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Lecture Notes 9

22 Proving a Predicate is Hard-Core

We continue the proof of Lemma 3 of section 21. Recall that f is a strongly one-way and length
preserving function, and that

g(x, r) df= (f(x), r)

b(x, r) df= x · r mod 2.

We showed in Lemma 2 that g is strongly one-way. We want to show that b is a hard core for g.
Assume to the contrary that b is not a hard core for g. Then there exists a p.p.t. algorithm G that

predicts b with non-negligible advantage εG(n). Thus, there is a polynomial p(·) such that

Pr[G(f(Un), Xn) = b(Un, Xn)] ≥ 1
2

+
1

p(n)
(1)

for all n in an infinite set N .
To complete the proof of Lemma 3, we will do two things:

• We will construct an algorithm A that on input y attempts to invert f .

• We will show that, for some polynomial q(·), A has success probability greater than 1
q(n) at

inverting f on length n inputs for all sufficiently large n in the infinite setN . This contradicts
the assumption that f is strongly one-way.

We construct A now and defer the analysis of its success probability to the next lecture.

22.1 Using G to invert f

How can G help us to invert f? A priori it doesn’t seem to be much help to have a predictor for
only a single predicate when our algorithm A is supposed to correctly output a length-n string in
f−1(y). It’s not at all obvious how to use G, and several tricks are involved.

Using b to extract bits of x: Let ei be the unit vector with a 1-bit in position i and 0’s elsewhere.
As before, we treat strings in {0, 1}∗ as bit-vectors, so xi is the ith bit of x. It follows from the
definition of Boolean dot product that b(x, ei) = x · ei mod 2 = xi.

Fact
b(x, r)⊕ b(x, r ⊕ ei) = xi. (2)
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This follows because

b(x, r)⊕ b(x, s) =

 n⊕
j=1

xj · rj

⊕
 n⊕

j=1

xj · sj


=

n⊕
j=1

(xj · (rj ⊕ sj))

= b(x, r ⊕ s) (3)

Taking s = r ⊕ ei, equation 3 gives

b(x, r)⊕ b(x, r ⊕ ei) = b(x, r ⊕ (r ⊕ ei)) = b(x, ei) = xi (4)

as desired.

First idea forA: For each i = 1, . . . , n, useG to guess b(x, r) and b(x, r⊕ei) for random r, then
use equation 4 to guess xi, i.e., guess xi = G(y, r)⊕G(y, r ⊕ ei). Repeat this procedure to obtain
polynomially many guesses of xi and choose the majority value. Return x = x1 . . . xn as the guess
for f−1(y).

If G is correct about b on both calls, then xi is correct. As long the probability that both calls
on G are correct is greater than 1

2 + 1
poly , repetition will amplify this probability to be sufficiently

close to 1 so that the probability of all n bits of x being correct is also close to 1. Unfortunately, this
is only the case when G’s success probability is 3

4 + 1
poly , that is, its advantage is a little bit greater

than 1
4 . All we know about our G is that it satisfies inequality 1, so its advantage is only 1

p(n) .

Second idea for A: Same as first idea, except instead of using G to guess b(x, r), we just use a
random bit b̂(r). Thus, we guess that xi = b̂(r) ⊕G(y, r ⊕ ei). This of course doesn’t work since
the probability of being correct is exactly 1

2 and we get no advantage. But if we somehow had an
oracle that would give us the correct value for b̂(r) = b(x, r), then this idea would indeed work
since then the advantage at guessing xi would be the same as G’s advantage at guessing b.

Third idea forA: We generate a small (O(log n)-sized) set of random stringsR0 and correspond-
ing guesses for b̂(r) for each r ∈ R0. From R0, we deterministically generate a polynomial set of
strings R and corresponding values for b̂(r), r ∈ R. By the way the construction will work, if b̂(r)
is correct for all r ∈ R0, then b̂(r) is correct for all r ∈ R. Since the number of strings in R0 for
which we require correct guesses is only O(log n), it follows that the probability of all O(log n)
guesses being correct is at least 1

poly since 2O(log n) = poly(n).
The strings in R are uniformly distributed over {0, 1}n, but they are only pairwise independent.

However, this turns out to be sufficient for the construction to work.

How to generate R0 and R: Let ` = dlog2(2n · p(n)2 + 1)e.

1. Select s1, . . . , s` ∈ {0, 1}n uniformly and independently. Select σ1, . . . , σ` ∈ {0, 1} uni-
formly and independently. Let R0 = {s1, . . . s`} and b̂(si) = σi, i = 1, . . . , `.

2. Let J be the family of non-empty subsets of {1, 2, . . . , `}. For all sets J ∈ J , compute

rJ =
⊕
j∈J

sj and ρJ =
⊕
j∈J

σj .
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Let R = {rJ | J ∈ J }, and b̂(rJ) = ρJ for all J ∈ J .

Note that r{i} = si and ρ{i} = σi, so indeed R ⊇ R0.

Fact If b(x, sj) = σj for all j ∈ {1, . . . , `}, then b(x, rJ) = ρJ for all J ∈ J .

This follows because

b(x, rJ) = b(x,
⊕
j∈J

sj) =
⊕
j∈J

b(x, sj) =
⊕
j∈J

σj = ρJ .

The first equality is from the definition of rJ , the second comes from repeated use of equation3, the
third uses the assumption that σj is correct for all j ∈ {1, . . . , `}, and the final equality is from the
definition of ρJ .

22.2 The complete algorithm for A

Here is the complete algorithm for A. On input y, let n = |y| and ` = dlog2(2n · p(n)2 + 1)e.

1. Uniformly and independently, select s1, . . . , s` ∈ {0, 1}n and σ1, . . . , σ` ∈ {0, 1}.

2. For all non-empty J ⊆ {1, 2, . . . , `}, compute

rJ =
⊕
j∈J

sj and ρJ =
⊕
j∈J

σj .

3. For all i ∈ {1, . . . , n}, for all non-empty J ⊆ {1, . . . , `}, compute

zJ
i = ρJ ⊕G(y, rJ ⊕ ei).

4. For all i ∈ {1, . . . , n}, let zi = majorityJ{zJ
i }.

5. Output z = z1 . . . zn.
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