significance of the
ratio interaction variable.

Next we explored the impact of the total number of seats available on Broadway on total gross sales. However,
because total number of seats information is only available for post-1996 (Figure 7), we restricted our analysis to
this timeframe. We see that total number of seats is statistically significant and explanatory (Figure 18), reducing
RMSE to $2.59M from $2.81M (which was the RMSE of model restricted to post-1996 data). As we suspected
there could be a non-linear relationship we explored the square of total seats (not significant on its own, RMSE
= $2.61M), the cube of total seats (not significant on its own, RMSE = $2.61M), and the square plus the cube of
total seats (which is significant although increased RMSE to $3.02M, see Figure 19). This indicated the declining
impact on total gross of incremental seats as total seats increases. In line with later analysis, we also explored
autocorrelation (Figure 20), although this idea combined with the significance of Total Seats, led to the idea that
prior period average price could be a more powerful driver. Indeed, we see that the introduction of average price
to the linear model eliminates the significance of prior period total gross (Figure 21). A PACF chart is presented
below, indicating at least marginally significant autocorrelation up to approximately the AR (20) term (and some
beyond). Given this result, we included lags up to 20 weeks for our comprehensive model, described below in
section 4.6.

Having established the importance of autocorrelation, we explored the impact of show aging (median and mean
age of shows currently playing) and saw median show age’s statistical significance (Figure 22 and Figure 23). In
this analysis we see that the older and more established the Broadway line-up is, the larger Broadway’s total gross
sales. Finally, we explored the quadratic and cube for number of performances being performed as we suspected
that there was a non-linear relationship similar to the total seats relationship (Figure 24 and Figure 25). Here we
see that, unlike total seats, incremental total performances have a continuing positive impact on Broadway total
gross.

Weekly Broadway gross PACF

Partial ACF

0.0

Figure 1: PACF chart for total weekly gross

4.3 Seasonality and holidays

A quick view of the data (Figure 2) immediately produces an impression of a strong seasonal element to bookings.
Total Broadway grosses seem to peak in the summer, around May, and of course there is a general growth trend
over the entire timeframe (see Figure 10 for an explicit presentation of secular growth in total weekly gross).
One reason for the seasonality is the occurrence of public holidays and timing of school vacation schedules, which

STANFORDA§
BUSINESS:

attract tourists and add to the number of performance slots. Another is the industry-specific calendar — entries
for the Tony awards, usually held in June, have to be submitted and released by April and can influence a show’s
commercial success dramatically. And the long-term trend is likely the result of macro factors such as GDP growth
and demographics.

i Weekly Broadway gross over time

o
by
4
&
S

H. -

Weekly Broadway gross (3}

| M,
} ML \|-)~i‘wJ\H Jﬂh[v.llf'\\lﬂ{'ﬂ ‘\M
WY

e W |

Mg 1"'tp~r‘r\}‘“u{“""'."l*'wwwn* 'k

v v i ' ' U '
1985 1990 1995 2000 2005 2010 2015
Week

Figure 2: Weekly total Broadway gross over time

The amount of noise in weekly grosses makes quantitative predictions of these seasonal effects difficult, however.
As an example, Figure 3 shows that even the intuitively obvious quarterly seasonal patterns are difficult to detect
in the weekly gross data. With the exception of the fall season, differences between seasons appear much smaller
than one might expect after looking at the overall time series. This noise made analysis of seasonal and holiday
predictors in isolation difficult.

Season
EH winter
E;I spring
2e+07 - —— E SUMmImer
e =*) »* E fall

Total.Gross

) - e -
)‘t.&.u " ot e
e

2% &

Season

Figure 3: Seasonal variability in total weekly gross

Thus, in order to incorporate variables in our models that might improve our forecasting accuracy, we extracted
week of year (sequentially), monthly, quarterly (effectively seasonal), and annual elements from the week start
dates. Isolating the week number enabled us to regress much more granularly on specific points in the year, such
as potential holiday dates. Month and quarterly variables were intended to capture more general fluctuations and
holidays that occur in different weeks in different years (such as Easter). Using year as a variable was intended to
capture the trend across the timeframe.

STANFORD#
BUSINESS::

In an attempt to better isolate the specific holidays, we also used the zoo and timeDate R packages to import
public holiday data for the last few decades and then flag weeks within a certain interval of days from the holiday
dates. We experimented with two different lists of holidays: one of all G-7 public holidays (with the logic that some
portion of Broadway revenues are tourist-driven and thus wealthy country holidays might be predictive), and one
of NYSE public holidays. The former dataset proved not to improve our model, likely due to the high number of
holidays it contains — nearly every week was flagged. We also created variables flagging weeks around Christmas
and Thanksgiving, as these anecdotally are particularly important holidays on the Broadway calendar and likely
drive the large spike in grosses that reliably occurs near the end of the year.

We evaluated the effect of these additional variables on our base model (Figure 13) by building a model in-
corporating all seasonality indicators. The results (Figure 8 and Figure 26) indicate that season variables, the
months December, March, May, August, and November, the week of the year, the year itself, and the occurrence
of NYSE holidays are all significant predictors. Surprisingly, Christmas and Thanksgiving variables were not sig-
nificant by themselves. In the comprehensive model (discussed in section 4.6), however, the seasonal predictors are
responsible for a decrease in RMSE of $251k, the largest and most significant effect among all the predictor sets
we tested (¢t = 3.85, p << 0.01). Much of the improvement appears to have come from interaction terms between
the seasonality variables and lagged weekly gross.

4.4 'Weather and financial predictors

Before we put all the sources of data together and ran LASSO, we ran a few tests with a linear model. We found in
this linear model that financial data was quite significant in predicting the revenue. In fact, it reduced our baseline
RMSE over 6%. Weather, on the other hand, had only marginal implications for the linear model’s RMSE.
However, when we ran the LASSO algorithm on the complete dataset, we found that weather made almost no
difference in the accuracy of our model. Including weather and financial data in the comprehensive model decreased
mean RMSE by only $28 per week, which is highly insignificant given standard errors of RMSE on the order of
several thousand dollars (¢t << 0.01, p > 0.99). The irrelevance of weather could be due to much of the weather
information being carried by the seasonality variables (e.g. winter in New York generally has worse weather than
summer does) or simply because Broadway grosses are not as susceptible to weather as intuition might suggest.

4.5 Google Trends

To measure the predictive power of social engagement and interest for Broadway grosses, we included Google
Trends data on the popularity of searches for the various Broadway shows. Our basic approach was to use search
popularity for a show from prior weeks to help predict the gross for that show for a given week. As described in
section §2, we tested the predictive power of several search strings: the show’s name, the show’s name plus “tickets,”
and the show’s name plus “Broadway.”

Google Trends data is a weekly or monthly (depending on search term popularity) normalized measure of the
volume of searches for a set of search strings. Although Google does not clearly describe the normalization they use,
examination of the data reveals the likely process. For Google Trends queries with a single search string, the Trends
value for a given week is the search volume for that week divided by the maximum search volume observed for that
term over the period of the query, rounded to an integer between zero and 100. Because all of our Trends queries
were for the entire range of available data from 2004 to the present, the denominator is the maximum observed
search volume for a given term. For Trends queries with multiple search strings (e.g. our combined query for the
show name, the show name plus “tickets,” and the show name plus “Broadway”), the normalization denominator
appears to be the maximum search volume across all of the search strings. An example of the Google Trends results
for The Book of Mormon is below in Figure 4, with annotations indicating key events.

The Trends normalization presents several challenges for analysis. First and most importantly, the raw Google
Trends data from the past cannot be used for prediction, because it incorporates future information in the form
of its normalization denominator. The true normalization denominator is not given, however, so we cannot simply
multiply by it to recover the raw search volume. Instead, we divide each week’s Trends data point by a fixed Trends
value from before the show opened (e.g. a quarter or a year before open). This division causes the normalization
terms to cancel and decontaminates the Trends data point from future information. For denominators, we tried
average Trends data for one month prior to show open, three months prior, six months prior, and one year prior.
Our query with multiple search strings also allows analysis of the relative frequency of different search strings, which
is impossible with the normalized single-term queries. We accomplished this by simply dividing the “tickets” and
“Broadway” Trends values by the value for the show name alone. Unfortunately, however, shows whose names are
common search terms on their own (e.g. Cats) typically have “tickets” and “Broadway” search volume low enough

STANFORDA§
BUSINESS:

Book of Mormon Interest Over Time

° Newspaper headlines

WWM

Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 lJan-14 Jan-15

o ‘South Park’ and ‘Avenue Q' Guys Bringing ‘Book of Mormon’ to Broadway

o ‘Book of Mormon' wins Tony Award
Figure 4: Google Trends results for The Book of Mormon

relative to the simple show name’s search volume to round to zero in this relative data. Given the importance of
lagged terms in the Broadway grosses data, we included lagged versions of these variables up to 10 weeks. We also
added fixed average Trends values for two, four, six, 12, and 26 weeks prior to show opening. Any missing data
(e.g. for shows before Trends data is available) was replaced with zero.

Because of the large number of predictors introduced (a total of approximately 150 including the different
denominators and lags), we used a LASSO linear regression to determine the predictive effect of these Google
Trends variables. We also included all of the basic capacity and frequency data in the Broadway World database
along with lags of weekly gross back 20 weeks.

Only the sixth and seventh lag of the “tickets” search relative to searches for a show’s name had a non-zero
coefficient in the LASSO model among the non-interaction Google Trends terms (excluding a single average Trends
term with a coefficient near zero). Both coefficients were positive, indicating a positive relationship between
frequency of searches for a show’s tickets and gross for that show. The lags perhaps suggest that the most
important search activity for tickets occurs six to seven weeks before a customer attends a Broadway show, though
more more analysis would be required to confirm that hypothesis. Interactions between the Trends and lags of
grosses produced ten more non-zero coefficients (see table table 1 for details). These interaction terms capture
the more natural notion that search interest in a show might bend the show’s gross trend up or down relative
to its existing trajectory, rather than produce a fixed increase or decrease in gross, as the coefficients for the
non-interaction Trends terms imply. Nevertheless, removing the Trends data from our comprehensive model only
increases RMSE by approximately $8k, a statistically insignificant amount (¢ = 0.16, p > 0.85), indicating that the
Google Trends data adds no meaningful predictive power to the model.

4.6 Comprehensive predictive model

The final step in our analysis was to combine all of the predictors we examined in the earlier sections into a
complete, comprehensive model. Given the large number of predictors (a total of 239 including lag terms, with one
predictor as a factor with over 1,000 levels), we used LASSO to select important variables and avoid over-fitting.
We ran the model on a per-show basis both to improve its predictive performance versus an aggregated model and
to improve its usefulness to show producers interested in predictions for a single show. R code for building this
model is presented in Script 1.

Our comprehensive model included all of the predictors described above, plus interactions with all of the
predictors and lagged grosses back to seven weeks. We included the interactions to capture the intuition that
most of these predictors are primarily important relative to a show’s existing trajectory of grosses. Given the high
variability of typical weekly grosses among shows and from week-to-week for a single show, predictors were seldom
important on their own. For instance, determining a single value for all shows to capture the additional gross
around Christmas (corresponding to the coefficient of a Christmas term) is very difficult. A more natural notion is

STANFORD33/
BUSINESSz:

the amount by which Christmas increases grosses relative to last week or the week before that, which is captured
by the interaction terms. We chose interactions back to a lag of seven weeks based on the PACF chart (Figure 1)
indicating that lag terms up to AR (7) are particularly significant. Ideally, we would include interactions with lag
terms up to AR (20) given that many of these terms are significant as well, but computational limitations prevented
us from including that many variables. Even the model presented here takes several hours to run through its 20-fold
cross validation. Adding the interactions terms improved the RMSE of the model by $144k over a model without
any interaction terms, which is significant (¢ = 2.15, p < 0.05).

Finally, we tried normalizing all of our variables using R’s scale command, due to the large difference in
magnitude between the weekly grosses (which are on the order of 10°) and the many predictors between zero and
one. Normalization only improved aggregate gross RMSE by $3k, which was insignificant (¢ = 0.06, p > 0.90).
Normalization also increased per-show RMSE by about $1k, though this was also insignificant (¢t = 0.13, p > 0.85).
Given the ambiguous performance improvement from normalization and the more natural interpretation that
attaches to unnormalized variables, then, we chose to use the unnormalized model for prediction and analysis.
A comparison of the model’s performance on aggregate weekly gross with different predictor sets is presented in
Figure 5 (a comparison of per-show model performance is presented in Figure 12).

Mean model RMSE on total Broadway gross

B I ' I
0.08400 =

Comprehansive GComp. Comp. wio Gomp. wio Comp. wio Gomp. wio
nomalized weathar trends intns seasonality

Weekly Broadway gross RMSE (3}

Figure 5: Comparison of RMSE on aggregate weekly gross across models

The predictions of this comprehensive model are presented in Figure 6. The model produces an RMSE for
total weekly gross of $818k (SE $35.8k), which is less than 5% of a typical week’s gross on Broadway. On a
per-show basis, the model achieves an RMSE of $85.5k (SE $4.5k). For higher-grossing shows (e.g. musicals), this
RMSE represents only about 5% of a typical week’s gross. For the smallest shows, the per-show RMSE represents
approximately 25% of a typical week’s gross, although the model may have reduced error on these smaller grossing
shows. The coefficients for the 305 variables selected by LASSO are presented in table table 1. There is no clear
pattern to the selected variables except that interaction terms predominate (252 vs. 53 non-interaction), and the
variables cover a wide range of the predictor types we examined.

5 Principal Findings and Recommendations

The most important finding of our work is that Broadway grosses are highly predictable even with widely available
predictor variables. The ability to predict general Broadway grosses for a given week is a powerful tool for business
owners who rely on the traffic of patrons for Broadway shows. A restaurant owner may purchase a certain amount
of food for consumption in a given week based on a prediction of whether Broadway grosses will be weak or strong,
and an accurate model can prevent either waste of food or inadequate resources. While not all of the information
in our analysis can be gathered in advance (particularly an accurate prediction of the DJTA), the most important
predictors are either publicly available prior data or reasonably estimable. Because the restaurant owner’s business
is directly tied to Broadway grosses, the model should also enable him or her to figure out resource demands within
a similar level of accuracy.

STANFORD¢
BUSINESS:

nvnavu:)

Our comprehensive model’s predictions are presented in Figure 6 and closely track the actual grosses for most
periods. Although our model has a tendency to underestimate peak mid-summer and winter holiday weeks (despite
including related terms in our predictor set), it is highly accurate for the vast majority of the year. The compre-
hensive model’s RMSE is also almost $1M per week lower than the simple baseline model we used. This increased
accuracy enables better demand forecasting and pricing decisions for Broadway producers, better capacity and sup-
ply decisions for Broadway-dependent businesses, and more sophisticated show-closing decisions for producers and
investors. We would therefore recommend that these Broadway stakeholders use techniques like our comprehensive
model to improve their decision making. In particular, producers should use similar predictive modeling to assist
decisions about whether to close an underperforming show or keep it open, particularly for larger shows where our
model’s accuracy is higher.

Comprehensive model vs. actuals

3a+07 - Training set Test set

Ze+07 - “ | |||

Actual

Predicted

‘Weekly Broadway gross (3)

Wl il
18+07 = N TV Tk Y
[UV it \

: L
2004 2008 2008 2010 2012 2014

Figure 6: Model predictions vs. actual total weekly Broadway grosses since 2004 (full time series in Figure 11)

Our analysis also produced several interesting insights into the dynamics of the Broadway ticket market. The
negative coefficient on number of concurrent shows (discussed in section 4.2) indicates that demand for Broadway
shows is relatively fixed. Each additional show offered at a given time reduces total weekly gross across all shows by
nearly $100k, suggesting that incremental shows induce price competition among shows and harm overall Broadway
revenue. This analysis recommends that existing Broadway stakeholders should strongly resist attempts to expand
the number of “Broadway” theaters, as some have attempted in the past. Another interesting result is that Broadway
shows do not systematically age, in the sense that weekly gross is positively correlated with weeks since a show
is opened (discussed in section 4.2). Producers and theaters therefore should not disfavor or discount otherwise
successful shows just because they have been running for a long time. Audiences evidently do not become tired of
long-running shows.

The seasonality analysis discussed in section 4.3 mainly confirmed and quantified the common perceptions
among Broadway stakeholders about the importance of holidays and seasonality to Broadway returns. Seasonality
and holidays were critical to our model’s predictive accuracy, however, improving RMSE by $251k. Our difficulty
in completely capturing the holiday and mid-summer gross peaks despite the seasonality factors we included in our
model also suggests an avenue for further improvement to our predictive model.

While weather and stock market performance are obviously outside the control of Broadway stakeholders, our
analysis of these predictors still provides useful insight for the Broadway ecosystem. The relative unimportance of
weather and financial variables in predicting weekly gross (discussed in section 4.4) means Broadway returns are
less susceptible to these exogenous, unpredictable variables than conventional wisdom holds. That result should
make Broadway investments more attractive to a wider group of investors, benefitting producers by reducing the
cost of funding shows.

Finally, our Google Trends analysis indicates that focusing on search term popularity to predict Broadway
grosses likely represents misplaced effort. Google Trends only improved the RMSE of our comprehensive model
by a statistically insignificant amount, at the cost of considerable effort in collecting, processing, and analyzing
the data. Most of the information contained in the Google Trends data apparently resides in the time series of

STANFORDA§
BUSINESS:

10

grosses themselves, a much easier dataset to obtain and manage. The low predictive power of Google search volume
may also suggest that search keyword advertising is not particularly useful for increasing Broadway show revenue.
Although our analysis cannot squarely address the question of search advertising effectiveness for Broadway shows,
the low predictive power of search volume for Broadway grosses at least raises doubts about a connection between
Internet searches and Broadway ticket purchase behavior.

6 Conclusion

The variety of data analysis we have undertaken has resulted in a number of potent and useful conclusions, and
provides an apparatus for more effective business enterprises in the Broadway ecosystem. The per-show RMSE
is particularly relevant for big-budget musicals, where a deviation beyond our margin of error demonstrates that
a show is either outperforming or underperforming where static demand would lie, evincing a trend driven by
organic consumer sentiment rather than exogenous factors. Producers are often caught up in emotional, high-
stakes decisions about the financial stability of their shows, and about the level of advertising and subsidizing that
are required to sustain the shows, and so having a reliable metric against which to measure their performance can
enable them to make more rational decisions.

The RMSE across all the shows at once shows that business owners relying on Broadway can also use data from
public and readily available sources in order to make rational decisions about how to structure their own businesses.
The general trends depicted in our report also enable them to make quicker calculations and judgments about their
businesses as well — noting, for example, that over Christmas a Broadway lineup filled with long-running musicals
is going to mean a very healthy stream of potential customers coming their way. While weather, financial, and
Google Trends did not provide commercially or statistically relevant information, the data available from IBDB
and Broadway World all interacted with consumer patterns (and often with each other) in robust and remarkable
ways.

STANFORDA§
BUSINESS:

11

APPENDIX A FIGURES AND TABLES

A Figures and Tables

w
©
o
n -
F -
o
B T -
S o
2 o
-
Q —
g 5
S 9
2 | T | | | |
1985 1990 1995 2000 2005 2010 2015
data to.use$Week
Figure 7: Total seats data availability by week
Model vs. test set (RMSE = 1.5e+06, SE = 9.18e+04)
-
o
+
P
1
w [ad]
w —
2
6 S
© E% — | | I ‘
e 8 w | W
LAY VAT AT A |
1 W L
= rm/ Y A “
g1y YV YV
I | I | [[I
2009 2010 2011 2012 2013 2014 2015
Week
Figure 8: Out-of-sample predictions (in red) vs. actual (in green) for total weekly Broadway gross
STANFORDS
BUSINESS::

12

APPENDIX A FIGURES AND TABLES

L]
4e+07 -
L
. L
-
L] L
e+07 - - - L]
. : ! .
- : 3 : : 3 '
b . - . : t . L
o H H
G . 3 ; 3 :
= * * [} H 1
B i | i o
A : N
i | b l
- -
/!/’_ .}_ﬂl—\‘l\! i
les07 - I i I | 4__,}"/
i I I | :
| | ! I

MonthNUM

Figure 9: Monthly variability in total weekly gross

Total Gross

e

¢¢¢*¢;$$$*$$$

' ' ' '
61 587 9881 989 5901 59 119921 9931 994 5951 996 9971 9561 S5 E000200 2002200200200 200@0072008200F0 10201 201220

Figure 10: Annual variability in total weekly gross

STANFORD:S
BUSINESS::

13

- AR R

\

APPENDIX A FIGURES AND TABLES

Comprehensive model vs. actuals

3a+07 - Training set ! Test set
]
i
‘
i
‘
i
_ i
£ 2es07- '
] '
= i
§‘ : = Actual
g ! —— Predicted
[}
)
-
2
18407 =
1
i
1
i
]
i
'
0e+00 = | 1 ' [| U |
1985 1990 1995 2000 2005 2010 2015
Week

Figure 11: Model predictions vs. actual total weekly Broadway grosses since 1985

Mean model RMSE on per-show Broadway gross

9404 -
&
w
2
g 62404 =
=m
=
2
z
@
o
=
ki
g 38404

WA
(agaregate
el
0e+00 =
| T
c:.mpmnanswa c:.mp wio Cump wio Comp wio Comp. wio Baseline
norrnalmad weather trends intens seasonality
Model

Figure 12: Comparison of RMSE on per-show weekly gross across models

STANFORD’qn

BUSINESS:: u

APPENDIX B R OUTPUT LOGS

B R Output Logs

Im (formula = Total.Gross =~ Week + Total.Gross lag 1 + Total.Gross lag 2 +
Total.Gross lag 3 + Total.Seats 4+ Total.Performances + Num.Shows +

Num. Musicals /Num. Shows, data = train)
Residuals:
Min 1Q Median 3Q Max
—10237823 —619675 15472 582704 12580825

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) —5.162e+06 6.428e+05 —8.031 1.88e—15 sx*x
Week 9.799e+402 5.048e+01 19.413 < 2e—16 #*x*x
Total . Gross lag 1 4.729e—-01 2.318e—-02 20.403 < 2e—16 *xx
Total.Gross lag 2 —5.203e—02 2.593e—02 —2.006 0.0450 =*

Total.Gross _lag 3 4.951e—02 2.124e—-02 2.331 0.0199 =

Total. Seats —6.011e+00 8.585e—01 —7.002 3.73e—12 =xxx
Total.Performances 1.111e+05 7.616e+03 14.583 < 2e—16 #x*x
Num. Shows —8.007e+05 6.295e+04 —12.720 < 2e—16 =xx
Num. Musicals —3.421e+05 4.321e+04 —7.915 4.62e—15 =xx
Num. Shows :Num. Musicals 1.324e+04 1.467e+03 9.028 < 2e—16 =xxx

Signif. codes: 0 ’sxx’ 0.001 ’xx’ 0.01 ’«’ 0.05 ’.” 0.1 > > 1
Residual standard error: 1541000 on 1571 degrees of freedom

Multiple R—squared: 0.9501, Adjusted R—squared: 0.9498
F—statistic: 3321 on 9 and 1571 DF, p—value: < 2.2e—16

Figure 13: R 1m command and output for baseline model

call:
Im(formula = Total.Gross ~ wWeek, data = train)

Residuals:
Min 1Q Median 2Q Max
-14884401 -1496808 -84878 1383208 18925054

coefficients:

Estimate std. Error t value Pr(|t])
(Intercept) -9.869%e+06 2.535e+05 -38.93 <2e-16 #ww
week 2.001e+03 2.208e+01 90. 62 <Z2e-16 *®¥®%

signif. codes: 0 “***’ 0.001 ‘**’ 0.01 *** 0.05 *.” 0.1 * " 1

Figure 14: R 1m command output

STANFORDY
BUSINESS:

15

APPENDIX B R OUTPUT LOGS

call:
Im(formula = Total.Gross ~ wWeek + Total.Performances + Num.Shows +
week.of.Year, data = train)

Residuals:
Min 1 Median 3Q Max
-7848316 -1196520 -59098 936486 15384268

coefficients:
Estimate std. Error t value pr(z|t])

(Intercept) -1.440e+07 2.513e+05 -57.32 < 2e-16 **¥
week 1.591e+03 2.148e+01 74.04 < 2e-16 ®®*
Total.Performances 1.639e+05 9.929e+03 16.51 < 2e-16 #*¥¥*
Num. Shows -9.366e+05 7.886e+04 -11.88 < 2e-16 *¥*
week. of . Yyear 1.178e+04 3.476e+03 3.39 0.000716 =#*
Signif. codes: 0 “#*#*° 0,001 ‘®**' 0.01 ‘*° 0.05 “.” 0.1 * " 1

Figure 15: R 1m command output

call:
Im(formula = Total.Gross ~ wWeek + Total.Performances + Num.Shows +
week.of.vear + Num.Musicals, data = train)

Residuals:
Min 19 Median 3q Max
-8907564 -1150691 -79437 941184 15288221

coefficients:
Estimate std. Error t value Pr(>|t])

(Intercept) -1.503e+07 2.850e+05 -52.734 < 2e-16 #**=
week 1.709e+03 3.371e+01 50.709 < 2e-16 #®¥*
Total.performances 1.668e+05 9.887e+03 16.869 < 2e-16 **®
Num. shows -9,095e+05 7.859e+04 -11.573 < 2e-16 #*¥*
week. of. vear 1.347e+04 3.474e+03 3.877 0.00011 #==
Num.Musicals -1.285e+05 2.824e+04 -4.550 5.79%e-06 ***
signif. codes: 0 “#*#=' Q0,001 ‘**" 0.01 °“*' 0.05 “.” 0.1 * " 1

Figure 16: R 1m command output

call:

Im(formula = Total.Gross ~ week + Total.Performances + Num.Shows +
week.of.vear + Num.Musicals + I(Num.musicals/Num.Shows),
data = train)

Residuals:
Min 1Q Median 3Q Max
-11577961 -1033298 -58335 800989 15049012

Coefficients:
Estimate std. Error t value pPr(>|t])

(Intercept) -2.514e+06 1.227e+06 -2.048 0.04075 *

week 1.733e+03 3.266e+01 53.045 < 2e-16 ***
Total.Performances 1.536e+05 9.641e+03 15.931 < 2e-16 ##*
Num. shows -1.356e+06 8.713e+04 -15.560 < 2e-16 ***
week. of . Year 1.025e+04 3.373e+03 3.039 0.00241 *=*

Num.Musicals 7.560e+05 B8.884e+04 8.510 < 2e-16 ***
I(Num.Musicals/Num.Shows) -2.055e+07 1.964e+06 -10.462 < 2e-16 *¥¥

Figure 17: R 1m command output

STANFORD
BUSINES

16

APPENDIX B R OUTPUT LOGS

call:

Im(formula = Total.Gross ~ Week + Total.pPerformances + Num.Shows +
week.of.yvear + Num.Musicals + I(Num.Musicals/Num.Shows) +

Total. Seats,
Residuals:

Min 1Q
-5643189 -1106735

Coefficients:

(Intercept)
week

Total.pPerformances

Num. Shows
week. of. vyear
Num.Musicals

I(Num.Musicals/Num. Shows)

Total. seats

signif. codes:

0

call:

data = train)

Median 3qQ Max
-143681 925065 13846532
Estimate std. Error t value pPr(=|t])
-1.697e+07 2.878e+06 -5.897 5.14e-09 ***
2.153e+03 4.543e+01 47.395 < 2e-16 ***
5.495e+04 1.689e+04 3.253 0.001181 **
-9.009e+05 1.353e+05 -6.658 4.71e-11 #**
4.971e+03 4.638e+03 1.072 0.284139
5.691e+05 1.598e+05 3.562 0.000386 ***
-1.496e+07 4.325e+06 -3.460 0.000565 ***
6.359e+01 1.014e+01 6.274 5.35e-10 #=®*
fwww’ 0 001 ‘®**' 0.01 ** 0.05% ‘." 0.1 * ' 1

Figure 18: R 1m command output

Im(formula = Total.Gross ~ week + Total.Performances + Num.Shows +
week. of.Year + Num.Musicals + I(Num.Musicals/Num.Shows) +

Residuals:
mMin
-5366299 -1128369

1a

Coefficients:

(Intercept)

week
Total.Performances
Num. Shows
week. of . year
Num.Musicals

I(Num.Musicals/Num. shows)

Total.Seats
I(Total.SeatsA2)
I(Total. seatsA3)

Total.Seats + I(Total.SeatsA2) + I(Total.SeatsA3), data = train)
Median 3qQ Max
-127997 974197 14044775
Estimate std. Error t value pr(|t])
-2.349e+07 3.556e+06 -6.605 6.64e-11 ***
2.167e+03 4.519%e+01 47.957 < 2e-16 *#¥
5.315e+04 1.677e+04 3.169 0.00158 **
-1.198e+06 1.504e+05 -7.965 4.76e-15 **®¥
8.270e+03 4.659e+03 1.775 0.07623 .
9.831e+05 1.847e+05 5.323 1.28e-07 **®*
-2.695e+07 5.097e+06 -5.287 1.54e-07 **=*
2.636e+02 4.830e+01 5.458 6.14e-08 ww®¥
-8.444e-04 1.949e-04 -4,332 1.63e-05 ***
1.152e-09 2.642e-10 4,362 1.43e-05 **%
feww! 0,001 f**° 0.01 ‘*' 0.05 .' 0.1 "1

signif. codes: 0

STANFORD
BUSINESS

Figure 19: R 1m command output

17

APPENDIX B R OUTPUT LOGS

call:

Im(formula = Total.Gross ~ Week + Total.Performances + Num.Shows +
week.of.vear + Num.Musicals + I(Num.Musicals/Num.shows) +
Total.seats + I(Total.sSeatsa2) + I(Total.sSeatsA3) + Total.Gross_lag 1l +
Total.Gross_lag_2 + Total.Gross_lag_3, data = train)

Residuals:
Min 1g Median 3Q Max
-6200144 -1011642 -62370 850534 12803068

coefficients:
Estimate std. Error t value pr(>|t|)

(Intercept) -1.638e+07 3.135e+06 -5.225 2.15e-07 ***
week 1.273e+03 7.090e+01 17.950 < 2e-16 #*%%
Total.Performances 5.724e+04 1.465e+04 3.906 0.000100 ***
Num. Shows -1.045e+06 1.317e+05 -7.936 5.9le-15 ¥¥*¥
week. of . vear 1.407e+04 4.135e+03 3.404 0.000693 ===
Num.Musicals 7.409e+05 1.620e+05 4.573 5.45e-06 ®%¥
I(Num.Musicals/Num.Shows) -2.099e+07 4.468e+06 -4.696 3.04e-06 ¥#¥
Total. Seats 2.260e+02 4.234e+01 5.337 1.18e-07 *%*
I(Total.seatsA2) -7.669e-04 1.706e-04 -4.495 7.82e-06 **¥
I(Total.SeatsA3) 1.039e-09 2.311e-10 4,498 7.73e-06 ¥%%
Total.Gross_lag_1 4.141e-01 2.908e-02 14.237 < 2e-16 *¥*%
Total.Gross_lag_2 -5.696e-02 3.176e-02 -1.794 0.073188
Total.Gross_lag_3 5.105e-02 2.644e-02 1.931 0.053794 .
signif. codes: 0 *“*%*%’ 0,001 ‘**° 0,01 **' 0.05 *." 0.1 * " 1

Figure 20: R 1m command output

call:

Im(formula = Total.Gross ~ week + Total.performances + Num.Shows +
week.of.year + Num.Musicals + I(Num.Musicals/Num.Shows) +
Total.seats + I(Total.SeatsA2) + I(Total.sSeatsA3) + Total.Gross_lag_ 1 +
Total.Gross_lag_2 + Total.Gross_lag_3 + Avg.Ticket_lag_1,
data = train)

Residuals:
Min 1Q Median 3qQ Max
-5217981 -977084 9913 763883 11588536

Coefficients:
Estimate std. Error t value Pr(>|t|)

(Intercept) -1.360e+07 3.031e+06 -4.488 8.09e-06 =%**
week 8.279e+02 B8.494e+01 9.747 < 2e-16 *¥**®
Total.Performances 4.714e+04 1.414e+04 3.333 0.000891 ***
Num. Shows -1.042e+06 1.267e+05 -8.228 6.34e-16 **%
week. of. vear 1.309e+04 3.979e+03 3.289 0.001042 ==
Num.Musicals B.837e+05 1.567e+05 5.641 2.24e-08 ***
I(Num.Musicals/Num. Shows) -2.450e+07 4.316e+06 -5.676 1.84e-08 #*%%
Total.Seats 2.190e+02 4.,072e+01 5.378 9.52e-08 ***
I(Total.seatsA2) -7.189e-04 1.642e-04 -4.379 1.33e-05 ¥%**
I(Total.seatsA3) 1.037e-09 2.222e-10 4.665 3.54e-06 #**
Total.Gross_lag_1 4.495e-02 5.048e-02 0.890 0.3734865
Total.Gross_lag_2 -3.021e-02 3.070e-02 -0.984 0.325235
Total.Gross_lag_3 6.192e-02 2.546e-02 2.433 0.015180 *
Avg.Ticket_lag_1 1.455e+05 1.656e+04 8.784 < 2e-16 #**
signif. codes: 0 ‘¥**%’ 0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 °* * 1

Figure 21: R 1m command output

STANFORD¢
BUSINESS:

ILVNavaD

18

APPENDIX B R OUTPUT LOGS

call:

Im(formula = Total.Gross ~ week + Total.performances + Num.Shows +
week.of.vear + Num.Musicals + I(Num.Musicals/Num.Shows) +
Total.Seats + I(Total.SeatsA2) + I(Total.SeatsA3) + Avg.Ticket_lag 1 +
Avg.Ticket_lag_2 + Avg.Ticket_lag_3 + Median.weeks.Since.open,
data = train)

Residuals:
Min 1Q Median 3Q Max
-4962737 -970840 7054 813978 11366602

coefficients:
Estimate std. Error t value pPr(=|t])

(Intercept) -1.116e+07 3.131e+06 -3.566 0.000381 ***
week 7.984e+02 8.980e+01 8.892 <« 2e-16 #*¥¥
Total.Performances 4.151e+04 1.408e+04 2.948 0.003276 **
Num. Shows -1.040e+06 1.263e+05 -8.228 6.34e-16 ***
week. of . year 9.329e+03 3.987e+03 2.340 0.019505 *

Num.Musicals 9.599e+05 1.556e+05 6.171 1.01e-09 #=**
I(Num.Musicals/Num.Shows) -2.757e+07 4.346e+06 -6.344 3.48e-10 *#¥
Total. Seats 1.937e+02 4,127e+01 4.694 3.0Be-06 *¥*
I(Total.SeatsA2) -6.003e-04 1.669e-04 -3.596 0.000340 ===
I(Total.SeatsA3) 8.894e-10 2.259e-10 3.937 8.86e-05 #¥*
Avg. Ticket_lag_1 1.642e+05 1.000e+04 16.409 < 2e-16 *¥*
Avg.Ticket_lag_2 -2.040e+04 1.162e+04 -1.755 0.079537 .

Avg.Ticket_lag_3 2.821e+04 1.012e+04 2.789 0.005388 **

Median. weeks. Since.open 1.298e+04 4.717e+03 2.751 0.006059 *¥

signif. codes: 0 ‘#**' 0.001 ‘**' 0.01 ‘*" 0.05 “." 0.1 * " 1

Figure 22: R 1m command output

call:

Im(formula = Total.Gross ~ week + Total.pPerformances + Num.Shows +
week.of.vear + Num.Musicals + I(Num.Musicals/Num.Shows) +
Total.Seats + I(Total.SeatsA2) + I(Total.SeatsA3) + Avg.Ticket_lag_1 +
Avg.Ticket_lag_2 + Avg.Ticket_lag_3 + Mean.weeks.Since.open,
data = train)

Residuals:

Min 1Q Median 3Q Max
-4937150 -983322 -25087 808712 11457324
coefficients:

Estimate std. Error t value pPr(>|t])

(Intercept) -1.103e+07 3.370e+06 -3.275 0.001097 **
week 7.589e+02 9.548e+01 7.948 5.41e-15 ###
Total.Performances 4.541e+04 1.415e+04 3.208 0.001380 **
Num. Shows -1.044e+06 1.268e+05 -8.238 5.83e-16 *%¥
week. of . year 1.152e+04 3.917e+03 2.942 0.003347 **
Num.Musicals 9.382e+05 1.558e+05 6.021 2.49e-09 #*¥**
I(Num.Musicals/Num.Shows) -2.617e+07 4.321e+06 -6.056 2.02e-09 ***
Total. seats 1.899e+02 4.470e+01 4.248 2.37e-05 #®¥
I(Total.sSeatsA2) -6.012e-04 1.773e-04 -3.391 0.000726 ***
I(Total.SeatsA3) 8.996e-10 2.370e-10 3.796 0.000157 #¥#
Avg.Ticket_lag_1 1.630e+05 1.008e+04 16.167 < 2e-16 *¥¥
Avg.Ticket_lag_2 -2.192e+04 1.166e+04 -1.BB0 0.060351 .
Avg. Ticket_lag_3 2.525e+04 1.024e+04 2.466 0.013822 *
Mean. weeks. Since.Open 5.680e+03 4.165e+03 1.364 0.172970
signif. codes: 0O *#*#%¥%' 0,001 °‘**’ 0.01 **' 0,05 *." 0.1 * " 1

Figure 23: R 1m command output

STANFORD¢
BUSINESS:

ILVNavaD

19

APPENDIX B R OUTPUT LOGS

call:

Im(formula = Total.Gross ~ week + Total.performances + Num.sShows +
week. of.vear + Num.Musicals + I(Num.Musicals/Num.Shows) +
Total.seats + I(Total.seatsA2) + I(Total.SeatsA3) + Avg.Ticket_lag_1 +
Avg.Ticket_lag_2 + Avg.Ticket_lag_3 + Median.weeks.Since.oOpen +
I(Total.pPerformancesA2), data = train)

Residuals:
Min 1q Median 3Q Max
-4818941 -934929 -27970 805614 11305373

coefficients:
Estimate std. Error t value Pr(>|tl)

(Intercept) -5.137e+06 3.621e+06 -1.419 0.15637
week 7.684e+02 8.98le+01 8.556 <« 2e-16 ¥*¥®¥
Total.Performances -1.511e+05 6.067e+04 -2.491 0.01292 *
Num. Shows -1.130e+06 1.28B7e+05 -8.777 < 2e-16 ***
week. of. Year 8.014e+03 3.987e+03 2.010 0.04471 *
Num.Musicals 1.113e+06 1.61Be+05 6.883 1.07e-11 **¥
I(Num.Musicals/Num.Shows) -3.182e+07 4.516e+06 -7.047 3.54e-12 ¥¥¥
Total. Seats 3.055e+02 5.347e+01 5.713 1.49e-08 ¥¥*
I(Total.seatsA2) -6.963e-04 1.687e-04 -4.128 3.98e-05 #**
I(Total.SeatsA3) 6.278e-10 2.3B6e-10 2.631 0.00865 **
Avg.Ticket_lag_1 1.641e+05 9.954e+03 16.487 < 2e-16 #¥¥
Avg. Ticket_lag_2 -2.028e+04 1.156e+04 -1.754 0.07974 .
Avg.Ticket_lag_3 3.045e+04 1.009%9e+04 3.019 0.00261 **

Median. weeks. since.open 1.105e+04 4.730e+03 2.336 0.01973 =
I(Total.Performancesa2) 4,373e+02 1.340e+02 3.263 0.00114 =**

signif. codes: 0 ‘#**=* 0.001L ‘**' 0.01 ‘*' 0.05 *." 0.1 * " 1

Figure 24: R 1m command output

call:

Im(formula = Total.Gross ~ wWeek + Total.Performances + Num.Shows +
week. of.vear + Num.Musicals + I(Num.Musicals/Num.Shows) +
Total.Seats + I(Total.SeatsA2) + I(Total.Seats+3) + Avg.Ticket_lag_1 +
Avg.Ticket_lag_2 + Avg.Ticket_lag_3 + Median.weeks.sSince.open +
I(Total.pPerformancesA3), data = train)

Residuals:
Min 10 Median 3qQ Max
-4849108 -936809 -26340 807118 11333756

coefficients:
Estimate std. Error t value Pr(>|t])

(Intercept) -6.804e+06 3.424e+06 -1.987 0.04724 *
week 7.695e+02 8.989%e+01 8.560 < 2e-16 **¥
Total.Performances -5.128e+04 3.327e+04 -1.541 0.12365
Num. shows -1.108e+06 1.278e+05 -8.675 < 2e-16 *¥¥
week. of . Year 8.004e+03 3.993e+03 2.005 0.04527 *
Num.Musicals 1.088e+06 1.603e+05 6.783 2.08e-11 ¥¥**
I(Num.Musicals/Num. Shows) -3.109e+07 4.475e+06 -6.947 6.98e-12 ##*
Total.Seats 2.388e+02 4.362e+01 5.474 5.66e-08 #*¥¥
I(Total.sSeatsA2) -4.671e-04 1.717e-04 -2.719 0.00666 **
I(Total.seatsA3) 3.711e-10 2.810e-10 1.321 0.18699
Avg.Ticket_lag_1 1.641e+05 9.960e+03 16.478 < 2e-16 #**
Avg.Ticket_lag_2 -2.041e+04 1.157e+04 -1.764 0.07802 .
Avg.Ticket_lag_3 3.032e+04 1.009e+04 3.004 0.00274 #*

Median. weeks. Since.Open 1.120e+04 4.732e+03 2.367 0.01812 *
I(Total.pPerformancesA3) 6.205e-01 2.018e-01 3.075 0.00217 #*

signif. codes: 0 “#*#**' 0.001 ‘**' 0.01 “*' 0.05 “." 0.1 * " 1

Figure 25: R 1m command output

STANFORD¢
BUSINESS:

ILVNavaD

20

APPENDIX B R OUTPUT LOGS

lm (formula = Total.Gross = Week + Total.Gross lag 1 + Total.Gross lag 2 +
Total.Gross lag 3 + Total.Seats + Total.Performances + Num.Shows -+
Num. Musicals /Num. Shows + Seasonspring + Seasonsummer + Seasonfall +
MonthDec + MonthMar + MonthJan + MonthMay + MonthAug + MonthFeb +
MonthJul + MonthJun + MonthNov + MonthOct + MonthSep + Week. of . Year +
YearNum + NYSEHolidayFlags + ThanksgivFlags 4+ XmasFlags,

data = train)
Residuals:
Min 1Q Median 3Q Max
—10892841 —621113 17548 578096 11674022

Coefficients: (3 not defined because of singularities)
Estimate Std. Error t value Pr(>|t])

(Intercept) —1.461e+08 2.055e+07 —7.112 1.74e—12 *x*x
Week 3.041e+04 4.289e-+03 7.091 2.02e—12 x*xx
Total.Gross lag 1 4.615e—01 2.170e—02 21.272 < 2e—16 #*x**
Total.Gross lag 2 —5.555e—02 2.387e—-02 —2.328 0.020055 =
Total.Gross_lag 3 6.956e—02 2.087e—02 3.332 0.000881 sxxx
Total. Seats —6.380e+00 8.334e—01 —7.656 3.35e—14 =xxx
Total.Performances 1.042e+05 7.048e+403 14.778 < 2e—16 *xx
Num. Shows —7.440e+05 5.882e+04 —12.650 < 2e—16 xx*x
Num. Musicals —3.634e+05 4.059e+04 —8.954 < 2e—16 xx*x
Seasonspring —9.198e+05 3.270e+05 —2.813 0.004970 =xx
Seasonsummer —1.888e+06 5.556e+05 —3.398 0.000697 =xx*x
Seasonfall —3.947e+06 9.299e+05 —4.245 2.32e—05 xxx
MonthDec —5.242e+06 1.295e+06 —4.047 5.45e—05 xx*x
MonthMar 8.015e+05 2.266e+405 3.537 0.000417 sxx
MonthJan 2.167e+05 2.292e-+05 0.945 0.344563
MonthMay —1.063e+06 2.180e4+05 —4.876 1.19e—06 sxx
MonthAug —6.563e+05 3.218e+05 —2.040 0.041540 =«
MonthFeb NA NA NA NA
MonthJul —4.190e+05 2.234e+05 —1.875 0.060938 .
MonthJun NA NA NA NA
MonthNov —9.408e+05 3.210e+05 —2.931 0.003431 =*x
MonthOct 2.014e+05 2.229e-+05 0.904 0.366226
MonthSep NA NA NA NA
Week. of . Year —7.222e4+04 7.916e+03 —9.123 < 2e—16 =xx*x
YearNum —1.075e+07 1.568e+06 —6.857 1.0le—11 =xx*x
NYSEHolidayFlags 7.113e+05 1.022e-+05 6.961 4.96e—12 *xx
ThanksgivFlags —1.119e+05 2.574e+05 —0.435 0.663833
XmasFlags —1.433e+05 2.793e+05 —0.513 0.607856
Num. Shows :Num. Musicals 1.379e+04 1.370e+03 10.068 < 2e—16 *xxx

)

Signif. codes: 0 ’xxx’ 0.001 ’xx’ 0.01 ’x’ 0.05 ’.” 0.1 > ’ 1

Residual standard error: 1401000 on 1555 degrees of freedom

Multiple R—squared: 0.9591, Adjusted R—squared: 0.9585
F—statistic: 1460 on 25 and 1555 DF, p—value: < 2.2e—-16

Figure 26: R 1m command and output for seasonality model

STANFORDY
BUSINESS:

21

APPENDIX B R OUTPUT LOGS

Table 1: Terms and coefficients selected by LASSO in comprehen-

sive model
Term Value / coefficient Type Interaction
(Intercept) -1.06E-+05 Intercept
Show.nameA FUNN...AY TO THE FORUM -8.80E+03 Show name
Show.nameAMERICAN IDIOT 4.16E4-05 Show name
Show.nameBEAUTY AND THE BEAST 7.49E+03 Show name
Show.nameCATS 6.30E+02 Show name
Show.nameCONTACT -5.40E+03 Show name
Show.nameCOPENHAGEN 5.07E+04 Show name
Show.nameDEFENDING THE CAVEMAN 5.30E+-04 Show name
Show.nameFELA! 4.09E4-02 Show name
Show.nameGORE V...’S THE BEST MAN 4.54E+04 Show name
Show.nameJACKIE. .. CALLY INCORRECT 1.34E+4-04 Show name
Show.nameLES MIS\xc4RABLES 1.29E+04 Show name
Show.nameMaster Class 1995 1.45E+4-04 Show name
Show.nameNEWSIES 6.04E-+03 Show name
Show.namePROOF -2.63E+03 Show name
Show.nameSHOW BOAT 8.56E+02 Show name
Show.nameSUNSET BOULEVARD 1.52E+4-03 Show name
Show.nameSWEET CHARITY 7.62E+03 Show name
Show.nameTHE BOOK OF MORMON 5.30E+04 Show name
Show.nameTHE HEIRESS 3.77TE+04 Show name
Show.nameTHE PH...OM OF THE OPERA 1.40E+4-04 Show name
Show.nameTHE REAL THING 6.11E+02 Show name
Show.nameTHE WO... ACCORDING TO ME 4.92E+04 Show name
Show.nameTTTANIC -1.83E+03 Show name
Show.nameWICKED 3.73E+4-04 Show name
Potential.Gross 1.83E-02 Capacity
Top.Ticket 5.99E+01 Capacity
Per 5.89E+03 Capacity
This.Week.s.Gross _lag 9 -1.92E-02 Gross lag
This. Week.s.Gross _lag 12 3.06E-02 Gross lag
This.Week.s.Gross _lag 13 2.44E-02 Gross lag
This.Week.s.Gross_lag 17 3.69E-02 Gross lag
This.Week.s.Gross _lag 20 2.69E-02 Gross lag
Is.PlayTRUE -1.84E+02 Category
Num.Musicals 3.18E+02 Category
name.l.mo.l.yr -4.65E+01 Google Trends
tickets.6.percent.of.tot 1.74E+04 Google Trends
tickets.7.percent.of.tot 8.12E+03 Google Trends
MonthAug 9.28E4-03 Seasonality
MonthJan 1.18E+-04 Seasonality
MonthJul -9.53E+03 Seasonality
MonthJun -1.09E+04 Seasonality
MonthMay -1.14E-+04 Seasonality
MonthOct 6.12E+03 Seasonality
MonthSep -4.88E+03 Seasonality
QuarterNum -6.66E-+02 Seasonality
NYSEHolidayFlags 6.75E+03 Seasonality
XmasFlags 8.46E+-03 Seasonality
ThanksgivFlags -1.30E+04 Seasonality
Average.Ticket lag 1 3.59E+02 Average ticket lag
Average.Ticket lag 9 -5.32E+02 Average ticket lag

STANFORDY
BUSINESS:

22

APPENDIX B R OUTPUT LOGS

Average.Ticket lag 18 -1.42E+-00 Average ticket lag

Average.Ticket lag 19 -9.02E+01 Average ticket lag
I(TotalSeats"2) 3.40E-05 Capacity Yes
I(Per~2) 1.06E+03 Capacity Yes
Show.nameANYTHI. . . k.s.Gross lag 1 -3.88E-02 Show name Yes
Show.nameBLACK ...k.s.Gross lag 1 -1.06E-02 Show name Yes
Show.nameBLOOD .. .k.s.Gross lag 1 -4.09E-02 Show name Yes
Show.nameBRIGHT. . . k.s.Gross lag 1 -2.10E-02 Show name Yes
Show.nameBROADW. . . k.s.Gross lag 1 -3.59E-02 Show name Yes
Show.nameCATS:T.. . k.s.Gross lag 1 1.46E-02 Show name Yes
Show.nameCOPENH. . . k.s.Gross lag 1 1.02E-02 Show name Yes
Show.nameDIRTY ...k.s.Gross lag 1 -2.91E-02 Show name Yes
Show.nameFELA!:. . . k.s.Gross lag 1 -7.22E-02 Show name Yes
Show.nameFIDDLE. . . k.s.Gross _lag 1 -9.41E-03 Show name Yes
Show.nameFOSSE:. . . k.s.Gross lag 1 -1.37E-02 Show name Yes
Show.nameGORE V... .k.s.Gross lag 1 2.26E-03 Show name Yes
Show.nameHAIR:T.. . k.s.Gross lag 1 -7.48E-02 Show name Yes
Show.nameHOW TO. . .k.s.Gross lag 1 1.50E-01 Show name Yes
Show.nameKINKY .. .k.s.Gross lag 1 -5.38E-03 Show name Yes
Show.nameKISS M. . .k.s.Gross lag 1 -1.22E-02 Show name Yes
Show.nameLEND M. . .k.s.Gross lag 1 1.99E-03 Show name Yes
Show.nameLES MI. . .k.s.Gross lag 1 6.42E-02 Show name Yes
Show.nameLOST I...k.s.Gross _lag 1 -2.49E-02 Show name Yes
Show.nameMEMPHI. . . k.s.Gross_lag 1 -1.46E-02 Show name Yes
Show.nameMILLIO. . . k.s.Gross lag 1 -1.02E-01 Show name Yes
Show.nameNERD:T.. . k.s.Gross lag 1 -1.24E-01 Show name Yes
Show.nameOH CAL.. .k.s.Gross lag 1 -4.34E-01 Show name Yes
Show.nameOKLAHO. . . k.s.Gross_lag 1 -1.63E-01 Show name Yes
Show.nameONCE O.. .k.s.Gross lag 1 -6.10E-03 Show name Yes
Show.namePRISCI. . . k.s.Gross_lag 1 -2.51E-02 Show name Yes
Show.nameRAGTIM. . . k.s.Gross lag 1 -6.11E-03 Show name Yes
Show.nameRENT:T. . k.s.Gross lag 1 1.19E-02 Show name Yes
Show.nameSMOKEY...k.s.Gross_lag 1 -9.92E-03 Show name Yes
Show.nameSPEED ...k.s.Gross lag 1 1.54E-01 Show name Yes
Show.nameSPEED-. . . k.s.Gross _lag 1 1.54E-01 Show name Yes
Show.nameSTARLI. . . k.s.Gross _lag 1 -1.84E-03 Show name Yes
Show.nameSWEENE. . . k.s.Gross lag 1 1.81E-01 Show name Yes
Show.nameSWEET ...k.s.Gross lag 1 -5.15E-02 Show name Yes
Show.nameSWING!. . . k.s.Gross_lag 1 -1.62E-02 Show name Yes
Show.nameTHE GR. . .k.s.Gross lag 1 -4.53E-02 Show name Yes
Show.nameTHE HE.. . k.s.Gross lag 1 -5.08E-02 Show name Yes
Show.nameTHE HE. .. .k.s.Gross lag 1 7.67E-02 Show name Yes
Show.nameTHE LI...k.s.Gross lag 1 -4.45E-02 Show name Yes
Show.nameTHE LI...k.s.Gross lag 1 8.14E-05 Show name Yes
Show.nameTHE LI...k.s.Gross lag 1 5.01E-03 Show name Yes
Show.nameTHE RE...k.s.Gross lag 1 4.20E-02 Show name Yes
Show.nameTHE SI...k.s.Gross lag 1 -6.73E-02 Show name Yes
Show.nameTHE TA. . k.s.Gross lag 1 -1.27E-02 Show name Yes
Show.nameTHOROU. . . k.s.Gross lag 1 -1.06E-02 Show name Yes
Show.nameVICTOR. . . k.s.Gross _lag 1 1.24E-02 Show name Yes
Potential.Gross. .. k.s.Gross_lag 1 1.48E-08 Capacity Yes
Per:This.Week.s.Gross _lag 1 6.12E-02 Capacity Yes
This.Week.s.Gro... lag 1:MonthDec -2.28E-01 Seasonality Yes

STANFORDY
BUSINESS:

23

APPENDIX B R OUTPUT LOGS

This.Week.s.Gro... lag 1:MonthFeb 3.56E-02 Seasonality Yes
This.Week.s.Gro... lag 1:MonthMar -1.54E-02 Seasonality Yes
This.Week.s.Gro... lag 1:MonthNov -3.60E-02 Seasonality Yes
This.Week.s.Gro. .. 1:Seasonsummer 2.69E-02 Seasonality Yes
This.Week.s.Gro. ..lag 1:XmasFlags 4.71E-02 Seasonality Yes
Show.nameA CHOR...k.s.Gross lag 2 -1.39E-05 Show name Yes
Show.nameAN INS.. . k.s.Gross lag 2 -1.18E-02 Show name Yes
Show.nameANGELS. . . k.s.Gross _lag 2 -1.76E-03 Show name Yes
Show.nameANNIE:. . . k.s.Gross lag 2 2.91E-02 Show name Yes
Show.nameBURN T...k.s.Gross lag 2 -3.93E-02 Show name Yes
Show.nameCABARE. . . k.s.Gross lag 2 2.55E-02 Show name Yes
Show.nameCOASTA. . . k.s.Gross_lag 2 -1.22E-02 Show name Yes
Show.nameCURTAL . . k.s.Gross _lag 2 -6.16E-02 Show name Yes
Show.nameDOUBT:. .. k.s.Gross_lag 2 -9.88E-02 Show name Yes
Show.nameEVITA:. . . k.s.Gross_lag 2 -4.42E-02 Show name Yes
Show.nameGORE V.. .k.s.Gross lag 2 8.96E-04 Show name Yes
Show.nameGYPSY:.. . k.s.Gross lag 2 1.52E-01 Show name Yes
Show.nameGYPSY ...k.s.Gross lag 2 -3.75E-02 Show name Yes
Show.nameHOW TO.. . k.s.Gross lag 2 2.11E-02 Show name Yes
Show.namel AM M...k.s.Gross lag 2 1.41E-01 Show name Yes
Show.nameLES MI. . .k.s.Gross lag 2 1.06E-02 Show name Yes
Show.nameNICE W.. .k.s.Gross lag 2 -2.68E-02 Show name Yes
Show.nameOH CAL. . .k.s.Gross_lag 2 -1.62E-01 Show name Yes
Show.nameSOCIAL. . . k.s.Gross lag 2 -3.32E-02 Show name Yes
Show.nameTHE KI. . .k.s.Gross_lag 2 -4.32E-03 Show name Yes
Show.nameTHE LA...k.s.Gross_lag 2 -2.80E-02 Show name Yes
Show.nameTHE RE...k.s.Gross lag 2 8.55E-03 Show name Yes
Show.nameTHE SO...k.s.Gross lag 2 -9.06E-03 Show name Yes
Show.nameTHOROU. . . k.s.Gross lag 2 -3.50E-03 Show name Yes
Show.nameTITANI. . . k.s.Gross lag 2 -2.41E-02 Show name Yes
Top.Ticket:This. . . k.s.Gross _lag 2 4.51E-06 Capacity Yes
Per:This.Week.s.Gross _lag 2 5.42E-03 Capacity Yes
This.Week.s.Gro. . . .percent.of.tot 6.41E-03 Google Trends Yes
This.Week.s.Gro. . . .percent.of.tot 8.85E-03 Google Trends Yes
This.Week.s.Gro. . . .percent.of.tot 1.75E-03 Google Trends Yes
This.Week.s.Gro. . . .percent.of.tot 2.88E-05 Google Trends Yes
This.Week.s.Gro. . . .percent.of.tot 1.87E-02 Google Trends Yes
This.Week.s.Gro... lag 2:MonthDec 9.22E-03 Seasonality Yes
This.Week.s.Gro... lag 2:MonthJan -1.63E-01 Seasonality Yes
This.Week.s.Gro... lag 2:MonthMay -1.16E-02 Seasonality Yes
This.Week.s.Gro. .. _2:Seasonspring -5.44E-03 Seasonality Yes
This.Week.s.Gro. . .lag 2:XmasFlags -6.90E-02 Seasonality Yes
Show.nameAMERIC. . . k.s.Gross_lag 3 -1.31E-01 Show name Yes
Show.nameASPECT. . .k.s.Gross_lag 3 -1.13E-02 Show name Yes
Show.nameCOPENH. . . k.s.Gross_lag 3 2.59E-06 Show name Yes
Show.nameCRAZY ...k.s.Gross_lag 3 4.20E-04 Show name Yes
Show.nameDEFEND. . . k.s.Gross lag 3 2.19E-02 Show name Yes
Show.nameEVITA:. . . k.s.Gross lag 3 4.25E-02 Show name Yes
Show.nameFOOTLO. . . k.s.Gross_lag 3 -3.97E-02 Show name Yes
Show.nameGORE V.. .k.s.Gross lag 3 7.26E-04 Show name Yes
Show.nameGYPSY ...k.s.Gross lag 3 -9.25E-03 Show name Yes
Show.nameHAIR:T...k.s.Gross lag 3 -5.64E-03 Show name Yes
Show.nameHAIRSP. .. k.s.Gross lag 3 -3.00E-03 Show name Yes

STANFORDY
BUSINESS:

24

APPENDIX B R OUTPUT LOGS

Show.nameHEDWIG. . . k.s.Gross lag 3 1.41E-01 Show name Yes
Show.namelF /THE. . . k.s.Gross lag 3 6.11E-02 Show name Yes
Show.nameIN THE. . . k.s.Gross lag 3 -1.38E-02 Show name Yes

Show.nameMAMMA ... k.s.Gross lag 3 5.26E-03 Show name Yes
Show.nameMARY P...k.s.Gross lag 3 -5.66E-03 Show name Yes
Show.nameMOVIN'. . .k.s.Gross lag 3 -1.40E-02 Show name Yes
Show.nameSISTER. . . k.s.Gross _lag 3 -4.17E-03 Show name Yes
Show.nameSIX DE...k.s.Gross lag 3 -1.72E-02 Show name Yes
Show.nameSOCIAL. . . k.s.Gross _lag 3 -5.63E-02 Show name Yes
Show.nameTHE 25...k.s.Gross lag 3 -1.91E-02 Show name Yes
Show.nameTHE 39...k.s.Gross lag 3 -3.79E-02 Show name Yes
Show.nameTHE AD...k.s.Gross lag 3 -1.25E-02 Show name Yes
Show.nameTHE LI...k.s.Gross lag 3 -1.89E-02 Show name Yes
Show.nameTHE RO...k.s.Gross lag 3 -6.08E-03 Show name Yes

Show.nameWAR HO. . .k.s.Gross lag 3 1.88E-04 Show name Yes

Per:This.Week.s.Gross _lag 3 1.10E-02 Capacity Yes
Weeks.since.ope. . . k.s.Gross_lag 3 -1.39E-05 Capacity Yes
This.Week.s.Gro. . . .percent.of.tot 8.18E-04 Google Trends Yes
This.Week.s.Gro... lag 3:MonthMar 1.65E-01 Seasonality Yes
This.Week.s.Gro. .. _3:Seasonspring 5.12E-04 Seasonality Yes
This.Week.s.Gro. . .lag3:XmasFlags -4.25E-02 Seasonality Yes

Show.nameBEAUTI. . . k.s.Gross lag 4 1.58E-02 Show name Yes

Show.nameCOPENH. . . k.s.Gross_lag 4 8.75E-05 Show name Yes
Show.nameEVITA:. . . k.s.Gross lag 4 1.11E-01 Show name Yes
Show.nameGORE V.. k.s.Gross lag 4 1.48E-03 Show name Yes
Show.nameGYPSY ...k.s.Gross lag 4 -9.80E-03 Show name Yes

Show.nameHOW TO...k.s.Gross lag 4 -1.55E-01 Show name Yes
Show.nameJERSEY...k.s.Gross_lag 4 5.96E-03 Show name Yes
Show.nameME AND...k.s.Gross lag 4 6.50E-03 Show name Yes
Show.nameMISS S...k.s.Gross lag 4 9.75E-03 Show name Yes
Show.nameRIVERD. . .k.s.Gross lag 4 9.44E-03 Show name Yes
Show.nameSPRING. . . k.s.Gross lag 4 -9.75E-03 Show name Yes

Show.nameTARZAN. . .k.s.Gross _lag 4 -2.79E-02 Show name Yes
Show.nameTHE AD...k.s.Gross lag 4 -1.09E-02 Show name Yes
Show.nameTHE BO...k.s.Gross lag 4 1.38E-01 Show name Yes
Show.nameWEST S...k.s.Gross lag 4 -4.70E-03 Show name Yes

Show.nameWONDER. . . k.s.Gross _lag 4 2.68E-02 Show name Yes

Per:This.Week.s.Gross _lag 4 1.32E-02 Capacity Yes
Weeks.since.ope. . . k.s.Gross _lag 4 -2.28E-07 Gross lag Yes
This.Week.s.Gro. . . k.s.Gross _lag 5 -2.62E-08 Gross lag Yes

This.Week.s.Gro. . . .percent.of.tot -3.41E-02 Google Trends Yes
This.Week.s.Gro... lag 4:MonthAug -8.93E-04 Seasonality Yes
This.Week.s.Gro... lag 4:MonthDec 1.97E-01 Seasonality Yes
This.Week.s.Gro... lag 4:MonthJan -1.86E-01 Seasonality Yes
This.Week.s.Gro... lag 4:MonthJul 3.15E-04 Seasonality Yes
This.Week.s.Gro... lag 4:MonthJun 1.49E-02 Seasonality Yes
This.Week.s.Gro... lag 4:MonthMar 1.15E-01 Seasonality Yes
This.Week.s.Gro... lag 4:MonthSep -6.10E-02 Seasonality Yes
This.Week.s.Gro. .. _4:Seasonspring 3.56E-03 Seasonality Yes
This.Week.s.Gro. . . :ThanksgivFlags -6.14E-01 Seasonality Yes

Show.nameA CHOR...k.s.Gross lag 5 -2.10E-02 Show name Yes
Show.nameAMERIC. . . k.s.Gross _lag 5 -3.52E-01 Show name Yes
Show.nameASPECT. . .k.s.Gross lag 5 -2.69E-02 Show name Yes

STANFORDY
BUSINESS:

25

APPENDIX B R OUTPUT LOGS

Show.nameAUGUST.. . k.s.Gross lag b5 -7.56E-02 Show name Yes
Show.nameBILOXI. .. k.s.Gross_lag 5 -4.65E-02 Show name Yes
Show.nameCAROUS. . . k.s.Gross _lag 5 1.12E-02 Show name Yes
Show.nameCOPENH. . . k.s.Gross_lag 5 4.05E-03 Show name Yes
Show.nameCRAZY ...k.s.Gross_lag b 5.39E-04 Show name Yes
Show.nameFELA!:.. . k.s.Gross_lag 5 3.35E-02 Show name Yes
Show.nameFENCES. . . k.s.Gross lag 5 -2.55E-02 Show name Yes
Show.nameFIDDLE. . . k.s.Gross lag 5 2.78E-04 Show name Yes
Show.nameGOD OF...k.s.Gross lag 5 -1.07E-01 Show name Yes
Show.nameGORE V.. .k.s.Gross lag 5 1.92E-03 Show name Yes
Show.nameGREASE. . . k.s.Gross lag 5 -1.09E-02 Show name Yes
Show.namelF/THE. . . k.s.Gross_lag 5 1.09E-02 Show name Yes
Show.nameLES MI. . .k.s.Gross lag 5 3.39E-02 Show name Yes
Show.nameMATILD. . .k.s.Gross _lag 5 -4.30E-03 Show name Yes
Show.nameMOTOWN. . . k.s.Gross lag 5 -9.32E-03 Show name Yes
Show.nameSEARCH. . . k.s.Gross_lag 5 1.58E-01 Show name Yes
Show.nameSPAMAL. . .k.s.Gross lag 5 -1.34E-03 Show name Yes
Show.nameSPIDER. . . k.s.Gross _lag 5 1.84E-02 Show name Yes
Show.nameTHE CO...k.s.Gross lag 5 -1.24E-02 Show name Yes
Show.nameTHE DR...k.s.Gross lag 5 -5.56E-02 Show name Yes
Show.nameTHE TA.. k.s.Gross lag b5 -3.86E-02 Show name Yes
Potential.Gross. . . k.s.Gross_lag 5 1.68E-09 Capacity Yes
Per:This.Week.s.Gross_lag 5 8.24E-03 Capacity Yes
This.Week.s.Gro. . . .percent.of.tot -5.13E-02 Google Trends Yes
This.Week.s.Gro... lag 5:MonthAug -2.27E-02 Seasonality Yes
This.Week.s.Gro... lag 5:MonthDec 6.46E-03 Seasonality Yes
This.Week.s.Gro... lag 5:MonthFeb -1.68E-01 Seasonality Yes
This.Week.s.Gro... lag 5:MonthJan 5.18E-01 Seasonality Yes
This.Week.s.Gro. .. YSEHolidayFlags 4.68E-02 Seasonality Yes
Show.nameA LITT...k.s.Gross lag 6 -5.00E-02 Show name Yes
Show.nameANNIE ...k.s.Gross lag 6 -1.80E-02 Show name Yes
Show.nameCINDER. . . k.s.Gross_lag 6 -1.39E-02 Show name Yes
Show.nameCONVER. . . k.s.Gross_lag 6 -4.15E-02 Show name Yes
Show.nameCOPENH. . . k.s.Gross lag 6 1.14E-03 Show name Yes
Show.nameDEFEND. . . k.s.Gross_lag 6 7.34E-03 Show name Yes
Show.nameForeve. . . k.s.Gross_lag 6 -4.26E-03 Show name Yes
Show.nameGORE V.. .k.s.Gross lag 6 1.44E-04 Show name Yes
Show.nameLITTLE. . .k.s.Gross_lag 6 -1.72E-03 Show name Yes
Show.nameMaster. . . k.s.Gross_lag 6 5.99E-02 Show name Yes
Show.nameNEXT T...k.s.Gross lag 6 -1.90E-02 Show name Yes
Show.nameONCE:T. . .k.s.Gross_lag 6 -8.70E-03 Show name Yes
Show.nameRAGTIM. . . k.s.Gross_lag 6 -9.08E-03 Show name Yes
Show.nameTAKE M. ..k.s.Gross lag 6 -8.72E-02 Show name Yes
Show.nameTHE AD...k.s.Gross lag 6 -1.38E-02 Show name Yes
Show.nameTHE LI...k.s.Gross lag 6 2.82E-02 Show name Yes
Show.nameTHE PR...k.s.Gross_lag 6 -6.22E-03 Show name Yes
Show.nameTHE RO. . .k.s.Gross lag 6 -2.39E-02 Show name Yes
Show.nameTHE SI...k.s.Gross lag 6 -3.32E-02 Show name Yes
Show.nameWEST S...k.s.Gross lag 6 -1.50E-02 Show name Yes
This.Week.s.Gro. ..g_6:Is.PlayTRUE -7.04E-03 Category Yes
This.Week.s.Gro. . .lag 6:Num.Shows -8.62E-04 Capacity Yes
This.Week.s.Gro... lag 6:MonthDec -1.21E-02 Seasonality Yes
This.Week.s.Gro... lag 6:MonthFeb 2.00E-02 Seasonality Yes

STANFORDY
BUSINESS:

26

APPENDIX B R OUTPUT LOGS

This.Week.s.Gro... lag 6:MonthJan -3.03E-01 Seasonality Yes
This.Week.s.Gro... lag 6:MonthOct 2.72E-04 Seasonality Yes
This.Week.s.Gro. .. 6:Seasonsummer -1.65E-02 Seasonality Yes
This.Week.s.Gro...s lag 6:YearNum -3.46E-04 Seasonality Yes
This.Week.s.Gro. ..lag 6:XmasFlags -4.96E-01 Seasonality Yes
Show.nameALADDI. . .k.s.Gross_lag 7 2.83E-02 Show name Yes
Show.nameAMERIC. . . k.s.Gross_lag 7 -3.56E-03 Show name Yes
Show.nameANNIE:. . . k.s.Gross lag 7 -5.05E-02 Show name Yes
Show.nameCATS:T.. . k.s.Gross_lag 7 1.65E-04 Show name Yes
Show.nameCOPENH. . . k.s.Gross lag 7 1.39E-03 Show name Yes
Show.nameFALSET. . . k.s.Gross _lag 7 -4.13E-02 Show name Yes
Show.nameForeve. .. k.s.Gross_lag 7 -1.59E-02 Show name Yes
Show.nameHEDWIG. . . k.s.Gross lag 7 6.10E-02 Show name Yes
Show.nameJELLY". .. k.s.Gross _lag 7 -2.12E-02 Show name Yes
Show.nameJERSEY. . . k.s.Gross lag 7 1.03E-02 Show name Yes
Show.nameLLA CAG...k.s.Gross_lag 7 -8.77E-02 Show name Yes
Show.nameLEGALL. . .k.s.Gross lag 7 -1.36E-02 Show name Yes
Show.nameLES MI...k.s.Gross lag 7 -7.66E-02 Show name Yes
Show.nameMAMMA .. .k.s.Gross lag 7 4.85E-04 Show name Yes
Show.nameOH CAL.. k.s.Gross lag 7 -7.45E-01 Show name Yes
Show.namePIPPIN. .. k.s.Gross lag 7 -2.43E-02 Show name Yes
Show.nameSHREK ...k.s.Gross lag 7 -5.94E-02 Show name Yes
Show.nameSPEED .. .k.s.Gross lag 7 -1.64E-01 Show name Yes
Show.nameSPEED-. . . k.s.Gross lag 7 -1.64E-01 Show name Yes
Show.nameSPIDER. . . k.s.Gross lag 7 -1.44E-02 Show name Yes
Show.nameTHE 39...k.s.Gross lag 7 -1.47E-02 Show name Yes
Show.nameTHE HE...k.s.Gross lag 7 -5.65E-02 Show name Yes
Show.nameTHOROU. . . k.s.Gross lag 7 -2.10E-02 Show name Yes
Per:This.Week.s.Gross _lag 7 1.10E-02 Capacity Yes
This.Week.s.Gro. .. .s.Gross_lag 12 3.65E-10 Gross lag Yes
This.Week.s.Gro. .. .s.Gross_lag 14 1.70E-09 Gross lag Yes
This.Week.s.Gro. ...s.Gross_lag 16 7.64E-09 Gross lag Yes
This.Week.s.Gro. . . 12.week.average 1.55E-02 Google Trends Yes
This.Week.s.Gro. . . 26.week.average 6.01E-03 Google Trends Yes
This.Week.s.Gro... lag 7:MonthFeb 4.17E-02 Seasonality Yes
This.Week.s.Gro... lag 7:MonthMar -2.56E-01 Seasonality Yes
This.Week.s.Gro... lag 7:MonthOct 1.42E-02 Seasonality Yes
This.Week.s.Gro... T7:Seasonwinter 4.71E-02 Seasonality Yes
This.Week.s.Gro. ..lag 7:XmasFlags 3.08E-01 Seasonality Yes
This.Week.s.Gro. . . :ThanksgivFlags 6.89E-01 Seasonality Yes
YearNum:XmasFlags 2.39E+4-03 Seasonality Yes
This.Week.s.Gro. . . arNum:XmasFlags 1.12E-02 Seasonality Yes

STANFORDY
BUSINESS:

27

APPENDIX C R CODE

C R Code

Listing 1: R script for building comprehensive model

rm(list=1s())
set.seed ("20150226")

sink ("finalModel—console.out", append=FALSE, split=FALSE)

##+# CHANGE LINE BELOW TO YOUR WORKING DIRECTORY ###
setwd ("/Users/mike/Documents/Classes /OIT 367/ Project/")

source(“http://www.stanford.edu/ bayati/oit367/T367 utilities 10.R’)
source(’cv_utilities.R’>) # Some useful utilities for CV and data processing

normalize = FALSE # TRUE to normalize variables

To save computation time, we cache the processed data. If given a filename,
the script assumes that cached data exists there and reads it. Otherwise, we
regenerate the processed data (from raw data) and save it to write.path
data. file = "cleaned—avg trends—seasons—weather—avg ticket.csv"
write.path = "cleaned—all.csv"
if (is.null(data.file)) {

all .data = read.data(lags=c(1:10))

if (lis.null(write.path)) {

write.csv(all.data, file=write.path, row.names=FALSE)

}

1 oelse {

all .data = read.csv(data.file)
all .data3Week = as.Date(all.data§Week, "%Y—Yar-%d")
}

Sort the data by increasing time and make sure the show name variable is
stored as a factor

all .data = all.data[order(all.data§Week) ,]

all . data$Show .name = as.factor(all.data$Show.name)

Placeholder variables
data.to.use = all.data
response = "This.Week.s.Gross"

The core model building logic
build . model = function(train, test, summarize=FALSE, return.rmse=TRUE) {

First , get rid of any "forbidden" variables (i.e. those that contain future
information)

train$X = NULL

train$X .1 = NULL

train$X .2 = NULL

train$Diff .. = NULL

train$Gross ... of . Potential = NULL
train$Average . Ticket = NULL
train$This.Week.. = NULL
train$Diff...1 = NULL
train$Category = NULL
train$Total . Gross = NULL
train$Last .Week.. = NULL

STANFORDY
BUSINESS:

28

APPENDIX C R CODE

train$SeatsSold = NULL
train$Last.Week.s.Gross = NULL
train$Year = NULL
train$MonthNUM = NULL
train$QuarterFull = NULL

test$X = NULL

test$X .1 = NULL

test$X .2 = NULL

test$Diff .. = NULL

test$Gross ... of . Potential = NULL
test$Average . Ticket = NULL
test$This.Week.. = NULL
test$Diff...1 = NULL
test$Category = NULL
test$Total . Gross = NULL
test$Last . Week.. = NULL
test$SeatsSold = NULL
test$Last.Week.s.Gross = NULL
test$Year = NULL
test$MonthNUM = NULL
test$QuarterFull = NULL

Clean and NAs in the data
train = fix.na(train)
test = fix.na(test)

If we’ve been told to normalize the variables, replace each one with the
normalization of itself (otherwise, this loop is effectively a noop)

cols = colnames(train)
types = sapply(train, class)
train.preds = train
for (i in 1l:length(cols)) {
if (types[i] = "numeric" || types[i] = "integer" && cols[i] != "Week") {
scaled = scale(train[, cols[i]])
it (attr(scaled, "scaled:scale") != 0 && normalize) {
train|[, cols[i]] = scaled
train.preds|[, cols[i]] = scaled
test[, cols[i]|]] = (test[, cols[i]] —
attr (scaled, "scaled:center")) /
attr (scaled, "scaled:scale")

}
}
}

Ensure that the training and test show name factors have the same number of
levels, to avoid cryptic errors in predict

levels = unique(union(train$Show .name, test$Show.name))
Build a model matrix for the training set — the library buildModel function
raised errors for some reason, so we have to roll our own matrix
train.response = train.preds$This.Week.s.Gross
train.preds$This.Week.s.Gross = NULL
x = model. matrix(~ . +

STANFORD#

8
BUSINESS: %

APPENDIX C R CODE

(.)* This.Week.s.Gross _lag 1 +
(.)* This.Week.s.Gross lag 2 +
(.)* This.Week.s.Gross lag 3 +
(.)* This.Week.s.Gross lag 4 +
(.)*This.Week.s.Gross lag 5 +
(.)* This.Week.s.Gross_lag 6 +
(.)* This.Week.s.Gross lag 7 +
XmasFlagss*YearNum#This . Week.s . Gross lag 1 +

I(TotalSeats~2) + I(Per~2) 4+ I(Num.Shows~2), train.preds)

Build a LASSO model
m = cv.glmnet(x=x, y=train.response, alpha=1, family="gaussian", type="mse")

If we’ve been told to print summary statistics about the model, do that now
if (summarize) {

print (summary(m))

print (coef(m))

plot(m)

}

Same as above, build a model matrix for the test set
test.preds = test
test.preds$This.Week.s.Gross = NULL

newx = model. matrix(= . +
(.)* This.Week.s.Gross lag 1 +
(.)* This.Week.s.Gross lag 2 +
(.)* This.Week.s.Gross_lag 3 +
(.)* This.Week.s.Gross lag 4 +
(.)* This.Week.s.Gross_lag 5 +
(.)* This.Week.s.Gross lag 6 +
(.)* This.Week.s.Gross lag 7 +

XmasFlags*YearNum# This . Week.s.Gross lag 1 +
I(TotalSeats~2) + I(Per~2) 4+ I(Num.Shows"2),
test .preds)

Predict on the test set, being careful to manage data types

preds = predict(m, newx=newx)

preds = as.vector(preds)

preds[is.na(preds)] = median(preds, na.rm=TRUE)
"Denormalize" the variables, if we’ve normalized
scale . factor =1

center.factor = 0

if (normalize) {

scale.factor = attr(train$This.Week.s.Gross, "scaled:scale")
center.factor = attr(train$This.Week.s.Gross, "scaled:center")
}
preds = (preds * scale.factor) + center.factor

test$This.Week.s.Gross = (test$This.Week.s.Gross * scale.factor) +
center . factor

Calculate per—show RMSE and output it , if we’re summarizing
show.rmse = sqrt(mean((preds — test3This.Week.s.Gross)°2))
if (summarize) {

STANFORDY
BUSINESS:

30

APPENDIX C R CODE

cat ("Show RMSE = ", show.rmse, "\n", sep="")

}

Build the prediction set and calculate RMSE

shows.preds = data.frame(Week=test§Week , This.Week.s.Gross=preds)

preds = aggregate(shows.preds$This.Week.s.Gross, list(shows.preds§Week),
sum)|, 2]

aggregate (test3This.Week.s.Gross, list (test§Week), sum)[, 2]

actuals

rmse = sqrt(mean((preds — actuals)°2))

Return either the predictions or the RMSE, depending on the call paramters
if (return.rmse) return(c(rmse, show.rmse))
else return(preds)

}

Run the cross validation on the model and output some useful standardized
charts about the fit

rmse = cross.validate.time.rmse(data.to.use, build.model,
response=response , k=20, train.len=min(5000,
floor (nrow(data.to.use) / 2)))

show.rmse = rmse$Show .RMSE
rmse = rmse$RMSE

mean.rmse = mean(rmse)
se.rmse = sd(rmse) / sqrt(length(rmse))

mean . show.rmse = mean(show.rmse)
se.show.rmse = sd(show.rmse) / sqrt(length(show.rmse))

train frac = 0.8
train.data = data.to.use[1l:(train_ frac % nrow(data.to.use)),]
test.data = data.to.use[(train_ frac % nrow(data.to.use) + 1):

nrow (data.to.use)]
preds = build .model(train.data, test.data, return.rmse=FALSE)
unscaled = test.data

actuals = aggregate(unscaled$This.Week.s.Gross,
list (unscaled$Week), sum)

weeks = actuals|[, 1]

actuals = actuals|[, 2]

plot. fit (weeks, NULL, actuals — preds,
main=paste ("Residuals (RMSE = ",
format (mean.rmse, digits=3, scientific=TRUE), ", SE ="
format (se.rmse, digits=3, scientific=TRUE), ")",
sep=""), xlab="Week", ylab=response)

plot. fit (weeks, actuals, preds,
main=paste ("Model vs. test set (RMSE = ",

format (mean.rmse, digits=3, scientific=TRUE), ", SE = ",
format (se.rmse, digits=3, scientific=TRUE), ")",
sep=""), xlab="Week", ylab=response)

STANFORD}

BUSINESS:

31

APPENDIX C R CODE

build . model(data.to.use, data.to.use, summarize=TRUE)

cat ("Show RMSE = ", mean.show.rmse, ", SE = " se.show.rmse,

H\n!l)

Listing 2: Utility R script

library (zoo)
library (timeDate)

Runs a time—series cross validation with the given parameters and model
cross.validate.time = function(data, build.model, response="Gross",
k=NULL, train.len=NULL, test.len=NULL,

min. train.length=400) {

if (is.null(k¥)) k = floor(nrow(data) / min.train.length)

if (is.null(train.len)) train.len = round(nrow(data) / k)
if (is.null(test.len)) test.len = min(round(train.len x 0.5),
nrow(data) — train.len)
rmse = rep(—1, k)
show.rmse = rep(—1, k)
for (i in 1:k) {
train.start = sample(nrow(data) — (train.len + test.len), 1,
replace=F)
test.start = train.start + train.len + 1
train = data[train.start:(train.start + train.len),]

test = data[test.start:(test.start + test.len),]
preds = build .model(train, test)

if (!is.null(attr(preds, "show.rmse"))) {
show.rmse[i] = attr(preds, "show.rmse")

}

rmse|[i] = sqrt(mean((preds — test|, response]|)°2))

}
return(list (RMSE=rmse, Show.RMSE=show.rmse))

Runs a time—series cross validation with the given parameters and model,
assumes build.model returns RMSE instead of predictions
cross.validate.time.rmse = function(data, build.model, response="Gross",

k=NULL, train.len=NULL,
min. train.length=400) {

test . len=NULL,

if (is.null(k¥)) k = floor(nrow(data) / min.train.length)

if (is.null(train.len)) train.len = round(nrow(data)
if (is.null(test.len)) test.len = min(round(train.len
nrow (data) — t

rmse = rep(—1, k)
show.rmse = rep(—1, k)
for (i in 1:k) {

/ k)
x 0.5),

rain.len)

train.start = sample(nrow(data) — (train.len + test.len), 1,
replace=F)
test.start = train.start + train.len + 1
STANFORD#

BUSINESS:

32

but

APPENDIX C R CODE

train = data[train.start:(train.start + train.len)]
test = data[test.start:(test.start + test.len),]

rmses = build .model(train, test)

rmse[i] = rmses|[1]

show.rmse[i] = rmses|[2]

#rmse[i] = sqrt(mean((preds — test|, response|)°2))

}

return(list (RMSE=rmse, Show.RMSE=show.rmse))
}

Produces a basic plot of a time—series fit
plot. fit = function(xvals, yvals, preds, residuals=NULL,

plot.residuals=FALSE, ...) {
plot (range(xvals), range(c¢(yvals, preds)), type='n’, ...)
lines (xvals, preds, col="red", lwd=2)
lines (xvals, yvals, col="green", lwd=2)

}

Aggregates raw data into total Broadway gross rows, for aggregate models
total.gross.by.week = function(data, lags=c(1, 2)) {
Total.Gross = aggregate(data$This.Week.s.Gross, list(datafWeek), sum)
Week = Total.Gross$Group.1
Week. of . Year = as.factor(format(Week + 3, "%U"))

Total.Gross = Total.Gross|[,2]
Total.Seats = aggregate(data$TotalSeats, list (data$Week), sum)[,2]
Avg.Top. Ticket = aggregate(data$Top.Ticket, list(data$Week), mean)[,2]

Avg.Ticket = Total.Gross / Total.Seats
Avg. Ticket [Avg. Ticket = Inf] = 0

Total.Performances = aggregate(data$Per, list (data$Week), sum)[,2]

Num. Shows = rep(0, length(Week))
for ((w in 1:length(Week)) {
Num. Shows [w] = length(unique(data$Show.name|data3Week — Week|[w]|]))

}

Num. Musicals = rep(0, length(Week))
for (w in 1l:length(Week)) {
Num. Musicals [w] = length(unique(data$Show.name|[data$Week — Week[w]| &
data$Category =— "musical"|))
}

Median . Weeks. Since .Open = aggregate(data$Weeks.since.open, list(data$Week),
median)|[,2]

Mean . Weeks. Since .Open = aggregate (data$Weeks.since.open, list(datafWeek),
mean)|[,2]

Max. Weeks. Since .Open = aggregate (data$Weeks. since.open, list (datafWeek),

STANFORDY
BUSINESS:

33

APPENDIX C R CODE

max) $x
Min.Weeks. Since .Open = aggregate(data$Weeks.since.open, list (data§Week),
min)| ,2]

data$DJIA = suppressWarnings(as.numeric(as.character(data$DJIA)))
data$DJIA [is .na(data$DJIA)] = 0

DJIA = aggregate(data$DJIA, list (data$Week), mean)[,2]
PRCP = aggregate(data$PRCP, list(data$Week), mean)[,2]
SNWD = aggregate (data$SNWD, list (data§Week), mean)[,2]
TMIN = aggregate (data3TMIN, list(data3Week), min)[,2]
TMAX = aggregate(dataTMAX, list (data$Week), max)[,2]

All .Broadway = data.frame(cbind(Week, Week.of.Year, Total.Gross,
Total.Seats, Total.Performances, Num.Shows,
Avg.Top. Ticket , Median.Weeks. Since .Open,
Mean . Weeks . Since . Open,
Max. Weeks. Since . Open,
Min.Weeks. Since .Open, Num.Musicals ,
Avg. Ticket , DJIA, PRCP, SNWD, TMIN, TMAX))

All.Broadway$Week = Week

All .Broadway = add.lags(All.Broadway, variable="Total.Gross", lags=lags)
All .Broadway = add.lags(All.Broadway, variable="Avg.Ticket",
lags=c(1, 2, 3))

return(All.Broadway)

}

Adds lags for the given variable, grouping by group.by (if given)
#
WARNING: Runs really slowly when given a group.by, likely because it ’s not
implemented particularly efficiently
add.lags = function(data, variable, lags=c(1), group.by=NULL,
time . field ="Week", remove.NAs=TRUE) {
if (lis.null(group.by)) {
data = data[order(data[, group.by], data[, time.field]) ,]

}

for (1 in lags) {
col.name = paste(variable, "lag", 1, sep="_")

if (is.null(group.by)) {
data|, col.name| = rep(NA, nrow(data))
] =

data|, col.name][(1| + 1):nrow(data)
data|, variable][1:(nrow(data) — 1)]
1 oelse {

data|, col.name| = rep(NA, nrow(data))

cur.group = NA
for (1 in l:nrow(data)) {
group = data[i, group.by|
if (is.na(cur.group) || group != cur.group) {
cur.group = group
lag.vals = rep(NA, length(lags))

STANFORDY
BUSINESS:

34

APPENDIX C R CODE

start.i = i
} else if (i — start.i > 1) {
data[i, col.name|] = data[i — 1, variable]

}
}
}
}

Clean NA’s automatically , if we;ve been told to
if (remove.NAs) {
if (is.null(group.by)) data = data|[(max(lags) + 1):nrow(data)|
else {
clean.rows = rep(TRUE, nrow(data))
for (i in 1l:nrow(data)) {
for (1 in lags) {

col.name = paste(variable, "lag", 1, sep="_")
if (is.na(data[i, col.name])) clean.rows|[i] = FALSE
}
}
data = data|[clean.rows,|

}
}

return (data[(max(lags) + 1):nrow(data),|])

}

A generic "problem solver" function for cleaning data
fix .probs = function(data, test.func, numeric.func=median,
factor.val="Unknown") {
cleaned = data

for (i in 1l:ncol(cleaned)) {
type = sapply(cleaned, class)[i][1]

if (sum(test.func(cleaned[, i])) = 0) next

if (type = "character") {
cleaned|[, i] = as.factor(cleaned[, i])
type = "factor"

}

if (type = "factor"){
levels(cleaned[, i])[length(levels(cleaned[, i])) + 1] = factor.val
cleaned [, i][test.func(cleaned|[, i])] = factor.val

} else if (type = "integer" | type = "numeric") {
if (is.numeric(numeric.func)) v = numeric.func
else v = numeric.func(cleaned[, i], na.rm=TRUE)
cleaned |, i]|[test.func(cleaned|[, i])] = v

} else if (type = "logical") {

cleaned [, i][test.func(cleaned[, i])] = FALSE

}
}

return(cleaned)

}

STANFORD?
BUSINESS:

35

APPENDIX C R CODE

Removes NA’s in data
fix .na = function(data, numeric.func=median, factor.val="Unknown") {
cleaned = data

for (i in 1l:ncol(cleaned)) {
type = sapply(cleaned, class)[i][1]

if (sum(is.na(cleaned[, i])) = 0) next
if (type = "character") {
cleaned|[, i] = as.factor(cleaned[, i])
type = "factor"

}

if (type = "factor"){
levels(cleaned |, i])[length(levels(cleaned|[, i])) + 1] = factor.val
cleaned [, i][is.na(cleaned[, i])] = factor.val
} else if (type = "integer" | type = "numeric") {
if (is.numeric(numeric.func)) v = numeric.func
else v = numeric.func(cleaned|[, i], na.rm=TRUE)
cleaned |, i][is.na(cleaned|[, i])] = v
} else if (type = "logical") {

cleaned [, i][is.na(cleaned[, i])] = FALSE

}
}

return(cleaned)

}

Aggregates and adds Google Trends data to data, as separate columns
add.trends function (data) {
Files containing semi—raw Trends data (from Python script)
trends. files = list (
name=read .csv("trends—mame.csv"),
tickets=read.csv("trends—mame—tickets.csv"),
broadway=read .csv("trends—mame—broadway.csv"),
name. rel=read.csv("trends—-name—relative.csv"),
tickets.rel=read.csv("trends—name—tickets—relative.csv"),
broadway . rel=read.csv("trends-name—broadway—relative.csv"))

First , clean up the data
for (f in names(trends.files)) {
for (¢ in 2:ncol(trends. files [[f]])) {

to.replace = sapply(trends. files [[f]][,c],

FUN=function(x){ return(x = "" || x = "N/A") })
trends. files [[f]][,c] = replace(trends.files[[f]][,c], to.replace, 0)
trends. files [[{]][,c] = as.numeric(as.character (

trends. files [[f]|]],c]))

}
}

Compute the baselines

baselines = list ()
for (f in names(trends.files)) {
1 = list (one.mos.pre=rep(1, nrow(as.data.frame(trends.files[f]))),
STANFORD#

BUSINESS:

36

APPENDIX C R CODE

three.mos.pre=rep(1, nrow(as.data.frame(trends. files[f]))),

six .mos.pre=rep(1, nrow(as.data.frame(trends.files[f]))),

one.yr.pre=rep(1, nrow(as.data.frame(trends.files[f]))))
baselines [[{]] = 1

}

week.to.col = function(w) { return(w + 104 + 2) }
range .mean = function(begin, end, data) { }

for (f in names(baselines)) {
for (i in l:nrow(trends. files [[f]])) {

baselines [[{]] $one.mos.pre[i]| = mean(as.numeric(trends.files [[f]][i,
week.to.col(—5):week.to.col(—=1)]))
baselines [[f]] $three.mos.pre[i] = mean(as.numeric(trends. files [[{]][1,
week.to.col(—13):week.to.col(—1)]))
baselines [[{]] $six .mos.pre[i| = mean(as.numeric(trends.files [[f]][i,
week.to.col(—25):week.to.col(—1)]))
baselines [[{]] Sone.yr.pre[i] = mean(as.numeric(trends.files [[f]][i,

week.to.col(—53):week.to.col(—=1)]))

}
}

Parameters for lag terms, denormalization denominators, and average terms
lags = ¢(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

terms = c¢("name", "tickets", "broadway")

denoms = ¢("l-mo", "3—mo", "6—mo", "l—yr")

averages = c(2, 4, 6, 12, 26)

Create columns for all of these terms (not complexity of fxpxl)
for (f in terms) {
for (p in denoms) {
for (1 in lags) {
col.name = paste(f, "=", 1, ":" p, sep="")
data|, col.name] = rep(0, nrow(data))

}
}
}

Add some additional columns
for (f in terms) {
for (d in denoms) {
e = "l—yr"
if (d= e) next

col.name = paste(f, "=", d, ":", e, sep="")
data[, col.name| = rep(0, nrow(data))

}
}

And a couple more columns...

for (f in c¢("tickets", "broadway")) {
for (1 in lags) {
col.name = paste(f, "=", 1, "—percent—of—tot", sep="")
data|, col.name|] = rep(0, nrow(data))

}

STANFORDY
BUSINESS:

37

APPENDIX C R CODE

for (a in averages) {
col .name = paste(f, "—", a, "—weck—average", sep="")
data[, col.name|] = rep(0, nrow(data))

}
}

Now fill those columns

max.week = 623 # Maximum week to search for, to speed things up a little
for (i in l:nrow(data)) {
cur.week = data[i, "Weeks.since.open"]
show.i = which.max(as.character (trends.files$name.rel|[,1])
as.character (data[i, "Show.name"]))

Add the fixed pre—open average columns
for (f in terms) {
for (d in denoms) {
e = "l—yr"
if (d = e) next

col.name = paste({, "=",d, ":", e, sep="")

denom = baselines [[{]] $one.yr.pre|show.i]

numer = 0

if (d = "1-mo") numer = baselines [[f]] $one.mos. pre[show.i]
if (d= "3-mo") numer = baselines [[{]|] $three.mos.pre[show.i|
if (d= "6-mo") numer = baselines [[{]] $six.mos.pre[show.i|

v = numer / denom

if (lis.null(v) && lis.na(v)) {
if (!is.nan(v) && v != Inf) {
data|[show.i, col.name| = v
}
}
}

}

if (cur.week > max.week) next

Grab the relative query rows, we’ll need them soon

name.rel.row = trends.files$name.rel [show.i ,]
tickets.rel.row = trends. files$tickets.rel[show.i,]
broadway.rel.row = trends.files§broadway.rel[show.i,]|

Add the relatie query rows
for (1 in lags) {

tickets.rel = as.numeric(tickets.rel.row|[week.to.col(cur.week — 1)]) /
as.numeric(name.rel.row|week.to.col(cur.week — 1)])

broadway.rel = as.numeric(broadway.rel.row|[week.to.col(cur.week — 1)]) /
as.numeric(name.rel.row|[week.to.col(cur.week — 1)])

if (!is.nan(tickets.rel) && !is.na(tickets.rel) &&
tickets.rel != Inf) {
data|i, paste("tickets—", 1, "—percent—of—tot", sep="")| =
tickets.rel

STANFORDY
BUSINESS:

38

APPENDIX C R CODE

if (!is.nan(broadway.rel) && !is.na(broadway.rel) &&
broadway.rel != Inf) {
data[i, paste("broadway—", 1, "—percent—of—tot", sep="")] =
broadway . rel
}

}

Now add some averaged relative terms
for (a in averages) {
tickets.rel = mean(as.numeric(
tickets.rel.row|[week.to.col(cur.week — a — 1):
week.to.col(cur.week — 1)])) /
mean (as.numeric (

name. rel .row|[week.to.col(cur.week — a — 1):
week.to.col(cur.week — 1)]))
broadway.rel = mean(as.numeric (
broadway.rel.row|[week.to.col(cur.week — a — 1):

week.to.col(cur.week — 1)])) /
mean(as.numeric (

name. rel .row|[week.to.col(cur.week — a — 1):
week.to.col(cur.week — 1)]))
if (!is.nan(tickets.rel) && !is.na(tickets.rel) &&
tickets.rel != Inf)
data|i, paste(f, "—", a, "—week—average", sep="")| =

tickets.rel

}

if (!is.nan(broadway.rel) && !is.na(broadway.rel) &&
broadway.rel != Inf) {
data[i, paste("broadway—", a, "—week—average", sep="")]
broadway . rel
}

}

Finally , add the absolute terms, divided by all of the different
denominators we’re trying
for (f in terms) {

for (p in denoms) {

denom = NULL

if (p = "1-mo") denom = baselines [[f]] $one.mos. pre[show.i]
if (p = "3-mo") denom = baselines [[{]] $three.mos.pre[show.i]
if (p = "6-—mo") denom = baselines [[f]] $six.mos. pre[show.i]
if (p="1-yr") denom = baselines [[{]|]| $one.yr.pre[show.i|

for (1 in lags) {
num = as.numeric(trends. files [[{]][show.1i,
week.to.col(cur.week — 1)])

rel = as.numeric(num / denom)

if (!is.null(rel) && lis.na(rel)) {
if (!is.nan(rel) && rel != Inf) {

STANFORDY
BUSINESS:

39

APPENDIX C R CODE

n.n

col .name = paste(f, "=" 1, , p, sep=""")

data[show.i, col.name] = rel

return(data)

}

Process the raw data (takes a long time, so we usually cache this...)
read.data = function(lags=c(1:20)) {

Read the raw grosses data and do a little type cleaning

all .data = read.csv("grosses.csv"

all .data§Week = as.Date(all.data$Week, format="%m/%d/%y")

all .data = all.data[order(all.data$Show.name, all.data$Week)]

Add lags of the response variable
all .data = add.lags(all.data, "This.Week.s.Gross", lags=lags,
group . by="Show .name")

Add some summary columns about how many shows are running right now
Num.Shows = rep(0, length(all.data$Week))
Num. Musicals = rep(0, length(all.data$Week))
for (w in 1:length(all.data$Week)) {
Num. Shows [w] = length (unique(all.data$Show.name[all.data$Week —
all.data$Week [w]]))
Num. Musicals [w] = length(unique(all.data$Show.name|
all .data$Week — all.data$Week|[w]| & all.data$Category — "musical"]))
}

Bin the category wvariable
all .data$Is.Play = all.data$Category = "play"
all.data$Ils.Musical = all.data$Category — "musical"

Aggregate total grosses
all .data$Num.Shows = Num.Shows
all .data$Num. Musicals = Num. Musicals
all .data$Total.Gross = rep(0, nrow(all.data))
for (i in l:nrow(all.data)) {
all .data$Total.Gross[i]| = sum(all.data$This.Week.s.Gross|
all .data$Week — all.data$Week[i]])
}

all .data = all.data|order(all.data$Week)]|
Add trends and seasonality predictors

all .data = add.trends(all.data)

all .data = add.seasonality (all.data)

return(all.data)

}

Reads and adds seasonality predictors

STANFORDY
BUSINESS:

40

APPENDIX C R CODE

add.seasonality = function(data) {
data$Month = format (data$Week, "%b") # can also use as.yearmon
data$MonthNUM = as.numeric (format (data$Week, "%m"))
data$QuarterFull <— as.yearqtr (as.yearmon(data$Week, "%m/%d/%Y") + 1/12)
data$QuarterNum <— factor (format(data$QuarterFull, "%q"), levels = 1:4)
data$Season <— factor (format(data$QuarterFull, "%q"), levels = 1:4,

labels = c¢("winter", "spring", "summer", "fall"))

data$Year = format (data$Week, "%Y")
data$YearNum = as.numeric(format (data§Week, "%Y"))—1983

create column per date tagging whether that week is within 5 days of a
public holiday all holidays (G—7 —> likely meaningless)

allHolidays = as.data.frame(holiday (1984:2014,listHolidays ()))

colnames (allHolidays)[1]="Date"

n = length (data$Week)
m = length (allHolidays$Date)

create flags for NYSE holidays
NYSEHolidays = as.data.frame (holidayNYSE (1984:2014))
colnames (NYSEHolidays)[1]="Date"

o = length (NYSEHolidays$Date)

data$NYSEHolidayFlags = 0

for(j in (1: o)) {
for (i in (1 : n)) {
if(abs(data$Week [i]—as.Date (NYSEHolidays$Date[j])) < 6) {
data§NYSEHolidayFlags|[i]| = 1
}
}
}

create flags for Christmas weeks
Xmas = as.data.frame(holiday (1984:2014," ChristmasDay"))
colnames (Xmas)[1]="Date"

p = length (Xmas$Date)

data$XmasFlags = 0

for (j in (1: p)) {
for (i in (1 : n)) {
if (abs (data$Week | i|]—as.Date (Xmas$Date[j])) < 6) {
data$XmasFlags[i] = 1
}
}
}

create flags for Thanksgiving weeks
Thanksgiv = as.data.frame(holiday (1984:2014," USThanksgivingDay "))
colnames (Thanksgiv)[1]="Date"

STANFORDY
BUSINESS:

41

APPENDIX C R CODE

q = length (Thanksgiv$Date)
data$ThanksgivFlags = 0

for (j in (1: q)) {
for (i in (1 : n))
if(abs(data$Week|[i]—as.Date(Thanksgiv$Date[j])) < 6) {

data$ThanksgivFlags[i] = 1
}
}

}

return (data)
}
Add weather data
add . weather = function(data, file="newGrosses.csv") {

weather = read.csv(file)
weather§Week = as.Date(weather$Week, "%m/%d/%y")

weather$DJIA = suppressWarnings(as.numeric(as.character(weather$DJIA)))
weather$DJIA [is .na(weather$DJIA)| = 0

DJIA = aggregate(weather$DJIA | list (weather§Week), mean)

PRCP = aggregate (weather$PRCP, list (weather§Week), mean)

SN\WD = aggregate (weather$SNWD, list (weather$Week), mean)

TMIN = aggregate (weather§TMIN, list(weather§Week), min)

TMAX = aggregate(weather$TMAX, list(weather$Week), max)

data$DJIA = rep(—1, nrow(data))

data$PRCP = rep(—1, nrow(data))

data$SNWD = rep(—1, nrow(data))

data3TMAX = rep(—1, nrow(data))

data§TMIN = rep(—1, nrow(data))

for (i in l:nrow(data)) {
w = data[i, "Week"]
data[i, "DJIA"] = DJIA[which.min(DJIA[,1] =— w), 2]
data|i, "PRCP"| = PRCP[which.min(PRCP[,1] = w), 2]
data[i, "SNWD"] = SNWD|[which.min(SNWD[,1] = w), 2]
data|i, "IMAX"| = TMAX|which.min(TMAX[,1] = w), 2]
data[i, "TMIN"] — TMIN|which.min(TMIN[,1] — w), 2]

}

return (data)

}
STANFORD:S
BUSINESS::

42

APPENDIX D DATA COLLECTION CODE

D

Data Collection Code

Listing 3: Python script for retreiving and processing Broadway World and Google Trends data

#1/usr/bin/python

import

sys

import re

import
import
import
import
import
import
import
import
import

from
from
from
from

0s.path

requests

StringlO

csv

datetime

time

string

xlsxwriter

unicodedata

bs4 import BeautifulSoup
openpyxl import Workbook

openpyxl import load workbook

nltk .corpus import wordnet

from
from

bt CONSTANTS A4

header rows =

suffixes = ["", " tickets",
request timeout =

uncapped import uncapped words
cookies2 import google

cookies

1 # Number of header rows

" broadway"| # Trends suffizes

trends begin = datetime.date (2004, 01, 01)

get trends =1

30 # Seconds to wait before the mext request

cache trends = 1 # 1 to cache trends in local files (to avoid throttling)

min weeks for trends = 0 # To allow excluding shorter shows
grosses _path = "Grosses" # Where to cache grosses
trends _path = "Trends" # Where to cache trends data

def read grosses date(s):

return datetime.datetime.strptime (s, "%m/%d/%Y").date ()

Grabs and parses the grosses file from Broadway World

def download grosses(path):

print "Downloading grosses"
shows = fetch show list ()

headers = { "Host"

"User—Agent"

"Accept"

"www. broadwayworld .com" ,

"Mozilla /5.0 (Macintosh;

Intel Mac OS X 10.9;" +\

"rv:35.0) Gecko/20100101 Firefox/35.0",

"q=0.9,%/%;9q=0.8",

"text /html, application /xhtml+xml, application/xml;" +\

"Accept—Language" "en—US,en;q=0.5",
"Accept—Encoding" "gzip, deflate",
"Connection" "keep—alive" }
cookies = { "CFID" "1140731393",
"CFTOKEN" "9bechcd3391afedc —9E3CFFDA-E588—8F4F—" +\
"FDD65315D403E598" }
STANFORD?

BUSINESS:

43

APPENDIX D DATA COLLECTION CODE

i=1

for s in shows.keys():

sys.stdout.write ("\r\033[K")

sys.stdout.write("\r.Fetching grosses ...show " + str(i) + " of " +\
str(len(shows)) + ", " 4+ s + "’")

sys.stdout. flush ()

show p = os.path.join(path, "".join(c for ¢ in s if c.isalnum() or
¢ in string.whitespace) +\

" Grosses.xlsx")

if (os.path.isfile (show p)):

continue
r = requests.get (shows[s], headers=headers, cookies=cookies)
cleaned = r.content.replace("", "")
soup = BeautifulSoup (cleaned)

wb = xlsxwriter . Workbook (show p)
ws = wb.add worksheet ()

rows = soup.find_ all("tr")

r i=20
for r in rows:
if (r i = 0):
ws.write(r_i, 0, "Show name")
else:
ws.write(r_i, 0, s)
cols = r.find all("td")

c i=1

for ¢ in cols:
ws.write(r_i, ¢ i, c.text)
c_i+4+=1

r_i+=1

wb. close ()
time.sleep (1) # To play nice with the BW servers
i1

sys.stdout.write ("\r\033[K")
sys.stdout.write("\r.Fetching grosses...done! Fetched " + str(len(shows)) +\
" grosses to " 4 str(path) + "\n")

Grabs a list of shows from the Broadway World index (no caching)
def fetch show list():

show url prefix
show url suffix

"http://www.broadwayworld.com/grossesshowexcel . cfm?show="
"&all=on"

STANFORDY
BUSINESS:

44

APPENDIX D DATA COLLECTION CODE

url stem = "http://www.broadwayworld.com/grossesbyshow.cfm?letter="
urls = list ((url_stem + ¢ for ¢ in string.ascii_lowercase + "1"))
shows = {}

i=1

for url in urls:
sys.stdout.write ("\r\033[K")
sys.stdout.write("\r.Fetching show list ...url " + str(i) + " of " +\
str(len(urls)) + " (" + url + ")")
sys.stdout. flush ()

r = requests.get(url)
page = r.text

show url stem = "http://www.broadwayworld.com/grosses/"

show p = re.compile(re.escape("<a href=\"" + show_url stem) + \
"AWA=TE)" E
re.escape("\">") +
r" (77 s\ <]isx))"+
re.escape ("</td>"))
m = show_p.findall (page)

(l
)l

for s in m:
shows[s[1]] = show _url prefix + s[0] + show url suffix

time.sleep (1)

i4+=1
#if (i > 1):
break

#print (shows)

sys.stdout.write ("\r\033[K")
sys.stdout.write("\r.Fetching show list ...done\n")
sys.stdout. flush ()

return shows

Parses the show mame from the filename (assumed to be the show name followed
by ’'Grosses ’. Then we attempt to split the show mame into tokens by the
following rules: 1) Capital letters denote a new token and 2) If a token
contains something on the MLA’s list of words mot to capitalize in a title and
(a) the token is not in the NLTK corpus of FEnglish words but (b) the token
without the wuncapitalized word (i.e. the stem) is in the corpus, we split that
token into its stem and the uncapitalized word

Then we rejoin the title with spaces
ef parse show name(fn, i):
p = re.compile("(.+)\s*xGrosses")
m = p.search(fn)

A R TR TR R IR TR R R TR

if (m != None and m.group (1) != None):

STANFORDY
BUSINESS:

45

APPENDIX D DATA COLLECTION CODE

def

def

flat _name = m.group (1)
else:
print "WARNING: Couldn’t find name for show in file ’" + fn + \
"’ defaulting to ’Unknown show " + str(i) + "’"
return "Unknown show " + str(i)

If name already has spaces, then just assume it’s the show name, convert
it to title case and return it
if (len(flat name.split()) < len(flat name)):

pass

tokens = re.findall ('[A-Z]["A-Z]|+’, flat_name)
words = |[]

Check every token in the title to see if it might have an uncapitalized
word lurking on its end
for t in tokens:
w =t # Assume the token is a word until proven otherwise
for u in uncapped words:
if (t.endswith(u)): # We’'ve found a potential lurker...
stem = t.split(u)[0]

We only split the token if the stem is a wvalid word and the
original token is mnot
if (wordnet.synsets(stem) and not wordnet.synsets(t)):

words . append (stem)

w = u

break # Just take the first match

words . append (w) # Reconstrust the list of words

n

return ".join (words)

cached trends path(terms):

if (not isinstance(terms, basestring)):
terms = ",".join (terms)

fname = terms.replace(r"/", "-")

fname = fname.replace(r"\\", "=")

If we’re caching and the file exists, then return true
return os.path.join (trends path, fname + " trends.csv")

is_cached (terms):
If we’re caching and the file exists, then return true
return cache trends and os.path.isfile (cached trends path(terms))

Grab all the Google trends data for a show
def fetch google trends(name):

Normalize the name before we go, to strip out weird characters

name = unicodedata.normalize (’NFKD’, name).encode(’ascii’,’ignore’)
sys.stdout.write("..Beginning Google trends request for ’'" + name + "’\n")
terms = list ((name + s for s in suffixes))
terms.append (terms [:])

STANFORD%

BUSINESS:

46

APPENDIX D DATA COLLECTION CODE

trends = {}

for t in terms:
sys.stdout.write(" ... Requesting *" + str(t) + "> — ")
cached = is_cached(t) # Need to check before we get the request

if (request timeout > 0 and not cached):

sys.stdout.write ("now sleeping " +\
str(request timeout) + " " 4\
"seconds before next request...")

sys.stdout. flush ()

time. sleep (request _timeout)
elif (cached):

sys.stdout.write("cached — ")

report = google trends request(t)

if (not isinstance(t, basestring)):
q_suff =" relative"
else:

q_suff = ""

data = parse trends csv(report, q_ suff=q_suff)

for k in data.keys():
if (k in trends):
trends [k] = dict(trends[k].items() + data[k].items())
else:
trends [k] = dict(data[k].items())

sys.stdout.write("done!\n")
sys.stdout. flush ()

Fill in gaps in the data with the last seen wvalue.
Also keeps track of max value seen so far to do de—normalization , but this
feature is unused, since we do something similar in R instead
max_val = {}
all _terms = {} # In theory, we already know this, but...
all dates = trends.keys()
all dates.sort ()
for d in all dates:
for t in trends|[d].keys():
all _terms|[t] =1

last seen = dict(zip(all terms.keys(), [0 for t in all terms.keys()]))

for d in all dates:
for t in trends|[d].keys():
last seen|[t] trends [d][t]

if (not t in max val or max val[t] < trends[d][t]):
max_val[t]| = trends[d][t]

Fill in the gaps with the last—seen value
for t in all terms.keys():

STANFORDY
BUSINESS:

47

APPENDIX D DATA COLLECTION CODE

if (not t in trends[d]):
trends [d][t] = last_seen|[t]

return trends

Issue a Trends query and cache it (or return the cached wvalue if it’s already

cached)
def google trends request(terms):
url = "http://www. google .com/trends/trendsReport"

if (not isinstance(terms, basestring)):
terms = ",".join (terms)

If we’re caching and the file exists, then use the local copy
if (cache trends and is_cached (terms)):
return open(cached trends path(terms)).read ()

params = { "hl" : "en—US" |
"y . terms,
”tZ" : nn ,
"content" : 1,
"export" : 1 }
r = requests.get(url, params=params, cookies=google cookies)

if (cache trends):
f = open(cached trends path(terms), "w")
f.write(unicodedata.normalize ('NFKD’, r.text).encode(’ascii’,’ignore’))

return r.text

Takes the Trends CSV from the Google query and parses it into a dict
def parse trends csv(report, q_ suff=""):

f = StringlO.StringIO (report)

reader = csv.reader (f)

in block = 0
data = {}

week str = "\d{4}\-\d{2}\—-\d{2}"

week p = re.compile(week str + "\s+\—\s+(" + week str + ")")
month _str = "(\d{4}\—-\d{02})"

month p = re.compile(month str)

for row in reader:
if (row = None or not row):
if (in_block):
break
else:
continue
if (not in block and row[0] != "Interest over time"):
continue
elif (not in_ block and row[0] = "Interest over time"):

STANFORDY
BUSINESS:

48

APPENDIX D DATA COLLECTION CODE

in_block =1
continue
elif (in_ block and row[0] = "Week"):
queries = [r.lower() + q_suff for r in row[1:]]
date _p = week p
continue
elif (in_block and row[0] = "Month"):
queries = [r.lower() + gq_suff for r in row[1l:]]
date _p = month p
continue
elif (in_block and row[0] =— ""):
in block = 0
break

Now we’re in the block
m = date_p.search (row[0])

if (m = None or m.group(l) = None):
print "Couldn’t find date in cell " + row[0] + "7"
sys.exit ()

else:

s = m.group (1)

Convert monthly to weekly starting at first day of the month,
which we will eventually transform to the end of the month
if (not re.compile(week str).match(s)):

s += "—01"

end date = datetime.datetime.strptime (s, "%Y-%m-%d").date ()

Now push forward one month and pull back, if it’s monthly
if (not re.compile(week str).match(s)):
end date = end date + datetime.timedelta (months=1) —\
datetime . timedelta (days=1)

if (end date in data):
print "Date " + str(end date) + " already seen!"

sys.exit ()
out = |[]
for v in row|[1:]:
try:

out .append (int (v))
except ValueError:
out .append (v)
data[end date] = dict(zip(queries, out))

return data

Parse args
if (len(sys.argv) < 2):

print "usage: " + sys.argv[0] + " <output file> <input files>"
sys.exit ()
elif (len(sys.argv) — 2):

out f = sys.argv|[1]

STANFORDY
BUSINESS:

49

APPENDIX D DATA COLLECTION CODE

osses path)

in f = [os.path.join (grosses path, f) for f in os.listdir (gr
f)) and

if os.path.isfile (os.path.join (grosses path,
os.path.splitext (f)[1] = ".xlsx"]
else:
out f = sys.argv|[1]
in f = sys.argv|[2:]

FEither open the output workbook or a create a mew one, depending on whether
we’re appending
append mode = os.path.isfile (out f)

if (append mode):

print "File " + out f + "’ already exists — appending"

out_wb = load workbook (out_f)

out_ws = out_wb|[out_wb.get sheet names ()[0]] # Assume first sheet
else:

out_wb = Workbook ()

out _ws = out_wb. active

out _ws.title = "Grosses"

shows = {}
trends by show = {}

print "Iterating grosses files"
Copy each input file to the output workbook
for i in range(len(in_ f)):
sys.stdout.write (".Reading file " + str(i + 1) + " of " + str(len(in_f)) +\
", " + os.path.split (in_f[i])[1] + "’\n")

in_wb = load workbook(in_ f[i])
in ws = in wb[in wb.get sheet names ()[0]] # Assume first sheet
if (in_ws.cell (row=1, column=1).value != "Show name"):
show name = parse show name(in_ f[i], 1)
else:
show name = unicode(in_ws. cell (row=2, column=1).value)

For the first sheet of the file, need to copy header rows

if (i = 0 and not append mode):
for j in range(len(in_ws.columns)):
h = (in_ws. cell (row=r + 1, column=j + 1).value

for r in range(header rows))

out_ws. cell (row=1, column=j + 1).value = \
" " join(c for ¢ in h if ¢ != None)
j = len(in_ws.columns) + 1
out_ws. cell (row=1, column=j).value = "Weeks since open"
out _r = 2
elif (i = 0 and append mode):
out_r = len(out_ws.rows) + 1 # I for 1 indexing + 1 for next row

sys.stdout . flush ()

shows [show name] = read grosses date(in_ws. cell (row=2, column=2).value)

STANFORDY
BUSINESS:

50

APPENDIX D DATA COLLECTION CODE

Find the last week in the gross data, to determine Trends availability

max_week = read grosses date(in_ws. cell (row=len (in_ws.rows),
column=2).value) — datetime.timedelta (days="T)
trends avail = max week > trends begin

Fetch trends if available and store them for later
if (get trends and trends avail and len(in_ ws.rows) > min_ weeks for trends):

trends = fetch google trends(show name)
else:
trends = None
trends by show [show name] = trends
Copy cell by cell — there may be a more efficient way to do this...

for r in range(3, len(in_ws.rows) + 1):
for ¢ in range(l, len(in_ws.columns) + 1):

v = in_ws. cell (row=r, column=c).value
if (¢ > 2 and v.find ("N/A") — —1):
v = string.replace(v, "§" 6 "")
v = string.replace(v, ",", "")

if (v.find("%") > —1):
v = string.replace(v, "%", "")
w = float(v) / 100

if (v.find(".") > —1):
w = float (v)

w = int(v)
else:

w = v.strip ()

out_ws. cell (row=out_r, column=c).value = w

out_ws. cell (row=out_r, column=len(in_ ws.columns) + 1).value = r — 3
out_r 4= 1
terms = list (("Name" + s for s in suffixes))

(
rels = list ((t + " relative" for t in terms))
terms. extend (rels)

trends _ws = [out_wb.create sheet() for t in terms]
Create the Trends sheets — ome for each query
for i in range(len(trends ws)):

trends _ws[i].title = "Trends — " + terms|[i]

Pull Trends (if available) from 2 years before open to 12 years after
date range = range(—2 x 52, 12 x 52)

Print headers
for ws in trends ws:
ws. cell (row=1, column=1).value = "Show name"

STANFORDY
BUSINESS:

o1

APPENDIX D DATA COLLECTION CODE

c = 2

for d in date range:
ws. cell (row=1, column=c).value = d
c =1

Pull the Trends data from the list and put it in the appropriate sheet,
by show
r = 2
for s in shows.keys ():
trends terms = list ((s.lower () + suff for suff in suffixes))
rels = list ((t + " relative" for t in trends terms))

trends terms.extend(rels)
t =20
opening = shows|s|

trends = trends by show|s]

for ws in trends ws:

c =1
ws. cell (row=r, column=c).value = s
c =1

if (trends = None):
continue

for d in date range:
week = opening + datetime.timedelta(days=7) * d

trends weeks = list ((k for k in trends.keys() if k <= week))

if (not trends weeks):
Aa— HN/A”
else:
latest week = max((k for k in trends.keys() if k <= week))
trends data trends [latest week|
if (trends terms|[t]| in trends data):

v = trends data[trends terms|[t]]
else:
v = "N/A"
ws. cell (row=r, column=c).value v
c +=1
t =1

r +=1

out_wb.save (out_f) # Save the concatenated file

show

Listing 4: Python script for retreiving show categories

#1/usr/bin/python
import mechanize
import sys

import csv

STANFORDY
BUSINESS:

52

APPENDIX D DATA COLLECTION CODE

import time

Parse the response from IBDB, returning the category with the most "votes”
(i.e. occurrences)
def read response(resp):

categories = ["musical", "play", "special"]

resp = resp.lower ()

cat i = [resp.count(c) for ¢ in categories]

cat_i[0] —= 1 # Net out base rate occurrences in the page
cat_i[1l] —= 8

sys.stderr.write(str(cat_i) + "\n")

if (max(cat_i) > 0):

cat = categories|[cat i.index (max(cat i))]
else:

cat = "NA"

return cat

in _fn = sys.argv[l] # List of shows
out fn = sys.argv|[2] # Output file

Initialize a browser that looks like Firefox

br = mechanize.Browser ()

br.addheaders = [(’User—agent’, 'Mozilla/5.0 (X11; U; Linux i686; en—US;’ +\
'rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1—1.fc9’ +\
"Firefox /3.0.17)]

Read in the list of shows
shows = {}

show data = {}

f = open(in_fn, "ruU")
reader = csv.reader (f)

for r in reader:
s = r[0]
shows[s] =1

show = shows. keys ()

Query each show

i =20
for s in shows:
sys.stderr.write(s + ": ")

Search for that show’s name, and then parse the result
search page = br.open("http://www.ibdb.com/advSearchShows.php")
br.select form (nr=0)

br.form ["ShowProperName"| = s
br.submit ()
show data[s] = read response(br.response ().read())
i+=1
STANFORD#

BUSINESS:

93

APPENDIX D DATA COLLECTION CODE

time.sleep (1) # To avoid overloading the IBDB server

Write the output
f = open(out_fn, "wb")
writer = csv.writer (f)

writer . writerow (["Show", "Category"])
for s in show data.keys():
writer . writerow ([s, show data[s]])
print ",".join ([s, show_ data[s]])
sys.std.out. flush ()

f.close ()

STANFORDY
BUSINESS:

54

	Introduction and Description of Problem
	Data Collection
	Methodology
	Analysis and Results
	Baseline model
	Capacity predictors and autocorrelation
	Seasonality and holidays
	Weather and financial predictors
	Google Trends
	Comprehensive predictive model

	Principal Findings and Recommendations
	Conclusion
	Figures and Tables
	R Output Logs
	R Code
	Data Collection Code

