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Secure multiparty computation — SMC — theoretically
eliminates the former, reducing PPDM to the latter.

Generic approaches to achieving SMC are computationally
expensive for non-trivial algorithms and large amounts of
input data, making them impractical for PPDM.

Lindell, Pinkas, 2000: A modular, hybrid SMC approach,
combining building blocks implemented through generic or
specialized technologies, can be practical for PPDM!

Lindell, Pinkas, 2000: Logarithm computation, an important
building block, is itself amenable to this approach.
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scheme for secure two-pary computation.

A circuit-generation library suitable for use with Fairplay.

A development methodology and a coordination framework
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Using homomorphic encryption:

O Private bit vectors to private shares of their scalar product.
O Private shares of arguments to private shares of their
product.

Using the Yao generic two-party SMC scheme:

O Sequences of private shares of a sequence of values to their
(public) minindex, the (smallest) index of the minimum.

... And using both the Yao generic scheme and homomorphic
encryption:

O Private shares of an argument to private shares of its
logarithm, following the Lindell-Pinkas proposal—corrected,
optimized, and implemented in the work presented here.
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The Lindell-Pinkas In x protocol: overall plan
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will allow configurable accuracy.

O Protocol phase 1: From shares of x, compute shares of n
and ¢ using generic Yao two-party secure computation.

O Protocol phase 2: From the shares of ¢ yielded by phase 1,
compute shares of In(1 4+ ¢)—to “enough” terms of its
expansion—using oblivious polynomial evaluation.
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We want similar precision in the output.

Therefore, since we will be computing in integers, the
polynomial we compute in phase 2 must be adjusted to
accept ¢ scaled up by 2%V; and to deliver In(1 + ¢) scaled up
by some factor o that should be at least 2%

... But scaling of inputs/outputs of SMC modules if they
are to be accepted/delivered as private shares is not as
trivial as we are accustomed to thinking.

P3DM '08 Lindell-Pinkas Secure Computation of Logarithms 10 / 21



Accommodating the scaling in phase 2

Introduction 0 Where a1 and a9 are the parties’ respective additive shares,
The Lindell-Pinkas . .. . . .
In = protocol in some finite field (or ring) F, of ¢-2" to be delivered by

Over.a|.| plan phaSe 1;

Precision N
Phase 2 with -

i e = (o1 +rag)/2

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion

P3DM '08 Lindell-Pinkas Secure Computation of Logarithms 11 /21



Accommodating the scaling in phase 2

lkicslicrion 00 Where a7 and a» are the parties’ respective additive shares,
The Lindell-Pinkas

In = protocol in some finite field (or ring) F, of ¢-2" to be delivered by
Over.al.l plan phase 1,
Precision N
Phase 2 with —
D> scaling € = (Oél _|_]: Oé2)/2
Reinterpreting

The division problem

SR O Scaling the phase 2 output up by factor o,
RIS 7 A the Taylor series of (2) becomes

values

Implementation and
performance

Conclusion O ln ]_ —l— 5

f:(f ) +F ag)’

i 2N7,
1=1

P3DM '08 Lindell-Pinkas Secure Computation of Logarithms 11 /21



Accommodating the scaling in phase 2

Introduction

The Lindell-Pinkas
In x protocol

Overall plan

Precision
Phase 2 with
D> scaling

Reinterpreting

The division problem

Secure non-integer
scaling of shared
values

Implementation and
performance

Conclusion
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. But we will need a finite polynomial over F for the
oblivious polynomial evaluation.
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If the numerator will always be divisible by the denominator
(in Z); and ...

if we use an F large enough so that, where m = |F]|, all
values in the recursive evaluation are always integers in the

interval [— 2], |2 ]]; ...

then we can reinterpret the additions and multiplications,
and even the divisions, as the corresponding operations in F,

allowing us to replace ‘s’ with variable ‘y’, then open
parentheses and collect terms to arrive at a polynomial over
JF for oblivious polynomial evaluation.
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0 VYet this is not generally divisible by 2V0@=1),
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Brute-force scale-up is not too expensive!
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O Surprisingly, this does not require that F be significantly
larger!

0 But are other modules in the invoking modular protocol now
saddled with the expense of the larger scaling factor?
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Arbitrary scaling: naive Yao recourse
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Scaling up by an integer factor:
autonomously by the parties, no problem.

Scaling down by an integer factor, or, more generally, scaling
by a non-integer factor:
requires an SMC episode.

Autonomous scaling by a non-integer factor is not
possible—even to integer approximation! Approximate
division does not distribute over modular addition.

A Yao SMC episode can accomplish arbitrary scaling, but
division and table look-ups are expensive.
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[

Integer part of scale-up factor o handled separately, leaving a
scale-down to compute and add modularly.

For p parties, only p variants of excess in the simple
distribution of the scale-down over p original shares.

A Yao circuit can

— accept the parties’ original shares;

— accept the parties’ simple-minded autonomous
scale-downs;

— accept a random value from parties 1 through p — 1;

— determine from the non-modular sum of the original
shares which correction to apply to the autonomous
scale-downs, and share the corrected scale-down using
the random values.
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It is possible to trade off the perfection of the perfect secrecy
in the sharing for the possibility of autonomous scaling after

all—no additional SMC needed!

Theoretically challenging.
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O Compatibility:

We can efficiently reverse unwanted scale-ups that have

entered as technical artifacts.
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Compatibility:
We can efficiently reverse unwanted scale-ups that have
entered as technical artifacts.

Performance:

We can efficiently achieve wanted scale-ups, and so avoid
the table look-up recommended by Lindell and Pinkas to
convert n to 2% - nln 2 within the Yao computation of
phase 1.
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O Bignums and basic cryptographic math from libssl and

Conclusion

libcrypto.
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Introduction 0 Both parties running as processes on this laptop.
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Implementation
D> Performance

0 Intel Pentium M at 1.86 GHz.

Conclusion N k modulus bits gates absolute error time (seconds)
13 4 60 1386 < 0.00458 3.57
22 b 120 2797 < 0.00183 6.16
26 7 210 4732 < 0.00034 10.04
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Conclusion

introduction _ 0 The Lindell-Pinkas two-party secure logarithm protocol, as it
;hiﬂfoiilljmkas has evolved in the course of our implementation, seems to
The division problem work well and be quite usable as a module in a complex
e s two-party SMC data-mining protocol.

values O SMC usability and performance enhancements will continue.
e on and O ... But SMC can already do much now. The main

Conclusion impediment to real-world application is a gap in awareness

> Conclusion

and understanding of what can already be done with SMC
today, a gap that is just beginning to be addressed.
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