
P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 1 / 21

On the Lindell-Pinkas Secure Computation of Logarithms:
From Theory to Practice

Raphael S. Ryger
Yale University

New Haven, CT USA

ryger@cs.yale.edu

Onur Kardes
Stevens Institute of Technology

Hoboken, NJ USA

onur@cs.stevens.edu

Rebecca N. Wright
Rutgers University

Piscataway, NJ USA

rebecca.wright@rutgers.edu

April 26, 2008

Overview

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 2 / 21

Introduction

The Lindell-Pinkas lnx protocol

The division problem

Secure non-integer scaling of shared values

Implementation and performance

Conclusion

A variety of PPDM settings

Introduction

⊲ PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 3 / 21

?

? ?

?

SMC and PPDM

Introduction

PPDM settings

⊲ SMC and PPDM

Modular SMC

Shares to shares

Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 4 / 21

� PPDM dilemmas:

– what data to expose for analysis;
– what analyses to allow.

� Secure multiparty computation – SMC – theoretically
eliminates the former, reducing PPDM to the latter.

� Generic approaches to achieving SMC are computationally
expensive for non-trivial algorithms and large amounts of
input data, making them impractical for PPDM.

� Lindell, Pinkas, 2000: A modular, hybrid SMC approach,
combining building blocks implemented through generic or
specialized technologies, can be practical for PPDM!

� Lindell, Pinkas, 2000: Logarithm computation, an important
building block, is itself amenable to this approach.

SMC and PPDM

Introduction

PPDM settings

⊲ SMC and PPDM

Modular SMC

Shares to shares

Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 4 / 21

� PPDM dilemmas:

– what data to expose for analysis;
– what analyses to allow.

� Secure multiparty computation – SMC – theoretically
eliminates the former, reducing PPDM to the latter.

� Generic approaches to achieving SMC are computationally
expensive for non-trivial algorithms and large amounts of
input data, making them impractical for PPDM.

� Lindell, Pinkas, 2000: A modular, hybrid SMC approach,
combining building blocks implemented through generic or
specialized technologies, can be practical for PPDM!

� Lindell, Pinkas, 2000: Logarithm computation, an important
building block, is itself amenable to this approach.

SMC and PPDM

Introduction

PPDM settings

⊲ SMC and PPDM

Modular SMC

Shares to shares

Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 4 / 21

� PPDM dilemmas:

– what data to expose for analysis;
– what analyses to allow.

� Secure multiparty computation – SMC – theoretically
eliminates the former, reducing PPDM to the latter.

� Generic approaches to achieving SMC are computationally
expensive for non-trivial algorithms and large amounts of
input data, making them impractical for PPDM.

� Lindell, Pinkas, 2000: A modular, hybrid SMC approach,
combining building blocks implemented through generic or
specialized technologies, can be practical for PPDM!

� Lindell, Pinkas, 2000: Logarithm computation, an important
building block, is itself amenable to this approach.

SMC and PPDM

Introduction

PPDM settings

⊲ SMC and PPDM

Modular SMC

Shares to shares

Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 4 / 21

� PPDM dilemmas:

– what data to expose for analysis;
– what analyses to allow.

� Secure multiparty computation – SMC – theoretically
eliminates the former, reducing PPDM to the latter.

� Generic approaches to achieving SMC are computationally
expensive for non-trivial algorithms and large amounts of
input data, making them impractical for PPDM.

� Lindell, Pinkas, 2000: A modular, hybrid SMC approach,
combining building blocks implemented through generic or
specialized technologies, can be practical for PPDM!

� Lindell, Pinkas, 2000: Logarithm computation, an important
building block, is itself amenable to this approach.

SMC and PPDM

Introduction

PPDM settings

⊲ SMC and PPDM

Modular SMC

Shares to shares

Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 4 / 21

� PPDM dilemmas:

– what data to expose for analysis;
– what analyses to allow.

� Secure multiparty computation – SMC – theoretically
eliminates the former, reducing PPDM to the latter.

� Generic approaches to achieving SMC are computationally
expensive for non-trivial algorithms and large amounts of
input data, making them impractical for PPDM.

� Lindell, Pinkas, 2000: A modular, hybrid SMC approach,
combining building blocks implemented through generic or
specialized technologies, can be practical for PPDM!

� Lindell, Pinkas, 2000: Logarithm computation, an important
building block, is itself amenable to this approach.

Monolithic vs. modular SMC

Introduction

PPDM settings

SMC and PPDM

⊲ Modular SMC

Shares to shares

Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 5 / 21

phase 2

phase 1
logarithm

scalar product

monolithic

ordinary computation

specialized SMC

generic SMC

product

minindex

modular, hybrid

Shares to shares: the key to modularity with security

Introduction

PPDM settings

SMC and PPDM

Modular SMC

⊲ Shares to shares

Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 6 / 21

inter_1 + rand_1

inter_2 + rand_2

inter_1 + rand_1

inter_2 + rand_2

− rand_1

− rand_2

rand_1
?

?_1

?_2

?_3

inter_1

inter_2
rand_2

Toward the Lindell-Pinkas theses in practice

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

⊲ Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 7 / 21

� Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006:
Design and implementation of secure two-party
Bayes-net structure discovery in arbitrarily
partitioned data. Using ...

� (Increasing available computing power.)

� Malkhi, Nissan, Pinkas, Sella, 2004:
the Fairplay system implementing the Yao 1986 generic
scheme for secure two-pary computation.

� A circuit-generation library suitable for use with Fairplay.

� A development methodology and a coordination framework
for modular multiparty protocols.

� Implementations of building-block modules ...

Toward the Lindell-Pinkas theses in practice

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

⊲ Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 7 / 21

� Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006:
Design and implementation of secure two-party
Bayes-net structure discovery in arbitrarily
partitioned data. Using ...

� (Increasing available computing power.)

� Malkhi, Nissan, Pinkas, Sella, 2004:
the Fairplay system implementing the Yao 1986 generic
scheme for secure two-pary computation.

� A circuit-generation library suitable for use with Fairplay.

� A development methodology and a coordination framework
for modular multiparty protocols.

� Implementations of building-block modules ...

Toward the Lindell-Pinkas theses in practice

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

⊲ Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 7 / 21

� Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006:
Design and implementation of secure two-party
Bayes-net structure discovery in arbitrarily
partitioned data. Using ...

� (Increasing available computing power.)

� Malkhi, Nissan, Pinkas, Sella, 2004:
the Fairplay system implementing the Yao 1986 generic
scheme for secure two-pary computation.

� A circuit-generation library suitable for use with Fairplay.

� A development methodology and a coordination framework
for modular multiparty protocols.

� Implementations of building-block modules ...

Toward the Lindell-Pinkas theses in practice

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

⊲ Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 7 / 21

� Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006:
Design and implementation of secure two-party
Bayes-net structure discovery in arbitrarily
partitioned data. Using ...

� (Increasing available computing power.)

� Malkhi, Nissan, Pinkas, Sella, 2004:
the Fairplay system implementing the Yao 1986 generic
scheme for secure two-pary computation.

� A circuit-generation library suitable for use with Fairplay.

� A development methodology and a coordination framework
for modular multiparty protocols.

� Implementations of building-block modules ...

Toward the Lindell-Pinkas theses in practice

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

⊲ Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 7 / 21

� Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006:
Design and implementation of secure two-party
Bayes-net structure discovery in arbitrarily
partitioned data. Using ...

� (Increasing available computing power.)

� Malkhi, Nissan, Pinkas, Sella, 2004:
the Fairplay system implementing the Yao 1986 generic
scheme for secure two-pary computation.

� A circuit-generation library suitable for use with Fairplay.

� A development methodology and a coordination framework
for modular multiparty protocols.

� Implementations of building-block modules ...

Toward the Lindell-Pinkas theses in practice

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

⊲ Toward practice

Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 7 / 21

� Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006:
Design and implementation of secure two-party
Bayes-net structure discovery in arbitrarily
partitioned data. Using ...

� (Increasing available computing power.)

� Malkhi, Nissan, Pinkas, Sella, 2004:
the Fairplay system implementing the Yao 1986 generic
scheme for secure two-pary computation.

� A circuit-generation library suitable for use with Fairplay.

� A development methodology and a coordination framework
for modular multiparty protocols.

� Implementations of building-block modules ...

Building-block SMC modules

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

Toward practice

⊲ Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 8 / 21

Using homomorphic encryption:

� Private bit vectors to private shares of their scalar product.
� Private shares of arguments to private shares of their

product.

Building-block SMC modules

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

Toward practice

⊲ Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 8 / 21

Using homomorphic encryption:

� Private bit vectors to private shares of their scalar product.
� Private shares of arguments to private shares of their

product.

Using the Yao generic two-party SMC scheme:

� Sequences of private shares of a sequence of values to their
(public) minindex, the (smallest) index of the minimum.

Building-block SMC modules

Introduction

PPDM settings

SMC and PPDM

Modular SMC

Shares to shares

Toward practice

⊲ Building blocks

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 8 / 21

Using homomorphic encryption:

� Private bit vectors to private shares of their scalar product.
� Private shares of arguments to private shares of their

product.

Using the Yao generic two-party SMC scheme:

� Sequences of private shares of a sequence of values to their
(public) minindex, the (smallest) index of the minimum.

... And using both the Yao generic scheme and homomorphic
encryption:

� Private shares of an argument to private shares of its
logarithm, following the Lindell-Pinkas proposal—corrected,
optimized, and implemented in the work presented here.

The Lindell-Pinkas ln x protocol: overall plan

Introduction

The Lindell-Pinkas
ln x protocol

⊲ Overall plan

Precision

Phase 2 with scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 9 / 21

� Multiplicatively decompose x as 2n(1 + ε), where
−1/4 ≤ ε < 1/2. Additively decompose the logarithm,

lnx = ln 2n(1 + ε) = n ln 2 + ln(1 + ε) (1)

The Taylor expansion of the latter term,

ln(1 + ε) =
∞∑

i=1

(−1)i−1εi

i
= ε−

ε2

2
+

ε3

3
−

ε4

4
+ · · · (2)

will allow configurable accuracy.

� Protocol phase 1: From shares of x, compute shares of n
and ε using generic Yao two-party secure computation.

� Protocol phase 2: From the shares of ε yielded by phase 1,
compute shares of ln(1 + ε)—to “enough” terms of its
expansion—using oblivious polynomial evaluation.

The Lindell-Pinkas ln x protocol: overall plan

Introduction

The Lindell-Pinkas
ln x protocol

⊲ Overall plan

Precision

Phase 2 with scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 9 / 21

� Multiplicatively decompose x as 2n(1 + ε), where
−1/4 ≤ ε < 1/2. Additively decompose the logarithm,

lnx = ln 2n(1 + ε) = n ln 2 + ln(1 + ε) (1)

The Taylor expansion of the latter term,

ln(1 + ε) =
∞∑

i=1

(−1)i−1εi

i
= ε−

ε2

2
+

ε3

3
−

ε4

4
+ · · · (2)

will allow configurable accuracy.

� Protocol phase 1: From shares of x, compute shares of n
and ε using generic Yao two-party secure computation.

� Protocol phase 2: From the shares of ε yielded by phase 1,
compute shares of ln(1 + ε)—to “enough” terms of its
expansion—using oblivious polynomial evaluation.

The Lindell-Pinkas ln x protocol: overall plan

Introduction

The Lindell-Pinkas
ln x protocol

⊲ Overall plan

Precision

Phase 2 with scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 9 / 21

� Multiplicatively decompose x as 2n(1 + ε), where
−1/4 ≤ ε < 1/2. Additively decompose the logarithm,

lnx = ln 2n(1 + ε) = n ln 2 + ln(1 + ε) (1)

The Taylor expansion of the latter term,

ln(1 + ε) =
∞∑

i=1

(−1)i−1εi

i
= ε−

ε2

2
+

ε3

3
−

ε4

4
+ · · · (2)

will allow configurable accuracy.

� Protocol phase 1: From shares of x, compute shares of n
and ε using generic Yao two-party secure computation.

� Protocol phase 2: From the shares of ε yielded by phase 1,
compute shares of ln(1 + ε)—to “enough” terms of its
expansion—using oblivious polynomial evaluation.

How many bits of precision?

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

⊲ Precision

Phase 2 with scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 10 / 21

� Must be decided in advance!

� Let N be the lowest agreed upper bound on n. ε may have
as many as N bits of precision, which we want to preserve.

� We want similar precision in the output.

� Therefore, since we will be computing in integers, the
polynomial we compute in phase 2 must be adjusted to
accept ε scaled up by 2N ; and to deliver ln(1 + ε) scaled up
by some factor σ that should be at least 2N .

� ... But scaling of inputs/outputs of SMC modules if they
are to be accepted/delivered as private shares is not as
trivial as we are accustomed to thinking.

How many bits of precision?

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

⊲ Precision

Phase 2 with scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 10 / 21

� Must be decided in advance!

� Let N be the lowest agreed upper bound on n. ε may have
as many as N bits of precision, which we want to preserve.

� We want similar precision in the output.

� Therefore, since we will be computing in integers, the
polynomial we compute in phase 2 must be adjusted to
accept ε scaled up by 2N ; and to deliver ln(1 + ε) scaled up
by some factor σ that should be at least 2N .

� ... But scaling of inputs/outputs of SMC modules if they
are to be accepted/delivered as private shares is not as
trivial as we are accustomed to thinking.

How many bits of precision?

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

⊲ Precision

Phase 2 with scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 10 / 21

� Must be decided in advance!

� Let N be the lowest agreed upper bound on n. ε may have
as many as N bits of precision, which we want to preserve.

� We want similar precision in the output.

� Therefore, since we will be computing in integers, the
polynomial we compute in phase 2 must be adjusted to
accept ε scaled up by 2N ; and to deliver ln(1 + ε) scaled up
by some factor σ that should be at least 2N .

� ... But scaling of inputs/outputs of SMC modules if they
are to be accepted/delivered as private shares is not as
trivial as we are accustomed to thinking.

How many bits of precision?

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

⊲ Precision

Phase 2 with scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 10 / 21

� Must be decided in advance!

� Let N be the lowest agreed upper bound on n. ε may have
as many as N bits of precision, which we want to preserve.

� We want similar precision in the output.

� Therefore, since we will be computing in integers, the
polynomial we compute in phase 2 must be adjusted to
accept ε scaled up by 2N ; and to deliver ln(1 + ε) scaled up
by some factor σ that should be at least 2N .

� ... But scaling of inputs/outputs of SMC modules if they
are to be accepted/delivered as private shares is not as
trivial as we are accustomed to thinking.

How many bits of precision?

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

⊲ Precision

Phase 2 with scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 10 / 21

� Must be decided in advance!

� Let N be the lowest agreed upper bound on n. ε may have
as many as N bits of precision, which we want to preserve.

� We want similar precision in the output.

� Therefore, since we will be computing in integers, the
polynomial we compute in phase 2 must be adjusted to
accept ε scaled up by 2N ; and to deliver ln(1 + ε) scaled up
by some factor σ that should be at least 2N .

� ... But scaling of inputs/outputs of SMC modules if they
are to be accepted/delivered as private shares is not as
trivial as we are accustomed to thinking.

Accommodating the scaling in phase 2

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

Precision

⊲
Phase 2 with
scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 11 / 21

� Where α1 and α2 are the parties’ respective additive shares,
in some finite field (or ring) F , of ε · 2N to be delivered by
phase 1,

ε = (α1 +F α2)/2N

� Scaling the phase 2 output up by factor σ,
the Taylor series of (2) becomes

σ ln(1 + ε) =
∞∑

i=1

σ(−1)i−1(α1 +F α2)
i

i 2Ni

� ... But we will need a finite polynomial over F for the
oblivious polynomial evaluation.

Accommodating the scaling in phase 2

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

Precision

⊲
Phase 2 with
scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 11 / 21

� Where α1 and α2 are the parties’ respective additive shares,
in some finite field (or ring) F , of ε · 2N to be delivered by
phase 1,

ε = (α1 +F α2)/2N

� Scaling the phase 2 output up by factor σ,
the Taylor series of (2) becomes

σ ln(1 + ε) =
∞∑

i=1

σ(−1)i−1(α1 +F α2)
i

i 2Ni

� ... But we will need a finite polynomial over F for the
oblivious polynomial evaluation.

Accommodating the scaling in phase 2

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

Precision

⊲
Phase 2 with
scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 11 / 21

� Where α1 and α2 are the parties’ respective additive shares,
in some finite field (or ring) F , of ε · 2N to be delivered by
phase 1,

ε = (α1 +F α2)/2N

� Scaling the phase 2 output up by factor σ,
the Taylor series of (2) becomes

σ ln(1 + ε) =
∞∑

i=1

σ(−1)i−1(α1 +F α2)
i

i 2Ni

� ... But we will need a finite polynomial over F for the
oblivious polynomial evaluation.

From Taylor series over R to polynomial over F

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

Precision

Phase 2 with scaling

⊲ Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 12 / 21

� Truncate the series at k terms for the desired accuracy.

� If the numerator will always be divisible by the denominator
(in Z); and ...

� if we use an F large enough so that, where m = |F|, all
values in the recursive evaluation are always integers in the
interval [−⌊m

2 ⌋, ⌊
m

2 ⌋]; ...

� then we can reinterpret the additions and multiplications,
and even the divisions, as the corresponding operations in F ,
...

� allowing us to replace ‘α2’ with variable ‘y’, then open
parentheses and collect terms to arrive at a polynomial over
F for oblivious polynomial evaluation.

From Taylor series over R to polynomial over F

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

Precision

Phase 2 with scaling

⊲ Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 12 / 21

� Truncate the series at k terms for the desired accuracy.

� If the numerator will always be divisible by the denominator
(in Z); and ...

� if we use an F large enough so that, where m = |F|, all
values in the recursive evaluation are always integers in the
interval [−⌊m

2 ⌋, ⌊
m

2 ⌋]; ...

� then we can reinterpret the additions and multiplications,
and even the divisions, as the corresponding operations in F ,
...

� allowing us to replace ‘α2’ with variable ‘y’, then open
parentheses and collect terms to arrive at a polynomial over
F for oblivious polynomial evaluation.

From Taylor series over R to polynomial over F

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

Precision

Phase 2 with scaling

⊲ Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 12 / 21

� Truncate the series at k terms for the desired accuracy.

� If the numerator will always be divisible by the denominator
(in Z); and ...

� if we use an F large enough so that, where m = |F|, all
values in the recursive evaluation are always integers in the
interval [−⌊m

2 ⌋, ⌊
m

2 ⌋]; ...

� then we can reinterpret the additions and multiplications,
and even the divisions, as the corresponding operations in F ,
...

� allowing us to replace ‘α2’ with variable ‘y’, then open
parentheses and collect terms to arrive at a polynomial over
F for oblivious polynomial evaluation.

From Taylor series over R to polynomial over F

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

Precision

Phase 2 with scaling

⊲ Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 12 / 21

� Truncate the series at k terms for the desired accuracy.

� If the numerator will always be divisible by the denominator
(in Z); and ...

� if we use an F large enough so that, where m = |F|, all
values in the recursive evaluation are always integers in the
interval [−⌊m

2 ⌋, ⌊
m

2 ⌋]; ...

� then we can reinterpret the additions and multiplications,
and even the divisions, as the corresponding operations in F ,
...

� allowing us to replace ‘α2’ with variable ‘y’, then open
parentheses and collect terms to arrive at a polynomial over
F for oblivious polynomial evaluation.

From Taylor series over R to polynomial over F

Introduction

The Lindell-Pinkas
ln x protocol

Overall plan

Precision

Phase 2 with scaling

⊲ Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 12 / 21

� Truncate the series at k terms for the desired accuracy.

� If the numerator will always be divisible by the denominator
(in Z); and ...

� if we use an F large enough so that, where m = |F|, all
values in the recursive evaluation are always integers in the
interval [−⌊m

2 ⌋, ⌊
m

2 ⌋]; ...

� then we can reinterpret the additions and multiplications,
and even the divisions, as the corresponding operations in F ,
...

� allowing us to replace ‘α2’ with variable ‘y’, then open
parentheses and collect terms to arrive at a polynomial over
F for oblivious polynomial evaluation.

Setting the scale-up: the original Lindell-Pinkas version

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

⊲ Original scale-up

Brute-force scale-up

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 13 / 21

� Lindell and Pinkas set the scale-up factor σ at
2N lcm(2, . . . , k), giving the truncated Taylor series

ln(1 + ε) · 2N lcm(2, . . . , k) ≈
k∑

i=1

(−1)i−1 (lcm(2, . . . , k)/i) (α1 +F α2)
i

2N(i−1)

� In the numerator,

(α1 +F α2)
i = (ε · 2N)i = εi · 2Ni

� Yet this is not generally divisible by 2N(i−1).

Setting the scale-up: the original Lindell-Pinkas version

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

⊲ Original scale-up

Brute-force scale-up

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 13 / 21

� Lindell and Pinkas set the scale-up factor σ at
2N lcm(2, . . . , k), giving the truncated Taylor series

ln(1 + ε) · 2N lcm(2, . . . , k) ≈
k∑

i=1

(−1)i−1 (lcm(2, . . . , k)/i) (α1 +F α2)
i

2N(i−1)

� In the numerator,

(α1 +F α2)
i = (ε · 2N)i = εi · 2Ni

� Yet this is not generally divisible by 2N(i−1).

Setting the scale-up: the original Lindell-Pinkas version

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

⊲ Original scale-up

Brute-force scale-up

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 13 / 21

� Lindell and Pinkas set the scale-up factor σ at
2N lcm(2, . . . , k), giving the truncated Taylor series

ln(1 + ε) · 2N lcm(2, . . . , k) ≈
k∑

i=1

(−1)i−1 (lcm(2, . . . , k)/i) (α1 +F α2)
i

2N(i−1)

� In the numerator,

(α1 +F α2)
i = (ε · 2N)i = εi · 2Ni

� Yet this is not generally divisible by 2N(i−1).

Brute-force scale-up is not too expensive!

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Original scale-up

⊲
Brute-force
scale-up

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 14 / 21

� Brute-force solution: We set σ at 2Nk lcm(2, . . . , k), giving
the truncated Taylor series

ln(1 + ε) · 2Nk lcm(2, . . . , k) ≈
k∑

i=1

(−1)i−1 2N(k−i) (lcm(2, . . . , k)/i) (α1 +F α2)
i

� Surprisingly, this does not require that F be significantly
larger!

� But are other modules in the invoking modular protocol now
saddled with the expense of the larger scaling factor?

Brute-force scale-up is not too expensive!

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Original scale-up

⊲
Brute-force
scale-up

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 14 / 21

� Brute-force solution: We set σ at 2Nk lcm(2, . . . , k), giving
the truncated Taylor series

ln(1 + ε) · 2Nk lcm(2, . . . , k) ≈
k∑

i=1

(−1)i−1 2N(k−i) (lcm(2, . . . , k)/i) (α1 +F α2)
i

� Surprisingly, this does not require that F be significantly
larger!

� But are other modules in the invoking modular protocol now
saddled with the expense of the larger scaling factor?

Brute-force scale-up is not too expensive!

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Original scale-up

⊲
Brute-force
scale-up

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 14 / 21

� Brute-force solution: We set σ at 2Nk lcm(2, . . . , k), giving
the truncated Taylor series

ln(1 + ε) · 2Nk lcm(2, . . . , k) ≈
k∑

i=1

(−1)i−1 2N(k−i) (lcm(2, . . . , k)/i) (α1 +F α2)
i

� Surprisingly, this does not require that F be significantly
larger!

� But are other modules in the invoking modular protocol now
saddled with the expense of the larger scaling factor?

Arbitrary scaling: naive Yao recourse

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

⊲ Naive Yao scaling

Optimized scaling

Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 15 / 21

� Scaling up by an integer factor:
autonomously by the parties, no problem.

� Scaling down by an integer factor, or, more generally, scaling
by a non-integer factor:
requires an SMC episode.

� Autonomous scaling by a non-integer factor is not
possible—even to integer approximation! Approximate
division does not distribute over modular addition.

� A Yao SMC episode can accomplish arbitrary scaling, but
division and table look-ups are expensive.

Arbitrary scaling: naive Yao recourse

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

⊲ Naive Yao scaling

Optimized scaling

Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 15 / 21

� Scaling up by an integer factor:
autonomously by the parties, no problem.

� Scaling down by an integer factor, or, more generally, scaling
by a non-integer factor:
requires an SMC episode.

� Autonomous scaling by a non-integer factor is not
possible—even to integer approximation! Approximate
division does not distribute over modular addition.

� A Yao SMC episode can accomplish arbitrary scaling, but
division and table look-ups are expensive.

Arbitrary scaling: naive Yao recourse

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

⊲ Naive Yao scaling

Optimized scaling

Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 15 / 21

� Scaling up by an integer factor:
autonomously by the parties, no problem.

� Scaling down by an integer factor, or, more generally, scaling
by a non-integer factor:
requires an SMC episode.

� Autonomous scaling by a non-integer factor is not
possible—even to integer approximation! Approximate
division does not distribute over modular addition.

� A Yao SMC episode can accomplish arbitrary scaling, but
division and table look-ups are expensive.

Arbitrary scaling: naive Yao recourse

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

⊲ Naive Yao scaling

Optimized scaling

Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 15 / 21

� Scaling up by an integer factor:
autonomously by the parties, no problem.

� Scaling down by an integer factor, or, more generally, scaling
by a non-integer factor:
requires an SMC episode.

� Autonomous scaling by a non-integer factor is not
possible—even to integer approximation! Approximate
division does not distribute over modular addition.

� A Yao SMC episode can accomplish arbitrary scaling, but
division and table look-ups are expensive.

Arbitrary scaling: optimized Yao recourse

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Naive Yao scaling

⊲ Optimized scaling

Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 16 / 21

� Integer part of scale-up factor σ handled separately, leaving a
scale-down to compute and add modularly.

� For p parties, only p variants of excess in the simple
distribution of the scale-down over p original shares.

� A Yao circuit can

– accept the parties’ original shares;
– accept the parties’ simple-minded autonomous

scale-downs;
– accept a random value from parties 1 through p − 1;
– determine from the non-modular sum of the original

shares which correction to apply to the autonomous
scale-downs, and share the corrected scale-down using
the random values.

Arbitrary scaling: optimized Yao recourse

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Naive Yao scaling

⊲ Optimized scaling

Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 16 / 21

� Integer part of scale-up factor σ handled separately, leaving a
scale-down to compute and add modularly.

� For p parties, only p variants of excess in the simple
distribution of the scale-down over p original shares.

� A Yao circuit can

– accept the parties’ original shares;
– accept the parties’ simple-minded autonomous

scale-downs;
– accept a random value from parties 1 through p − 1;
– determine from the non-modular sum of the original

shares which correction to apply to the autonomous
scale-downs, and share the corrected scale-down using
the random values.

Arbitrary scaling: optimized Yao recourse

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Naive Yao scaling

⊲ Optimized scaling

Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 16 / 21

� Integer part of scale-up factor σ handled separately, leaving a
scale-down to compute and add modularly.

� For p parties, only p variants of excess in the simple
distribution of the scale-down over p original shares.

� A Yao circuit can

– accept the parties’ original shares;
– accept the parties’ simple-minded autonomous

scale-downs;
– accept a random value from parties 1 through p − 1;
– determine from the non-modular sum of the original

shares which correction to apply to the autonomous
scale-downs, and share the corrected scale-down using
the random values.

Arbitrary scaling: imperfect secrecy

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Naive Yao scaling

Optimized scaling

⊲ Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 17 / 21

� It is possible to trade off the perfection of the perfect secrecy
in the sharing for the possibility of autonomous scaling after
all—no additional SMC needed!

� Theoretically challenging.

� Eminently practical.

Arbitrary scaling: imperfect secrecy

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Naive Yao scaling

Optimized scaling

⊲ Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 17 / 21

� It is possible to trade off the perfection of the perfect secrecy
in the sharing for the possibility of autonomous scaling after
all—no additional SMC needed!

� Theoretically challenging.

� Eminently practical.

Arbitrary scaling: imperfect secrecy

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Naive Yao scaling

Optimized scaling

⊲ Imperfect secrecy

Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 17 / 21

� It is possible to trade off the perfection of the perfect secrecy
in the sharing for the possibility of autonomous scaling after
all—no additional SMC needed!

� Theoretically challenging.

� Eminently practical.

Benefits for the Lindell-Pinkas logarithm protocol

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Naive Yao scaling

Optimized scaling

Imperfect secrecy

⊲ Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 18 / 21

� Compatibility:
We can efficiently reverse unwanted scale-ups that have
entered as technical artifacts.

� Performance:
We can efficiently achieve wanted scale-ups, and so avoid
the table look-up recommended by Lindell and Pinkas to
convert n to 2N · n ln 2 within the Yao computation of
phase 1.

Benefits for the Lindell-Pinkas logarithm protocol

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Naive Yao scaling

Optimized scaling

Imperfect secrecy

⊲ Benefits for log

Implementation and
performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 18 / 21

� Compatibility:
We can efficiently reverse unwanted scale-ups that have
entered as technical artifacts.

� Performance:
We can efficiently achieve wanted scale-ups, and so avoid
the table look-up recommended by Lindell and Pinkas to
convert n to 2N · n ln 2 within the Yao computation of
phase 1.

Implementation

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

⊲ Implementation

Performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 19 / 21

� Yao-circuit generator in Perl.

Implementation

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

⊲ Implementation

Performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 19 / 21

� Yao-circuit generator in Perl.

� Fairplay Yao-circuit runner in Java.

Implementation

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

⊲ Implementation

Performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 19 / 21

� Yao-circuit generator in Perl.

� Fairplay Yao-circuit runner in Java.

� Controlling program, invoking Fairplay for phase 1 and
implementing the oblivious polynomial evaluation of phase 2,
in C.

Implementation

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

⊲ Implementation

Performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 19 / 21

� Yao-circuit generator in Perl.

� Fairplay Yao-circuit runner in Java.

� Controlling program, invoking Fairplay for phase 1 and
implementing the oblivious polynomial evaluation of phase 2,
in C.

� Bignums and basic cryptographic math from libssl and
libcrypto.

Performance

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Implementation

⊲ Performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 20 / 21

� Both parties running as processes on this laptop.

Performance

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Implementation

⊲ Performance

Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 20 / 21

� Both parties running as processes on this laptop.

� Intel Pentium M at 1.86 GHz.

N k modulus bits gates absolute error time (seconds)

13 4 60 1386 < 0.00458 3.57
22 5 120 2797 < 0.00183 6.16
28 7 210 4732 < 0.00034 10.04

Conclusion

Introduction

The Lindell-Pinkas
ln x protocol

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

⊲ Conclusion

P3DM ’08 Lindell-Pinkas Secure Computation of Logarithms 21 / 21

� The Lindell-Pinkas two-party secure logarithm protocol, as it
has evolved in the course of our implementation, seems to
work well and be quite usable as a module in a complex
two-party SMC data-mining protocol.

� SMC usability and performance enhancements will continue.
� ... But SMC can already do much now. The main

impediment to real-world application is a gap in awareness
and understanding of what can already be done with SMC
today, a gap that is just beginning to be addressed.

	Introduction
	PPDM settings
	SMC and PPDM
	Modular SMC
	Shares to shares
	Toward practice
	Building blocks

	The Lindell-Pinkas lnx protocol
	Overall plan
	Precision
	Phase 2 with scaling
	Reinterpreting

	The division problem
	Original scale-up
	Brute-force scale-up

	Secure non-integer scaling of shared values
	Naive Yao scaling
	Optimized scaling
	Imperfect secrecy
	Benefits for log

	Implementation and performance
	Implementation
	Performance

	Conclusion
	Conclusion

