YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography

Professor M. J. Fischer

Notes 9 (rev. 2) February 10, 2009

Lecture Notes 9

22 **Proving a Predicate is Hard-Core**

We continue the proof of Lemma 3 of section 21. Recall that f is a strongly one-way and length preserving function, and that

$$g(x,r) \stackrel{\text{df}}{=} (f(x),r)$$
$$b(x,r) \stackrel{\text{df}}{=} x \cdot r \mod 2$$

We showed in Lemma 2 that g is strongly one-way. We want to show that b is a hard core for g.

Assume to the contrary that b is not a hard core for g. Then there exists a p.p.t. algorithm G that predicts b with non-negligible advantage $\varepsilon_G(n)$. Thus, there is a polynomial $p(\cdot)$ such that

$$\Pr[G(f(U_n), X_n) = b(U_n, X_n)] \ge \frac{1}{2} + \frac{1}{p(n)}$$
(1)

for all n in an infinite set N.

To complete the proof of Lemma 3, we will do two things:

- We will construct an algorithm A that on input y attempts to invert f.
- We will show that, for some polynomial $q(\cdot)$, A has success probability greater than $\frac{1}{q(n)}$ at inverting f on length n inputs for all sufficiently large n in the infinite set N. This contradicts the assumption that f is strongly one-way.

We construct A now and defer the analysis of its success probability to the next lecture.

22.1 Using G to invert f

How can G help us to invert f? A priori it doesn't seem to be much help to have a predictor for only a single predicate when our algorithm A is supposed to correctly output a length-n string in $f^{-1}(y)$. It's not at all obvious how to use G, and several tricks are involved.

Using b to extract bits of x: Let e^i be the unit vector with a 1-bit in position i and 0's elsewhere. As before, we treat strings in $\{0,1\}^*$ as bit-vectors, so x_i is the i^{th} bit of x. It follows from the definition of Boolean dot product that $b(x, e^i) = x \cdot e^i \mod 2 = x_i$.

Fact

$$b(x,r) \oplus b(x,r \oplus e^i) = x_i.$$
⁽²⁾

This follows because

$$b(x,r) \oplus b(x,s) = \left(\bigoplus_{j=1}^{n} x_j \cdot r_j \right) \oplus \left(\bigoplus_{j=1}^{n} x_j \cdot s_j \right)$$
$$= \bigoplus_{j=1}^{n} (x_j \cdot (r_j \oplus s_j))$$
$$= b(x,r \oplus s)$$
(3)

Taking $s = r \oplus e^i$, equation 3 gives

$$b(x,r) \oplus b(x,r \oplus e^i) = b(x,r \oplus (r \oplus e^i)) = b(x,e^i) = x_i$$
(4)

as desired.

First idea for A: For each i = 1, ..., n, use G to guess b(x, r) and $b(x, r \oplus e^i)$ for random r, then use equation 4 to guess x_i , i.e., guess $x_i = G(y, r) \oplus G(y, r \oplus e^i)$. Repeat this procedure to obtain polynomially many guesses of x_i and choose the majority value. Return $x = x_1 ... x_n$ as the guess for $f^{-1}(y)$.

If G is correct about b on both calls, then x_i is correct. As long the probability that both calls on G are correct is greater than $\frac{1}{2} + \frac{1}{\text{poly}}$, repetition will amplify this probability to be sufficiently close to 1 so that the probability of all n bits of x being correct is also close to 1. Unfortunately, this is only the case when G's success probability is $\frac{3}{4} + \frac{1}{\text{poly}}$, that is, its advantage is a little bit greater than $\frac{1}{4}$. All we know about our G is that it satisfies inequality 1, so its advantage is only $\frac{1}{p(n)}$.

Second idea for A: Same as first idea, except instead of using G to guess b(x, r), we just use a random bit $\hat{b}(r)$. Thus, we guess that $x_i = \hat{b}(r) \oplus G(y, r \oplus e^i)$. This of course doesn't work since the probability of being correct is exactly $\frac{1}{2}$ and we get no advantage. But if we somehow had an oracle that would give us the correct value for $\hat{b}(r) = b(x, r)$, then this idea would indeed work since then the advantage at guessing x_i would be the same as G's advantage at guessing b.

Third idea for A: We generate a small $(O(\log n)$ -sized) set of random strings R_0 and corresponding guesses for $\hat{b}(r)$ for each $r \in R_0$. From R_0 , we deterministically generate a polynomial set of strings R and corresponding values for $\hat{b}(r)$, $r \in R$. By the way the construction will work, if $\hat{b}(r)$ is correct for all $r \in R_0$, then $\hat{b}(r)$ is correct for all $r \in R$. Since the number of strings in R_0 for which we require correct guesses is only $O(\log n)$, it follows that the probability of all $O(\log n)$ guesses being correct is at least $\frac{1}{\text{poly}}$ since $2^{O(\log n)} = \text{poly}(n)$.

The strings in R are uniformly distributed over $\{0, 1\}^n$, but they are only pairwise independent. However, this turns out to be sufficient for the construction to work.

How to generate R_0 and R: Let $\ell = \lceil \log_2(2n \cdot p(n)^2 + 1) \rceil$.

- 1. Select $s^1, \ldots, s^\ell \in \{0, 1\}^n$ uniformly and independently. Select $\sigma^1, \ldots, \sigma^\ell \in \{0, 1\}$ uniformly and independently. Let $R_0 = \{s^1, \ldots, s^\ell\}$ and $\hat{b}(s^i) = \sigma^i, i = 1, \ldots, \ell$.
- 2. Let \mathcal{J} be the family of non-empty subsets of $\{1, 2, \dots, \ell\}$. For all sets $J \in \mathcal{J}$, compute

$$r^J = \bigoplus_{j \in J} s^j \qquad \text{and} \qquad \rho^J = \bigoplus_{j \in J} \sigma^j$$

Let
$$R = \{r^J \mid J \in \mathcal{J}\}$$
, and $\hat{b}(r^J) = \rho^J$ for all $J \in \mathcal{J}$

Note that $r^{\{i\}} = s^i$ and $\rho^{\{i\}} = \sigma^i$, so indeed $R \supseteq R_0$.

Fact If $b(x, s^j) = \sigma^j$ for all $j \in \{1, \ldots, \ell\}$, then $b(x, r^J) = \rho^J$ for all $J \in \mathcal{J}$.

This follows because

$$b(x, r^J) = b(x, \bigoplus_{j \in J} s^j) = \bigoplus_{j \in J} b(x, s^j) = \bigoplus_{j \in J} \sigma^j = \rho^J.$$

The first equality is from the definition of r^J , the second comes from repeated use of equation3, the third uses the assumption that σ^j is correct for all $j \in \{1, ..., \ell\}$, and the final equality is from the definition of ρ^J .

22.2 The complete algorithm for A

Here is the complete algorithm for A. On input y, let n = |y| and $\ell = \lceil \log_2(2n \cdot p(n)^2 + 1) \rceil$.

- 1. Uniformly and independently, select $s^1, \ldots, s^\ell \in \{0, 1\}^n$ and $\sigma^1, \ldots, \sigma^\ell \in \{0, 1\}$.
- 2. For all non-empty $J \subseteq \{1, 2, \dots, \ell\}$, compute

$$r^J = \bigoplus_{j \in J} s^j$$
 and $\rho^J = \bigoplus_{j \in J} \sigma^j$.

3. For all $i \in \{1, \ldots, n\}$, for all non-empty $J \subseteq \{1, \ldots, \ell\}$, compute

$$z_i^J = \rho^J \oplus G(y, r^J \oplus e^i).$$

- 4. For all $i \in \{1, \ldots, n\}$, let $z_i = \text{majority}_J\{z_i^J\}$.
- 5. Output $z = z_1 ... z_n$.