
Reductions, Oracles and a Hierarchy of Undecidable
Problems

We defined a language A to be reducible to a language B iff there is a
total recursive map f such that ∀x, x ∈ A iff f(x) ∈ B. In words, this
is equivalent to saying that if I am given an “oracle” (a subroutine) (we
will always assume that an “oracle” halts in finite time on all inputs) which
solves (membership in) B, then with just one call to this oracle, I can
answer membership in A.

This notion of reduction is called many-one reduction and we write
A ≤m B to denote that A is “many-one” reducible to B.

Note that every r.e. set is many-one redicible to Lu. We say that an r.e.
set is r.e. complete if every r.e. set is many-one reducible to it. Thus, Lu

is r.e. complete. We showed a many-one reduction of Lu to NONEMPTY=
{M : L(M) 6= ∅}; so also NONEMPTY is r.e. complete. (Why is that what
we showed is not a many-one reduction of Lu to EMPTY ?)

Another natural notion of reduction is when we allow any finite number
of oracle calls. This is called a Turing reduction.

Definition A set A is Turing reducible to a set B denoted A ≤T B if
there is a halting TM M with access to an oracle for B which accepts A.

If B is recursive and A ≤T B, then A is recursive too. If B is recursive,
then the oracle can be “implemented” to run in finite time. But, even if B

is not recursive, we still can define TM ’s as above with an oracle for B; it is
just a hypothetical machine we use to study the relative hardness of A and
B. A TM with an oracle for B is often written MB. We will say that two
sets A and B are equivalent (in hardness) - written - A ≡T B, if each of them
is reducible to the other. All recursive sets are equivalent (Why?)

Are there sets harder than all r.e. sets, i.e., harder than Lu ? Indeed,
there is an infinite hierachy of harder and harder sets of which the r.e. sets
form only the first level. Consider TM’s with Lu as an oracle and suppose
L(2)

u
is the universal language for them; i.e.,

L(2)
u

= {< w, MLu >: MLu aceepts w}.

Theorem L(2)
u

6≤T Lu.
The proof is word for word almost the same as the proof that Lu is not

recursive. Now we can define the universal language for TM’s with L(2)
u

as
oracle etc...


