#!/usr/bin/python import pickle import cPickle import numpy from sklearn import cross_validation from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_selection import SelectPercentile, f_classif def preprocess(words_file = "../tools/word_data.pkl", authors_file="../tools/email_authors.pkl"): """ this function takes a pre-made list of email texts (by default word_data.pkl) and the corresponding authors (by default email_authors.pkl) and performs a number of preprocessing steps: -- splits into training/testing sets (10% testing) -- vectorizes into tfidf matrix -- selects/keeps most helpful features after this, the feaures and labels are put into numpy arrays, which play nice with sklearn functions 4 objects are returned: -- training/testing features -- training/testing labels """ ### the words (features) and authors (labels), already largely preprocessed ### this preprocessing will be repeated in the text learning mini-project authors_file_handler = open(authors_file, "r") authors = pickle.load(authors_file_handler) authors_file_handler.close() words_file_handler = open(words_file, "r") word_data = cPickle.load(words_file_handler) words_file_handler.close() ### test_size is the percentage of events assigned to the test set ### (remainder go into training) features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(word_data, authors, test_size=0.1, random_state=42) ### text vectorization--go from strings to lists of numbers vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') features_train_transformed = vectorizer.fit_transform(features_train) features_test_transformed = vectorizer.transform(features_test) ### feature selection, because text is super high dimensional and ### can be really computationally chewy as a result selector = SelectPercentile(f_classif, percentile=1) ##selector = SelectPercentile(f_classif, percentile=10) selector.fit(features_train_transformed, labels_train) features_train_transformed = selector.transform(features_train_transformed).toarray() features_test_transformed = selector.transform(features_test_transformed).toarray() ### info on the data print "no. of Chris training emails:", sum(labels_train) print "no. of Sara training emails:", len(labels_train)-sum(labels_train) return features_train_transformed, features_test_transformed, labels_train, labels_test