
Enumerating Sets

A language is said to be recursive if there is a TM which halts on all
inputs and accepts the language. The notions corresponding to r.e. sets and
recursive sets for functions are partial recursive and total recursive functions
respy.

A central notion is enumerating a set (or making a list of its elements).
This is not usually formally defined, but neverthless very important. I will
give a formal definition here. First, note that an infinite set is countable iff
it is in 1-1 correspondance with the integers. Countability is thus a necessry
condition for enumerability. We will also require that the process of making
the list should not get into cycling. More precisely, we say that a set S can be
enumerated (or “we can make a list of the set”) iff there is a total recursive

function f : N → S which is onto. So, the “list” {f(1), f(2), f(3), . . .} (i)
contains all elements of S (Note : an element may appear more than once
!!) and (ii) does not contain any elements not in S. The fact that f is
total recursive means that there is an enumeration process, which makes any
finite inital piece of the list in finite time. An equivalent (why ?) defintion
for infinite sets S is : S can be enumerated iff there is a TM which prints
out strings, so that (i) any element in S is printed out at some finite time
and (ii) only strings in S are ever printed out. Some important enumerable
sets are :

(a) {(i, j) : i, j ∈ N} can be enumerated.

(b) For any finite alphabet Σ, Σ∗ is enumerable.

(c) Any r.e. set is enumerable : Run through a list of pairs (i, j) (see a)
and for each pair, if the i th string - wi (see b) is acepted by the TM
in exactly j steps, then “print out” wi.

(d) The set of all TM’s is enumerable.

(e) The set of all polynomial time bounded TM’s is enumerable. (We will
see this later).

1


