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23 Analyzing the Success Probability

We now complete the proof of Lemma 3 of section 21. Recall again that f is a strongly one-way
and length preserving function and that

g(x, r) df= (f(x), r)

b(x, r) df= x · r mod 2.

Assuming that b is not a hard core for g, there is a p.p.t. algorithm G and a polynomial p(n)
such that G predicts b with advantage

ε(n) df= εG(n) ≥ 1
p(n)

(1)

for all n in an infinite setN . In section 22.2 of lecture 9, we constructed an algorithmA for inverting
f . We now show that A has success probability at least 1

p(n) at inverting f on length-n inputs, for
all n ∈ N . This contradicts the assumption that f is strongly one-way and completes the proof of
Lemma 3.

Assume for the rest of this discussion that n ∈ N . Let

s(x) = Pr[G(f(x), Rn) = b(x,Rn)].

Here Rn is a uniformly distributed random variable over length-n strings, distinct from the iden-
tically distributed random variables Un and Xn, which we also mention from time to time. Thus,
s(x) is the fine-grained success probability of G for each particular length-n string x. We know that
the average of s(x) taken over all length-n strings x is the overall success probability of G, so∑

x s(x)
2n

=
1
2

+ ε(n). (2)

Define

Sn =
{
x ∈ {0, 1}n | s(x) ≥ 1

2
+
ε(n)

2

}
. (3)

Claim 1 |Sn| ≥ ε(n) · 2n.

Three different proofs of this claim are given in handout 3: One is algebraic, one is geometric,
and one is based on Markov’s inequality. We do not repeat them here but refer the reader to the
handout. We only mention that all three are based on the idea that in order for the average value
of s(x) to exceed 1

2 + ε(n), there must be a certain number of x for which s(x) ≥ 1
2 + ε(n)

2 . That
number turns out to be ε(n) · 2n.

Claim 2 ∀x ∈ Sn,∀i ∈ {1, . . . , n},

Pr[|{J | b(x, rJ)⊕G(f(x), rJ ⊕ ei) = xi}| >
1
2
(2` − 1)] > 1− 1

2n
.

http://zoo.cs.yale.edu/classes/cs461/2009/attach/ho03.html
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Proof: Let x ∈ Sn and i ∈ {1, . . . , n}. Let ζJ be a random variable ranging over {0, 1} such that

ζJ = 1 iff b(x, rJ)⊕G(f(x), rJ ⊕ ei) = xi

iff G(f(x), rJ ⊕ ei) = b(x, rJ ⊕ ei).

Thus, ζJ = 1 whenever G succeeds at computing xi. Note that rJ and rJ ⊕ ei are uniformly
distributed over {0, 1}n. Hence, by 1 and 3,

Pr[ζJ = 1] = s(x) ≥ 1
2

+
ε(n)

2
≥ 1

2
+

1
2p(n)

. (4)

A key observation is that the ζJ ’s are pairwise independent. This follows from the fact that the
rJ ’s are pairwise independent. To see this, let J 6= K. Without loss of generality, we can choose
k ∈ K −J . By definition, rK and rJ are both sums of subsets of the independent random variables
{s1, . . . , s`}. Since k ∈ K − J , the term sk appears in the sum for rK but not for rJ . Therefore, sk

is independent of rJ , which implies that rK is independent of rJ .
Let m = 2` − 1. Since ` = dlog2(2n · p(n)2 + 1)e, we have that 2` ≥ 2log2(2n·p(n)2+1) =

2n · p(n)2 + 1, so m ≥ 2n · p(n)2. We also have

2` ≤ 2log2(2n·p(n)2+1)+1 = 2 · (2n · p(n)2 + 1) (5)

We use Chebyshev’s inequality to bound Pr[
∑

J ζ
J ≤ 1

2 ·m]. This is an upper bound on the
probability that the majority value zi that algorithmA computes for xi is wrong. Recall Chebyshev’s
inequality

Pr[|X − E(X)| ≥ δ] ≤ Var(X)
δ2

. (6)

Let X =
∑

J ζ
J and δ = m

2p(n) . All of the ζJ are identically distributed, so we drop the superscript
in the following.

E(ζ) = Pr[ζ = 1] ≥ 1
2

+
1

2p(n)

by equation 4. Thus,

E(X) = m · E(ζ) ≥
(

1
2

+
1

2p(n)

)
·m. (7)

We also have
Var(ζ) = E(ζ2)− E(ζ)2

Since ζ is 0-1 valued, it follows that ζ2 = ζ. Hence,

Var(ζ) = E(ζ)− E(ζ)2 = E(ζ)(1− E(ζ)) ≤ 1
4

The bound of 1/4 simply reflects the fact that the maximum value of the function x(1− x), which
is reached for x = 1/2. Since the variables ζJ are pairwise independent, they are also uncorrelated,
so

Var(X) = Var

(∑
J

ζJ)

)
=
∑
J

Var(ζJ) ≤ m

4
. (8)
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Plugging the expression for δ into inequality 6 and doing some calculations using inequalities 7
and 8, we get

Pr
[
X ≤ 1

2
·m
]
≤ Pr

[∣∣∣∣X − (1
2

+
1

2p(n)

)
·m
∣∣∣∣ ≥ 1

2p(n)
·m
]

≤ Var(X)
( m
2p(n))

2

≤ m

4
· (2p(n))2

m2
=
p(n)2

m

≤ p(n)2

2n · p(n)2
=

1
2n
.

This completes the proof of the claim.

To finish the proof of the lemma, we observe that A successfully inverts f(x) if all of the
following are true:

1. x ∈ Sn.

2. The guesses for the σi are all correct, that is, σi = b(x, sI) for all i.

3. Each zi that A produces is correct.

The first event is true with probability at least ε(n) ≥ 1
p(n) by Claim 1. The second event is true

with probability
1
2`
≥ 1

4n · p(n)2 + 2

by inequality 5. The third event is true with probability at least (1 − 1
2n)n > 1

2 for all n ≥ 2.
Multiplying these together gives us a lower bound on the success probability of f , namely,

1
p(n)

· 1
4n · p(n)2 + 2

· 1
2

=
1

8n · p(n)3 + 4p(n)
.

Thus, taking q(n) = 8n · p(n)3 + 4p(n), A has a success probability greater than 1
q(n) for all suffi-

ciently large n ∈ N , contradicting the assumption that f is strongly one-way. Thus, the assumption
that b is not hard-core for f and that G exists must be false. This completes the proof of Lemma 3
of section 21.

24 Hard-Core Functions

We extend the notion of a hard-core predicate of a function to a hard-core function.

Definition: Let h : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable length-regular function.1

Let ` = |h(1n)|. h is a hard core of f if for all p.p.t. algorithms D′, all positive polynomials p(·),
and all sufficiently large n,

|Pr[D′(f(Xn), h(Xn)) = 1]− Pr[D′(f(Xn), R`(n)) = 1] <
1

p(n)
,

where Xn and R`(n) are independent random variables, uniformly distributed over {0, 1}n and
{0, 1}`(n), respectively.

1Recall that h is length-regular if |h(x)| = |h(y)| whenever |x| = |y|.
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Intuitively, h is a hard core for f if the value of h(x) is indistinguishable from a random string,
even knowing the value of f(x). On the surface, this looks to be an even stronger condition than
unpredictability. Obviously, if one could predict h(x) from f(x), then one could distinguish h(x)
from random. Namely, if the given string equals the prediction, output 1, otherwise output 0. On
the other hand, it’s not a priori obvious how being able to distinguish h(x) from random would be
useful at prediction.

Theorem 1 Let f be strongly one-way. Let c > 0 and let `(n) = min{n, dc log2 ne}. Let x be a
string of length n and s a string of length 2n. Define

g2(x, s) = (f(x), s),
bi(x, s) = x · (si+1, . . . , si+n), for i = 1, . . . , `(n),
h(x, s) = b1(x, s) . . . b`(|x|)(x, s).

Then h is a hard core of g2.

We omit the non-trivial proof of this theorem and remark only that hard core functions with
logarithmic lengths are known for RSA and other cryptographic collections, assuming the corre-
sponding collections are one-way. Details are in the textbook.

25 Probability Ensembles

To begin our formal development of pseudorandom sequence generation, we define a probability
ensemble, analogous to the previous definition of a collection of one-way functions.

Let I be a countable set. An ensemble indexed by I is a sequence of random variables X =
{Xi}i∈I indexed by I .

Typical index sets are the natural numbers N or binary strings {0, 1}∗. Typically,X = {Xn}n∈N
hasXn ranging over strings of length poly(n), andX = {Xw}w∈{0,1}∗ hasXw ranging over strings
of length poly(|w|).

26 Polynomial Time Indistinguishability

We give two definitions of polynomial time indistinguishable ensembles, depending on the index
set.

Variant 1: Ensembles X = {Xn}n∈N and Y = {Yn}n∈N are indistinguishable in polynomial
time if for all probabilistic polynomial time algorithms D, all positive polynomials p(·), and all
sufficiently large n

|Pr[D(Xn, 1n) = 1]− Pr[D(Yn, 1n) = 1]| < 1
p(n)

.

Variant 2: Ensembles X = {Xw}w∈{0,1}∗ and Y = {Yw}w∈{0,1}∗ are indistinguishable in poly-
nomial time if for all probabilistic polynomial time algorithms D, all positive polynomials p(·), and
all sufficiently large n

|Pr[D(Xw, w) = 1]− Pr[D(Yw, w) = 1]| < 1
p(|w|)

.
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Easy consequences

Let D be a p.p.t. algorithm. Let d(α) be the probability that D(α) = 1. Let dX(n) = E[d(Xn)],
dY (n) = E[d(Yn)], be the expected value of D’s output when given a string from X or from Y ,
respectively. Let

δ(n) = |dX(n)− dY (n)|.

Then X and Y are indistinguishable by D iff δ is negligible in n.
Let wt(α) = # 1’s in α. If X , Y are polynomial-time indistinguishable, then∣∣∣Pr

[
wt(Xn) <

n

2

]
− Pr

[
wt(Yn) <

n

2

]∣∣∣
regarded as a function of n is negligible. (Why?)

Note: The same applies to any polynomial-time computable string statistic.


	Analyzing the Success Probability
	Hard-Core Functions
	Probability Ensembles
	Polynomial Time Indistinguishability

