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Problem 1 Chernoff bound – application 1

Consider a biased coin with probability p = 1/3 of landing heads and probability 2/3 of landing
tails. Suppose the coin is flipped some number n of times, and let Xi be a random variable denoting
the ith flip, where Xi = 1 means heads, and Xi = 0 means tails. Use the Chernoff bound to
determine a value for n so that the probability that more than half of the coin flips come out heads
is less that 0.001.

Solution

Let E represent the event that 1
n

∑n
i=1Xi ≥ 1

2 , i.e. the event thet more than half of the coin flips
come out heads.
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Note that E[Xi] = 1/3. According to the Chernoff bound, the last probability measure is no
greater than 2 exp(− n

16).
Solving the inequality that 2 exp(− n

16) < 0.001, we get that n ≥ d16 ln(2000)e = 122.

Problem 2 Chernoff bound – application 2

At the Yale-Harvard hockey game on February 6, Yale made 50 shots on the Harvard goal and
scored 5 times, whereas Harvard made 15 shots on the Yale goal and scored only once. Assume
that both teams had equally good goalies and that for each team, the probability is p = 0.1 of a shot
scoring a goal. Clearly, the expected number of goals is np, where n is the number of shots. For
Yale, the actual number of goals g exactly matched the expectation, but for Harvard with 15 shots,
the actual number of goals (1) fell considerably short of the expected number (1.5).

The purpose of this problem is to assess how unusual it is that Harvard scored fewer than the
expected number of goals given the number of shots on the goal and the assumed success probability
of each shot. In the following, let n = 15, g = 1, p = 0.1, and q = Pr[# goals after n shots ≤ g].
We wish to find a “good” upper bound on q.

(a) Happy Hacker remembered about the Chernoff bound presented in lecture 1, so he decided
to use it to bound q. What values should he use for the parameters ε, n, and p that appear in
the formula on the right hand side of the bound? Using these values, compute the value b of
the right hand side. What does b tell Happy about q that he didn’t already know?

(b) Clever Clara knew right away that it was a waste of time to compute the Chernoff bound in
this case and didn’t bother. How did Clara know that?

(c) Stolid Sean didn’t see the need to think hard about this problem and instead just plunged in
and computed q to 4 decimal places using standard probability theory. How could he do this,
and what is the answer?



2 Solutions to Problem Set 1

Solution

Let Xi ∈ {0, 1} be the random variable that indicates whether the ith shot of Harvard scores.

(a) Let ε =
∣∣ g
n − p

∣∣. It is easy to verify that when g
n < p, the event that

∑n
i=1Xi ≤ g implies

that
∣∣ 1
n

∑n
i=1Xi − p

∣∣ ≥ ε.
When n = 15, g = 1 and p = 0.1, it holds that g

n < p and ε = 1
30 . Applying the Chernoff

bound,
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]
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= 2 exp
(
− ε2n

2p(1− p)

)
≤ 1.823.

This bound tells nothing about the distribution, since we already know that q is a probability
measure which can not be greater than 1.

(b) The mean value is 0.1, which can be achieved precisely if scoring 1.5 (fractional) goals. The
closest integral scores around 1.5 are 1 and 2. For both cases, the deviation is 1/30, and
for all possible number of goals, the deviation is at least 1/30, thus the deviation bound can
tell us nothing about X . Therefore, the Chernoff bound which relies solely on the deviation
bound can provide little information.

(c) Note that
∑n

i=1Xi follows the binomial distribution. Directly compute the probability q.
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]
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]

= (1− p)n +
(
n

1

)
p(1− p)n−1

≈ 0.5490.

Problem 3 Derandomization

Let M be a ppTM that accepts a language L and runs in time p(n) for some polynomial p(·). Let x
be an input string of length n and r a random choice string of length p(n) � n. Let δ(x, r) = 1 if
M(x, r), the output ofM with coin toss sequence r, gives the correct answer about x’s membership
in L, and let δ(x, r) = 0 otherwise. Suppose Pr[M(Un, Up(n)) is correct] = 1− 2/2n.

How large can we make the success probability of M(Un, r) by setting the second input of M
to a fixed string r? That is, what is the best lower bound on

max
r

Pr[M(Un, r)]

that is implied by the given information, where maxr is taken over all binary strings of length p(n)?
[Note: This problem generalizes a fact used in the proof of Theorem 4, section 11, lecture

notes 3.]

http://zoo.cs.yale.edu/classes/cs461/2009/lectures/ln03.pdf
http://zoo.cs.yale.edu/classes/cs461/2009/lectures/ln03.pdf
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Solution

The naı̈ve lower bound is 1 − 2/2n, since the maximum can not be smaller than the aver-
age. We will show that this is the best general lower bound by constructing a case where
maxr Pr[M(Un, r) is correct] = 1− 2/2n.

Denote δ(x, r) as a 2n × 2p(n) 0-1 matrix. Assign to each column of δ(x, r) exactly 2 zeroes.
For every r, it holds that Pr[δ(Un, r)] = (2n − 2)/2n = 1− 2/2n.

Therefore it satisfies the above constraint that that Pr[δ(Un, Up(n))] = 1−2/2n. The maximum
is maxr Pr[δ(Un, r)] = 1− 2/2n.

Problem 4 One-way functions and the P-versus-NP question

[Textbook, Chapter 2, Exercise 3.]

Solution

The function f(π, φ, τ), where π represents the first n/2 bits and (φ, τ) is the input of fsat, is
defined as

f(π, φ, τ) =
{

(0, fsat(φ, τ)) if π = 0 · · · 0
(1, π, φ, τ) o.w.

.

It is obvious that f is polynomial-time-computable because both branches in the definition are
polynomial-time-computable and the condition can be verified in linear time. Claim 1 holds.

Suppose that A is such a polynomial-time algorithm that always inverts f . Let B be such an
algorithm whose input domain is the range of fsat and we define that B(y) = A(0, y). It is trivial
that B is also polynomial-time. For every y in the range of fsat, according to the definition of
f , B(y) will output some (π, φ, τ) such that (0, fsat(φ, τ)) = (0, y), i.e. fsat(φ, τ) = y, thus B
is a polynomial-time algorithm which always inverts fsat, which is contra to the assumption that
NP 6= P . Claim 2 holds.

Let C be such a program that C(y) outputs all but the first bit of y if the first bit of y is 1, and
outputs an arbitrary string if otherwise. It is easy to see that C is a polynomial-time algorithm that
inverts f when the first bit of y is 1. The probability that C fails to invert f can be written as

Pr[C fails ] = Pr[C(f(Un)) 6∈ f−1(f(Un))]
≤ Pr[the first bit of f(Un) is 0]
= Pr[the first n/2 bits of Un are all 0s]
= 2−

n
2 .

Claim 3 holds.
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