
Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

1. Euclid’s Algorithm

Euclid’s Algorithm for computing the greatest common divisor belongs to the oldest

known computing procedures. It was already known to Eudoxus (375 BC), and it is

described in the Euclid’s “Elements” (300 BC). It is of fundamental importance and

occurs in many computational tasks. We write a|b for integers a, b, if a is a divisor of b,

i.e., if there exists a k ∈ Z with b = k · a.

Definition 1.1. For two nonnegative integers a, b let

gcd(a, b) = max{f : f |a and f |b} .

By convention, gcd(0, 0) = 0. If gcd(a1, . . . , an) = 1 then a1, . . . , an are called relatively

prime or coprime.

Measure of complexity: log n for an input n (bit-length of n)

Euclid’s algorithm: Euclid’s algorithm provides an efficient (polynomial time) com-

putation of the gcd. It is based on a fundamental property of integers: divison with re-

mainder: For integers a, b 6= 0 there exist m, r ∈ Z with

a = mb + r and 0 ≤ r < |b| .

Euclid’s algorithm:

Input: a, b ∈ N .

Output: rj−1 = gcd(a, b).

Method: Set r−1 = a, r0 = b. Compute by division with remainder successively

r1, . . . , rj−1 with |b| > r1 > · · · > rj−1 > rj = 0, until no remainder occurs. I.e.,

ri+1 is the remainder in the division of ri−1 by ri:

r−1 = m1r0 + r1 ,

r0 = m2r1 + r2 ,
...

ri−1 = mi+1ri + ri+1 ,
...

rj−3 = mj−1rj−2 + rj−1 ,

rj−2 = mjrj−1 ,

with m1, . . . , mj ∈ Z.

Termination: Since the remainders ri are falling monotonically, the algorithm terminates

after finitely many steps.
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Correctness: rj−1 divides successively rj−2, rj−3, . . . , r0 = b and r−1 = a (just consider

successively the equations ri−1 = mi+1ri+ri+1). If, conversely, z divides both a and b, then

z successively also divides r1, . . . , rj−1 (this results from the equations ri+1 = ri−1−mi+1ri).

Example. For a = 9876, b = 3456 we obtain

9876 = 2 · 3456 + 2964 ,

3456 = 1 · 2964 + 492 ,

2964 = 6 · 492 + 12 ,

492 = 41 · 12 (+ 0) .

I.e.. gcd(9876, 3456) = 12.

By substituting rj−1, rj, . . . , r0 into the expression for rj we also obtain a linear combi-

nation of the gcd in terms of the inputs a and b. (In the example this yields gcd(9876, 3456) =

12 = 7 · 9876 − 20 · 3456.)

Theorem 1.2. For all integers a, b > 0 there exist integers x and y such that

gcd(a, b) = ax + by .

Moreover, the gcd and x and y can be computed in polynomial time.

Proof. The worst-case running time of the algorithm can be bounded by considering

a and b for which the maximal numbers of divisions occur. W.l.o.g. assume a > b > 0. (In

case b > a, a and b are swapped in the first step.) The smallest pair (a, b) (in the sense

(a1, b1) < (a2, b2) ⇐⇒ (b1 < b2 or (b1 = b2 and a1 < a2))), for which j divisions are

required, is obtained by choosing rj−1 and the mi as small as possible: m1 = . . . = mj−1 =

1, mj = 2 and rj−1 = 1 (mj = 1 is excluded, since rj = 0 would then imply rj−1 = rj−2).

The equations

rj−1 = 1 , rj−2 = 2 , ri−1 = ri + ri+1 for i = j − 2, . . . , 0

then determine r−1 = a and r0 = b uniquely. This yields a connection to the Fibonacci

sequence 0, 1, 1, 2, 3, 5, 8, 13 . . .: For inputs a > b > 0, Euclid’s algorithm requires at most

c ln(b
√

5) divisions, with c = (ln 1+
√

5
2

)−1 ≈ 2.08. �
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2. Zm: Integers modulo m

When computing with integers it is often advantageous not to operate with the num-

bers themselves, but instead with the remainders which occur in the division by a fixed

modulus m ≥ 2.

Recall the ring Zm of integers modulo m.

Definition 2.1. Let m ∈ N and a, b ∈ Z. a and b are congruent modulo m if m|(b−a),

i.e., if a mod m = b mod m. Notation: a ≡ b (mod m).

Let Zm = {0, 1, . . . , m−1}. In Zm we can define the addition and multiplication modulo

m. (Zm, +) forms a group under addition modulo m. Let Z
∗
m = {x ∈ Zm : gcd(x, m) = 1}.

Then Z
∗
m forms a group under multiplication modulo m. (Notice that 0 6∈ Z

∗
m.)

Q: How to compute the (multiplicative) inverse of an element a ∈ Z
∗
m in polynomial

time?

As an application of efficiently computing the inverse we present the following con-

structive version of the Chinese Remainder Theorem, which allows to decompose compu-

tational problems into smaller problems. In order to achieve this, an integer a is replaced

by a tuple (a1, . . . , ak) of integers, which is obtained by considering a modulo k given,

pairwise relatively prime moduli m1, . . . , mk. Since computations on a carry over in a

canonical way to the ai, we can work with the remainders modulo mi.

This strategy requires that at the end of a computation one can reconstruct the number

back from the remainders. An answer to this question of reconstructability is given by the

Chinese Remainder Theorem, which in a special case was already known to to Sun Tsu

300 AD.

Theorem 2.2. Let m1, . . . , mk ∈ N pairwise relatively prime and m := m1 · . . . · mk.

For any sequence of residues a1 ∈ Zm1
, . . . , ak ∈ Zmk

, there exists a unique x ∈ Zm such

that

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ak (mod mk) ,

Moreover, a can be computed in polynomial time.

Proof. Existence and algorithm: Let ei, 1 ≤ i ≤ k, be solutions of the system of

equations for the special case ai = 1, aj = 0 for j 6= i (“basis solutions”). Set

m′
i :=

∏

j 6=i

mj =
m

mi

.

Since the moduli m1, . . . , mk are pairwise coprime, we have gcd(mi, m
′
i) = 1. Hence, there

exists an inverse element ti of m′
i modulo mi, and it can be computed in polynomial time.

We set

ei := m′
iti .
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Then, by definition of m′
i, as desired

ei ≡
{

1 (mod mi) ,

0 (mod mj) for j 6= i .

The basis solutions can be put together to a solution

x =
k∑

i=1

aiei

of the original system.

Uniqueness: Uniqueness of the choice of r follows from a simple counting argument.

The number of distinct choices of each ri is mi, and so there are exactly m distinct

sequences (ri). By the existence proof each such sequence has at least one associated

r ∈ Zm, which defines an injective mapping from Zm1
× · · · × Zmk

→ Zm. However, since

the cardinalities of the two sets are equal, the mapping must be bijective. �

Example. We ask for a solution to the system

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 4 (mod 7) .

We have m′
1 = 5 · 7 = 35, m′

2 = 3 · 7 = 21, m′
3 = 3 · 5 = 15. From

1 = gcd(3, 35) = 12 · 3 − 1 · 35 ,

1 = gcd(5, 21) = −4 · 5 + 1 · 21 ,

1 = gcd(7, 15) = −2 · 7 + 1 · 15

we obtain the basis solutions e1 = −35, e2 = 21, e3 = 15. Consequently,

2 · (−35) + 3 · 21 + 4 · 15 = 53

is the solution to the congruence.

3. Euler’s totient function and Fermat’s Little Theorem

Computing in Z
∗
n is of fundamental importance for algorithm design and in modern

cryptography (which is essentially based on prime number concepts).

Definition 3.1. Euler’s totient function ϕ(n) is defined to be the number of elements

of Zn that are coprime to n, i.e., ϕ(n) = |Z∗
n|.

Example. ϕ(6) = 2, ϕ(8) = 4, ϕ(12) = |{1, 5, 7, 11}| = 4.

If the prime factorization of a number n is known, then ϕ(n) can be computed in

polynomial time.
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Theorem 3.2. Let n have the prime factorization pe1

1 ·pe2

2 · · · per
r with pairwise distinct

primes pi and exponents ei > 0. Then

ϕ(n) =
r∏

i=1

pei−1
i (pi − 1) .

Proof. The proof follows from the following three statements.

i) For prime p we have ϕ(p) = p − 1.

ii) For prime p and e > 0, ϕ(pe) = pe−1(p − 1).

This follows from the observation that among all numbers in Zn exactly the numbers

0, p, 2p, . . . , (pe−1 − 1)p do not belong to Z
∗
pe, i.e.,

ϕ(pe) = pe − pe−1 = pe

(

1 − 1

p

)

.

iii) For m and n with gcd(m, n) = 1, ϕ(mn) = ϕ(m)ϕ(n).

By the Chinesische Remainder Theorem, the mapping

Zm×n → Zm × Zn , a mod (m · n) 7→ (a mod m, a mod n)

is bijective. Since gcd(a, mn) = 1 if and only if gcd(a, m) = 1 and gcd(a, n) = 1, the

induced mapping

Z
∗
m → Z

∗
m × Z

∗
n , a mod (m · n) 7→ (a mod m, a mod n)

is bijective as well. �

If the prime factorization is not known, then computing ϕ(n) is essentially as hard as

factoring. Euler’s totient function is used, e.g., in the RSA coding scheme.

The following Theorem of Euler is of fundamental importance. As usual, we write

an := a · . . . · a
︸ ︷︷ ︸

n times

.

Theorem 3.3. (Euler’s Theorem.) For all n ∈ N and a ∈ Z
∗
n we have aϕ(n) ≡ 1

(mod n).

Proof. Let Z
∗
n =: {a1, . . . , aϕ(n)}. Further let a ∈ Z

∗
n arbitrary. Bijectivity of the

left translation La : Z
∗
n → Z

∗
n, x 7→ ax implies that then {aa1, . . . , aaϕ(n)} = Z

∗
n as well.

Multiplication of all elements in the two sets yields

a1 · . . . · aϕ(n) = aa1 · . . . · aaϕ(n)

in Z
∗
n and after cancelling down aϕ(n) = 1. �

Corollary 3.4. (Fermat’s Little Theorem.) For prime p and x ∈ Zp,

ap ≡ a (mod p) .
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Proof. For a ≡ 0 (mod p) the statement is obvious, and for a 6= 0 the property

ϕ(p) = p − 1 implies ap−1 ≡ 1 (mod p). �

4. Quadratic residues

The exponentiation problem – to compute y = xa (mod n) given x, a and n – can be

done in polynomial time (using iterative squaring). The inverse problem of root finding –

given a, y and n, find an x with y = xa (mod n) – is in general much harder. Here, we

describe an algorithm for finding square roots when n is prime.

Definition 4.1. A number a ∈ Z
∗
n is said to be a quadratic residue if there exists

some x ∈ Z
∗
n such that

a = x2 (mod n) .

Otherwise a is called a quadratic non-residue.

We consider a prime modulus p. From elementary number theory, it is known that the

multiplicative group Z
∗
p is cyclic. E.g. Z

∗
7 is generated by the element 3, since {30 mod 7, 31 mod 7, 32 mod 7, 33 mod 7, 34 mod 7, 35 mod 7} =

{1, 3, 2, 6, 4, 5} = Z
∗
7.

Lemma 4.2. Let p be an odd prime and g ∈ Z
∗
p be any generator. Then, gk is a

quadratic residue if and only if k is even.

Proof. If k even: clear.

If k odd: Let k = 2l + 1 and assume for contradiction that there exists an x ∈ Z
∗
p

such that x2 ≡ g2l+1 (mod p). But since g is a generator, x = gm for some m ≥ 0. Hence,

g2m ≡ g2l+1 (mod p), and switching to the additive group modulo ϕ(p), we can restate this

as 2m ≡ 2l+1 (mod ϕ(p)). Since ϕ(p) = p−1, we can conclude that (p−1)|(2l−2m+1).

But p − 1 is even and 2l − 2m + 1 is odd, giving a contradiction. �

Theorem 4.3. (Euler’s Criterion.) For prime p, an element a ∈ Z
∗
p is a quadratic

residue if and only if

a
p−1

2 ≡ 1 (mod p) .

Proof. Let g be any generator of the cyclic group Z
∗
p. If a is a quadratic residue then

let x = gk be a square root of a. Hence a ≡ g2k (mod p), and therefore

a
p−1

2 ≡ gk(p−1) ≡ (gp−1)k ≡ 1k ≡ 1 (mod p) .

Conversely, if a is not a quadratic residue, then by the previous lemma we know that a is

an odd power of g. Assuming that a = g2l+1, we obtain

a
p−1

2 ≡ gl(p−1)g
p−1

2 ≡ g
p−1

2 (mod p) .

Since g has order p − 1, the last term cannot be congruent to 1. �

Using Euler’s Criterion, there exists an efficient algorithm for deciding quadratic resi-

duity.



5. PRIMALITY TESTING 7

Corollary 4.4. For prime p and a ∈ Z
∗
p it can be decided in polynomial time whether

a is a quadratic residue modulo p.

5. Primality testing

Motivation: e.g., generation of large primes for cryptography.

Primality testing is a fascinating and rich topic, and in 2002 Agrawal, Manindran,

and Saxena have succeeded to show that this problem can be decided in polynomial time,

see e.g., the survey article F. Bornemann, Primes is in P: A breakthrough for everyman,

Notices of the AMS 05/2003, http://www.ams.org/notices/200305/200305-toc.html .

Many primality tests (also the AKS algorithm) are essentially based on ideas of Fer-

mat’s Little Theorem. This theorem tells us: Let N ∈ N. If an a ∈ N, 0 < a < N with

aN−1 6≡ 1 (mod N) exists, then N is not prime.

Definition 5.1. Let N be a composite number. N is called pseudoprime w.r.t the

basis a if N satisfies the property aN−1 ≡ 1 (mod N). N is called Carmichael number if

N is pseudoprime for all a ∈ Z
∗
N .

The numbers a ∈ Z
∗
N which satisfy the Fermat identity constitute a subgroup of Z

∗
N .

The order of this subgroup is either ϕ(N) or (in case of a proper subgroup) at most

ϕ(N)/2. Thus:

Theorem 5.2. (r-fold Fermat test.) Let N ∈ N such that there exists an a ∈ Z
∗
N with

aN−1 6≡ 1 (mod N). Then for randomly chosen, independent a1, . . . , ar ∈ Z
∗
N ,

Prob
(
aN−1

i ≡ 1 (mod N) for 1 ≤ i ≤ r
)

≤ 2−r .

The r-fold Fermat test can recognize the compositeness of a non-Carmichael number

with probability ≥ 1−2r. It cannot recognize the compositeness of a Carmichael number.

For many practical purposes, the Fermat test is sufficient, since Carmichael numbers occur

very seldomly. In fact, until the early 90’s it was even unknown if there are infinitely many

Carmichael numbers at all.

The following randomized algorithm (Miller-Rabin test) extends the Fermat test to

Carmichael numbers. Let N be odd and consider aN−1 for a random a ∈ ZN \ {0}. If

this is not 1, then we have proved that N is composite. Otherwise, we keep replacing this

(even) power of a by its precomputed square root until the result is something other than

±1 or until we have reduced it to an odd power of a. If we reach a square root of 1 other

than ±1 then N is composite (because for a prime number N any quadratic residue has

exactly two square roots). Otherwise the algorithm claims that N is prime, and this is

the only place where it can make an error.
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Primality test of Miller-Rabin:

Input: Odd number N .

Output: Prime or Composite.

(1) Compute r and R such that N − 1 = 2rR, and R is odd.

(2) Choose a uniformly at random from ZN \ {0}.
(3) For i = 0 to r compute bi = a2iR.

(4) If aN−1 = br 6≡ 1 (mod N) then return Composite.

(5) If aR = b0 ≡ 1 (mod N) then return Prime.

(6) Let j = max{i : bi 6≡ 1 (mod N)}.
(7) If bj ≡ −1 (mod N) then Return Prime Else Return Composite.

For prime N , this algorithm always returns Prime. Moreover, it can be shown that

the algorithm returns Prime on a composite input N with probability at most 1/2:

Theorem 5.3. Let N ∈ N be odd and composite, N − 1 = 2rR with R odd. Then for

random a ∈ Z
∗
N we have

Prob
(

aR ≡ 1 (mod N) or ∃i ∈ {0, . . . , r − 1} a2iR ≡ −1 (mod N)
)

≤ 1

2
.

An RP algorithm A for a given problem is a randomized algorithm running in worst-

case polynomial time such that

(1) for every Yes instance Pr(A yields Yes) ≥ 1/2;

(2) for every No instance Pr(A yields Yes) = 0.

Hence:

Theorem 5.4. The Miller-Rabin test is an RP algorithm for testing compositeness.


