
Recursive and R.e. sets

Theorem : The complement of a recursive language is recursive.
Theorem : Recursive sets are closed under union and intersection. R.e.

sets are closed under union and interesection.
Theroem : If a set and its complement are both r.e., then the set is

recursive.
Turing Machine codes : All TM’s with a fixed alphabet can be encoded

as finite length strings over some finite alphabet. This innocuous statement
means that we may treat a TM’s description itself as an input string to
another TM. Further, the descrition can be “understood” and the described
TM simulated by another TM. This is central to modern computing.

Universal Language Theorem Lu = {< M, w >: M is a legal TM accepting w}
is an r.e. set.

Proof See handout from Hopcroft and Ullmann.
Theorem Undecidability of the Halting Problem Lu is not recru-

sive.
Proof Suppose Lu were recursive. Then we construct a new TM M ∗

which will lead to a contradiction. Given as input a binary string w ∈
(0 + 1)∗, our machine M∗ will check if < w, w > is in Lu, which it can
do since Lu is recursive. M ∗ accepts w if < w, w >/∈ Lu and rejects w if
< w, w >∈ Lu. Clearly, under our assumption, M ∗ is a legal TM (why did
we have to assume that Lu is recursive for this assertion ?). The description of
M∗ can be viewed as a 0-1 string itself. If now < M ∗, M∗ >∈ Lu, then our M∗

would reject M ∗, a contradiction. On the other hand, if < M ∗, M∗ >/∈ Lu,
then M∗ accepts M∗, also a contradiction.

Theorem The properties of emptiness, recursiveness, and finiteness of
r.e. sets are all undecidable.

Proof For Emptiness : We will prove this by “reducing” Lu to the set

EMPTY = {M : L(M) = ∅}.

For this, given a pair, < M, w >, our reduction f constructs the following
TM f(< M, w >) :

f(< M, w >) =











On input x, run M on input w
If M stops and accepts w, then accept x
If M stops and rejects w, then reject x

(1)

1



Note that if M did not terminate on w, then f(< M, w >) also cycles on
every input x (and hence accepts the empty set.) This completes the proof.

Definition A reduction from a language L1 ⊆ Σ∗ to a language L2 ⊆ Γ∗

is a total recursive function f : Σ∗ → Γ∗ such that

∀x ∈ Σ∗, x ∈ L1 iff f(x) ∈ L2.

Note that the above reduction has the following properties :
(i) f(< M, w >) accepts the empty set iff M rejects w.
(ii) f is clearly recursive, even though it is not decidable whether M

accepts or rejects w (and so also whether f(< M, w >) is empty.) Thus
we can write down in finite time the TM f(< M, w >) given M, w, but in
general cannot decide in finite time which option in (i) holds.

A non-trivial property of r.e. sets is a property which some r.e. set has
and some (other) r.e. set does not have.

Rice’s Theorem Any non-trivial property of r.e. sets is undecidable.
Proof Wlg, we may assume that the empty set has the property (or

we complement the property). Also, there is an r.e. set, say accepted by
M0 which does not have the property. Then, in the above description of
f(< M, w >), we just replace “If M stops and accept w, then accept x” by
“If M stops and accept w, then just run M0 on x”.

Post’s Correspondance Problem PCP : We are given two lists of
strings A = {w1, w2, . . . wk} and B = {x1, x2, . . . xk} over a finite alphabet.
We are to decide whether there exist integers i1, i2, . . . im with m ≥ 1 such
that

wi1wi2 . . . wim = xi1xi2 . . . xim .

Theorem PCP is indecidable.
Proof We do this by reducing Lu to LPCP . Actually, the central part is

the reduction of Lu to a modified PCP, where we are required to have i1 = 1.
This is done as follows : the final wi1wi2 . . . wim = xi1xi2 . . . xim will describe
a valid computation of M on w (for a string < M, w >). The second list will
always be one step ahead and each time, whenever we append a string to the
first string, we will be forced to append the “next step” of M on w to the
second string.

2


