Lecture Notes 7

19 Strongly One-Way from Weakly One-Way Functions

We now complete the proof theorem 1 from lecture 6 by constructing a strongly one-way function g from a weakly one-way function f.

Let f be a weakly one-way function with associated polynomial $p(\cdot)$. Assume w.l.o.g. that f is length-preserving. Let $t(n)=n \cdot p(n)$, and let $T=\{n \cdot t(n) \mid n \in \mathbb{N}\}$. Let g be the function on length $n \cdot t(n)$ strings defined by $g\left(x_{1}, \ldots, x_{t(n)}\right)=\left(f\left(x_{1}\right), \ldots, f\left(x_{t(n)}\right)\right.$, where $\left|x_{1}\right|, \ldots,\left|x_{t(n)}\right|=$ n. That is, given a string x of length $n \cdot t(n), g$ splits it into $t(n)$ length n strings $x_{1}, \ldots, x_{t(n)}$, applies $f(\cdot)$ to each, and concatenates the $t(n)$ result strings so obtained.

Lemma $1 g$ is strongly one-way on lengths in T.
Proof: Assume g is not strongly one-way on lengths in T. We proceed to derive a contradiction.
Since g is assumed not strongly one-way, there exists a p.p.t. algorithm B^{\prime} and a polynomial $q(\cdot)$ such that for infinitely many $m \in T$,

$$
\begin{equation*}
\operatorname{Pr}\left[B^{\prime} \text { inverts } g\left(U_{m}\right)\right]>\frac{1}{q(m)} . \tag{1}
\end{equation*}
$$

Let M^{\prime} be the infinite set of integers for which inequality 1 holds, and let $N^{\prime}=\left\{n \mid n^{2} p(n) \in M^{\prime}\right\}$.
We describe a p.p.t. algorithm A^{\prime} for inverting f on input y. First consider the procedure I^{\prime} for inverting f.

Procedure $I^{\prime}(y)$:
For $i=1$ to $t(n)$ do:

1. Choose $x_{1}, \ldots, x_{t(n)} \in\{0,1\}^{n}$ uniformly and independently.
2. Compute $\left(z_{1}, \ldots, z_{t(n)}\right)=B^{\prime}\left(f\left(x_{1}\right), \ldots, f\left(x_{i-1}\right), y, f\left(x_{i+1}\right), \ldots, f\left(x_{t(n)}\right)\right)$.
3. If $f\left(z_{i}\right)=y$, then halt and output z_{i} and declare "success".

If $f\left(z_{i}\right) \neq y$ for all i, then halt and declare "failure".
Now, algorithm $A^{\prime}(y)$ runs $I^{\prime}(y)$ repeatedly a total of $a(n)=2 n^{2} \cdot p(n) \cdot q\left(n^{2} p(n)\right)$ times. If any of the runs of $I^{\prime}(y)$ succeed, then A^{\prime} succeeds and gives the output of the first successful I^{\prime}; otherwise, A^{\prime} fails.

For $n \in N^{\prime}$, we will show that

$$
\operatorname{Pr}\left[A^{\prime} \text { inverts } f\left(U_{n}\right)\right]>1-\frac{1}{p(n)},
$$

contradicting the assumption that f is weakly one-way.
Let

$$
S_{n}=\left\{x \left\lvert\, \operatorname{Pr}\left[I^{\prime} \text { inverts } f(x)\right]>\frac{n}{a(n)}\right.\right\}
$$

be the set of good inputs of length n. Claim 1 shows that S_{n} is the set of inputs on which I^{\prime} succeeds often enough so that A^{\prime} has an exponentially small failure probability.

Claim 1 For all $x \in S_{n}, \operatorname{Pr}\left[A^{\prime}\right.$ inverts $\left.f(x)\right]>1-\frac{1}{2^{n}}$.
Proof: Immediate since for $x \in S_{n}$,

$$
\operatorname{Pr}\left[A^{\prime} \text { fails on } f(x)\right]<\left(1-\frac{n}{a(n)}\right)^{a(n)}<\frac{1}{e^{n}}<\frac{1}{2^{n}} .
$$

We now show in Claim 2 that almost all inputs x are in S_{n} for those lengths n that correspond to values $m=n^{2} p(n) \in M^{\prime}$ on which B^{\prime} has a success probability greater than $1 / q(m)$. (See inequality 1 .)

Claim 2 For all $n \in N^{\prime}$,

$$
\frac{\left|S_{n}\right|}{2^{n}}>1-\frac{1}{2 p(n)} .
$$

Proof: Assume to the contrary that

$$
\begin{equation*}
\left|S_{n}\right| \leq\left(1-\frac{1}{2 p(n)}\right) \cdot 2^{n} \tag{2}
\end{equation*}
$$

and let $m=n^{2} p(n)$. By inequality 1 ,

$$
\begin{equation*}
s(n) \stackrel{\text { df }}{=} \operatorname{Pr}\left[B^{\prime} \text { inverts } g\left(U_{m}\right)\right]>\frac{1}{q(m)} . \tag{3}
\end{equation*}
$$

The random variable U_{m} consists of $n \cdot p(n)$ independent n-bit blocks $U_{n}^{(1)}, \ldots, U_{n}^{(n \cdot p(n))}$. Define

$$
\begin{aligned}
& s_{1}(n)=\operatorname{Pr}\left[\left(B^{\prime} \text { inverts } g\left(U_{m}\right)\right) \wedge(\exists i) U_{n}^{(i)} \notin S_{n}\right] ; \\
& s_{2}(n)=\operatorname{Pr}\left[\left(B^{\prime} \text { inverts } g\left(U_{m}\right)\right) \wedge(\forall i) U_{n}^{(i)} \in S_{n}\right] .
\end{aligned}
$$

Clearly, $s(n)=s_{1}(n)+s_{2}(n)$.
We derive a contradiction by showing that both $s_{1}(n)$ and $s_{2}(n)$ are bounded from above by $n^{2} \cdot p(n) / a(n)$.

Note that

$$
\begin{equation*}
\operatorname{Pr}\left[I^{\prime} \text { inverts } f(x)\right] \geq \operatorname{Pr}\left[B^{\prime} \text { inverts } g\left(U_{m}\right) \mid U_{n}^{(i)}=x\right] \tag{4}
\end{equation*}
$$

This is because algorithm I^{\prime} succeeds on $y=f(x)$ whenever B^{\prime} succeeds on $g\left(U_{m}\right)$ and $U_{n}^{(i)}=x$.
Following the text, we have

$$
\begin{align*}
s_{1}(n) & =\operatorname{Pr}\left[(\exists i)\left(\left(B^{\prime} \text { inverts } g\left(U_{m}\right)\right) \wedge U_{n}^{(i)} \notin S_{n}\right)\right] \tag{5}\\
& \leq \sum_{i=1}^{n \cdot p(n)} \operatorname{Pr}\left[\left(B^{\prime} \text { inverts } g\left(U_{m}\right)\right) \wedge U_{n}^{(i)} \notin S_{n}\right] \tag{6}\\
& \leq \sum_{i=1}^{n \cdot p(n)} \sum_{x \notin S_{n}} \operatorname{Pr}\left[\left(B^{\prime} \text { inverts } g\left(U_{m}\right)\right) \wedge U_{n}^{(i)}=x\right] \tag{7}\\
& =\sum_{i=1}^{n \cdot p(n)} \sum_{x \notin S_{n}} \operatorname{Pr}\left[U_{n}^{(i)}=x\right] \cdot \operatorname{Pr}\left[B^{\prime} \text { inverts } g\left(U_{m}\right) \mid U_{n}^{(i)}=x\right] \tag{8}
\end{align*}
$$

$$
\begin{align*}
& \leq \sum_{i=1}^{n \cdot p(n)} \max _{x \notin S_{n}}\left\{\operatorname{Pr}\left[B^{\prime} \text { inverts } g\left(U_{m}\right) \mid U_{n}^{(i)}=x\right]\right\} \tag{9}\\
& \leq \sum_{i=1}^{n \cdot p(n)} \max _{x \notin S_{n}}\left\{\operatorname{Pr}\left[I^{\prime} \text { inverts } f(x)\right]\right\} \tag{10}\\
& \leq n \cdot p(n) \cdot \frac{n}{a(n)}=\frac{n^{2} \cdot p(n)}{a(n)} . \tag{11}
\end{align*}
$$

Step (10) follows from inequality (4), and step (11) follows from the definition of S_{n} and the obvious fact that $\operatorname{Pr}\left[I^{\prime}\right.$ inverts $\left.f(x)\right] \leq 1$ since all events have probability at most 1 .

The following bound on $s_{2}(n)$ holds for all sufficiently large n.

$$
\begin{align*}
s_{2}(n) & \leq \operatorname{Pr}\left[(\forall i) U_{n}^{(i)} \in S_{n}\right] \tag{12}\\
& \leq\left(1-\frac{1}{2 p(n)}\right)^{n \cdot p(n)}<\frac{1}{2^{n / 2}} \tag{13}\\
& <\frac{n^{2} \cdot p(n)}{a(n)} \tag{14}
\end{align*}
$$

Here, step (12) follows from the definition of $s_{2}(n)$, step (13) is by the assumed inequality (2)), and step (14) holds because every positive rational function is greater than an inverse exponential for all sufficiently large n.

From (11) and (14), we have

$$
s(n)=s_{1}(n)+s_{2}(n) \leq \frac{2 n^{2} \cdot p(n)}{a(n)}=\frac{1}{q\left(n^{2} p(n)\right)}=\frac{1}{q(m)}
$$

This contradicts (3), completing the proof of the claim.
To finish the proof of the lemma, we observe that

$$
\operatorname{Pr}\left[U_{n} \in S_{n}\right] \geq 1-\frac{1}{2 p(n)}
$$

follows immediately from claim 2, and

$$
\operatorname{Pr}\left[A^{\prime} \text { inverts } f\left(U_{n}\right) \mid U_{n} \in S_{n}\right] \geq 1-\frac{1}{2^{n}}
$$

follows from claim 1 since the bound applies to every $x \in S_{n}$. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[A^{\prime} \text { inverts } f\left(U_{n}\right)\right] & \geq \operatorname{Pr}\left[\left(A^{\prime} \text { inverts } f\left(U_{n}\right)\right) \wedge U_{n} \in S_{n}\right] \\
& =\operatorname{Pr}\left[U_{n} \in S_{n}\right] \cdot \operatorname{Pr}\left[A^{\prime} \text { inverts } f\left(U_{n}\right) \mid U_{n} \in S_{n}\right] \\
& \geq\left(1-\frac{1}{2 p(n)}\right) \cdot\left(1-\frac{1}{2^{n}}\right)>1-\frac{1}{p(n)} .
\end{aligned}
$$

This contradicts the assumption that f is weakly one-way with associated polynomial $p(\cdot)$, concluding the proof of the lemma.

