Lecture Notes 11

27 Statistical Closeness

Let $X=\left\{X_{n}\right\}_{n \in \mathbb{N}}, Y=\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ be probability ensembles. X, Y are statistically close if their statistical difference $\Delta(n)$ is negligible, where

$$
\Delta(n)=\frac{1}{2} \sum_{\alpha}\left|\operatorname{Pr}\left[X_{n}=\alpha\right]-\operatorname{Pr}\left[Y_{n}=\alpha\right]\right| .
$$

Theorem 1 If X, Y are statistically close, then X, Y are indistinguishable in polynomial time.
Here's the proof that I only sketched in class.
Proof: We prove the contrapositive. Suppose X, Y are not indistinguishable in polynomial time. Then there exists a p.p.t. algorithm D and a positive polynomial $p(\cdot)$ such that for infinitely many n,

$$
\begin{equation*}
\left|\operatorname{Pr}\left[D\left(X_{n}, 1^{n}\right)=1\right]-\operatorname{Pr}\left[D\left(Y_{n}, 1^{n}\right)=1\right]\right| \geq \frac{1}{p(n)} \tag{1}
\end{equation*}
$$

For α a length $-n$ string, let $p(\alpha) \stackrel{\text { df }}{=} \operatorname{Pr}\left[D\left(\alpha, 1^{n}\right)=1\right]$. Then

$$
\begin{align*}
& \operatorname{Pr}\left[D\left(X_{n}, 1^{n}\right)=1\right]=\sum_{\alpha} p(\alpha) \cdot \operatorname{Pr}\left[X_{n}=\alpha\right] . \tag{2}\\
& \operatorname{Pr}\left[D\left(Y_{n}, 1^{n}\right)=1\right]=\sum_{\alpha} p(\alpha) \cdot \operatorname{Pr}\left[Y_{n}=\alpha\right] . \tag{3}
\end{align*}
$$

Plugging (2) and (3) into (1) gives

$$
\begin{align*}
\frac{1}{p(n)} & \leq\left|\sum_{\alpha} p(\alpha) \cdot \operatorname{Pr}\left[X_{n}=\alpha\right]-\sum_{\alpha} p(\alpha) \cdot \operatorname{Pr}\left[Y_{n}=\alpha\right]\right| \tag{4}\\
& =\left|\sum_{\alpha} p(\alpha) \cdot\left(\operatorname{Pr}\left[X_{n}=\alpha\right]-\operatorname{Pr}\left[Y_{n}=\alpha\right]\right)\right| \tag{5}\\
& \leq \sum_{\alpha} p(\alpha) \cdot\left|\operatorname{Pr}\left[X_{n}=\alpha\right]-\operatorname{Pr}\left[Y_{n}=\alpha\right]\right| \tag{6}\\
& \leq \sum_{\alpha}\left|\operatorname{Pr}\left[X_{n}=\alpha\right]-\operatorname{Pr}\left[Y_{n}=\alpha\right]\right| \tag{7}\\
& =2 \Delta(n) . \tag{8}
\end{align*}
$$

Thus, $\Delta(n)$ is not negligible, so X, Y are not statistically close.
The converse to theorem 1 does not hold.
Theorem 2 There exists $X=\left\{X_{n}\right\}_{n \in \mathbb{N}}$ that is indistinguishable from the uniform ensemble $U=$ $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ in polynomial time, yet X and U are not statistically close. Furthermore, X_{n} assigns all probability mass to a set S_{n} consisting of at most $2^{n / 2}$ strings of length n.

Proof: We construct the ensemble $X=\left\{X_{n}\right\}_{n \in \mathbb{N}}$ by choosing for each n a set $S_{n} \subseteq\{0,1\}^{n}$ of cardinality $N=2^{n / 2}$ and letting X_{n} be the uniformly distributed on S_{n}. Thus, $\operatorname{Pr}\left[X_{n}=\alpha\right]=1 / N$ for $\alpha \in S_{n}$, and $\operatorname{Pr}\left[X_{n}=\alpha\right]=0$ for $\alpha \notin S_{n}$.

The fact that X, U are not statistically close is immediate from the above. Using the facts that $2^{n}=N^{2}$ and $\left|S_{n}\right|=N$, and $\left|\overline{S_{n}}\right|=N^{2}-N$, we get

$$
\begin{aligned}
\Delta(n) & =\frac{1}{2} \sum_{\alpha}\left|\operatorname{Pr}\left[X_{n}=\alpha\right]-\operatorname{Pr}\left[U_{n}=\alpha\right]\right| \\
& =\frac{1}{2}\left(\sum_{\alpha \in S_{n}}\left|\operatorname{Pr}\left[X_{n}=\alpha\right]-\frac{1}{N^{2}}\right|+\sum_{\alpha \notin S_{n}}\left|\operatorname{Pr}\left[X_{n}=\alpha\right]-\frac{1}{N^{2}}\right|\right) \\
& =\frac{1}{2}\left(\sum_{\alpha \in S_{n}}\left|\frac{1}{N}-\frac{1}{N^{2}}\right|+\sum_{\alpha \notin S_{n}}\left|0-\frac{1}{N^{2}}\right|\right) \\
& =\frac{1}{2} \cdot\left(N \cdot\left(\frac{1}{N}-\frac{1}{N^{2}}\right)+\left(N^{2}-N\right) \frac{1}{N^{2}}\right) \\
& =1-\frac{1}{N}
\end{aligned}
$$

The proof in the textbook supplies the low-level details needed to establish this theorem, but it is a little unclear about the construction itself, particularly about how the set S_{n} is chosen.

We wish to choose a set S_{n} for which the corresponding distribution X_{n} is indistinguishable from U_{n} by every polynomial size circuit C. We do this by diagonalizing over all circuits of size $2^{n / 8}$. We start with all size 2^{N} subsets of $\{0,1\}^{n}$ as candidates for S_{n}. For each such circuit C, we discard from consideration all candidates on which C is too successful at distinguishing the corresponding ensemble from uniform. By a counting argument, we show that not very many candidates get thrown out at each stage-so few in fact that there are still candidates left after all of the size $2^{n / 8}$ circuits have been considered. We choose any remaining candidate for S_{n} and conclude that no size $2^{n / 8}$ circuit is very successful at distinguishing X_{n} from U_{n}.

More precisely, here's how to determine which candidates to discard. First, consider an n-input circuit C with at most $2^{n / 8}$ gates. Let p_{C} be C 's expected output on uniformly chosen inputs. Then $C(x)=1$ for a p_{C} fraction of all length n strings, and $C(x)=0$ for the remainder.

Let $\mathcal{S}_{n}=\left\{S \subseteq\{0,1\}^{n}|\quad| S \mid=2^{N}\right\}$. This is the initial family of candidate sets. Let $f_{C}: \mathcal{S}_{n} \rightarrow\{0,1\}$, where

$$
f_{C}(S)=\left|\frac{\sum_{s \in S} C(s)}{N}-p_{C}\right| .
$$

Thus, $f_{C}(S)$ is the amount that the average value of $C(s)$ taken over strings $s \in S$ differs from the average value of $C(u)$ taken over all length- n strings u. By the law of large numbers, we would expect $f_{C}(S)$ to be very small with high probability for randomly chosen $S \in \mathcal{S}$. Call a set S bad for C if $f_{C}(S) \geq 2^{-n / 8}$. Using the Chernoff bound, one shows that the fraction of sets $S \in \mathcal{S}_{n}$ that are bad for C is less than $2^{-2^{n / 4}}$. (Details are in the book.)

Next, one argues that there are at most $2^{2^{n / 4}}$ circuits of size $2^{n / 8}$. (This is by a counting argument. Details are not in the book and should be verified.) From this, it follows that there is at least one set $S_{n} \in \mathcal{S}_{n}$ which is not bad for any such circuit. Fix such a set.

Now, let X_{n} be uniformly distributed over S_{n}. Observe that the following three quantities are all the same: the expected value of $C\left(X_{n}\right), \operatorname{Pr}\left[C\left(X_{n}\right)=1\right]$, and $\sum_{s \in S} C(s) / N$. Hence, for all circuits C of size at most $2^{n / 8}$, we have $\left|\operatorname{Pr}\left[C\left(X_{n}\right)=1\right]-\operatorname{Pr}\left[C\left(U_{n}\right)=1\right]\right|=f_{C}\left(S_{n}\right)<2^{-n / 8}$, which
grows more slowly than $1 / p(n)$ for any polynomial $p(\cdot)$. We conclude that the probabilistic ensembles U and X are indistinguishable by polynomial-size circuits, which also implies polynomial-time indistinguishability by probabilistic polynomial-time Turing machines.

We remark that a consequence of theorem 2 is that the set S_{n} on which X_{n} has non-zero probability mass cannot be recognized in polynomial time. Assume to the contrary that it could be recognized by some polynomial time algorithm A, that is, $A(x)=1$ if $x \in S_{n}$ and $A(x)=0$ otherwise.. Then A itself would distinguish X_{n} from U_{n}. Clearly, $\operatorname{Pr}\left[A\left(X_{n}\right)=1\right]=1$ but $\operatorname{Pr}\left[A\left(U_{n}\right)=1\right]=\left|S_{n}\right| / 2^{n}$. Since $\left|S_{n}\right|=2^{n / 2}$, these two probabilities differ by $1-\frac{1}{2^{n / 2}}$ which is greater than $\frac{1}{2}$ for all sufficiently large n. (Note that the constant 2 is also a polynomial!)

28 Indistinguishability by Repeated Sampling

The definition of polynomial time indistinguishability given in section 26 gives the distinguishing algorithm D a single random sample from either X or Y and compare the two probabilities of it outputting a 1 . We can generalize that definition in a straightforward way by providing D with multiple samples, as long as the number of samples is itself bounded by a polynomial $m(n)$. If the difference in output probabilities in this case is a negligible function, we say that X, Y are indistinguishable by polynomial-time sampling. See Definition 3.2.4 of the textbook for details

Giving D multiple samples allows for new possible distinguishing algorithms. For example, consider the algorithm $\operatorname{Eq}(x, y)$ that outputs 1 if $x=y$ and 0 otherwise. Eq able to distinguish the ensemble X of Theorem 2 from U. Let's analyze the probabilities.

$$
\operatorname{Pr}\left[\operatorname{Eq}\left(X_{n}^{1}, X_{n}^{2}\right)=1\right]=\frac{1}{N}
$$

since no matter what value X_{n}^{1} assumes, there is a $1 / N$ chance that the second (independent) sample is equal to it. (Recall that $N=2^{n / 2}$.) On the other hand,

$$
\operatorname{Pr}\left[\operatorname{Eq}\left(U_{n}^{1}, U_{n}^{2}\right)=1\right]=\frac{1}{N^{2}} .
$$

The difference of these two probabilities is clearly non-negligible.
However, it turns out that multiple samples are only helpful in cases such as this where at least one of the distributions cannot be constructed in polynomial time, as we shall see.

28.1 Efficiently constructible ensembles

We say that an ensemble $X=\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is polynomial-time constructible if there exists a polynomial-time probabilistic algorithm S such that the output distribution $S\left(1^{n}\right)$ and X_{n} are identically distributed.

28.2 Multiple samples don't help with constructible ensembles

Theorem 3 Let probability ensembles X, Y be indistinguishable in polynomial time, and suppose both are polynomial-time constructible. Then X, Y are indistinguisable by polynomial-time sampling.

Proof: The proof is an example of the hybrid technique, also sometimes called an interpolation proof. Here's the outline of it.

Assume X, Y are distinguishable by D using $m=m(n)$ samples. Let $X_{n}^{(1)}, \ldots, X_{n}^{(m)}$ be independent random variables identically distributed to X_{n} and similarly for Y. Let

$$
p(X)=\operatorname{Pr}\left[D\left(X_{n}^{(1)}, \ldots, X_{n}^{(m)}\right)=1\right]
$$

and let

$$
p(Y)=\operatorname{Pr}\left[D\left(Y_{n}^{(1)}, \ldots, Y_{n}^{(m)}\right)=1\right] .
$$

By assumption, D can distinguish X, Y, so the difference $\delta(n)=|p(x)=p(y)|$ is non-negligible.
We now construct a sequence of hybrid m-tuples of random variables for $k=0, \ldots, m$:

$$
H_{n}^{k} \stackrel{\mathrm{df}}{=}\left(X_{n}^{(1)}, \ldots, X_{n}^{(k)}, Y_{n}^{(k+1)}, \ldots, Y_{n}^{(m)}\right)
$$

Clearly, H_{n}^{0} consists of all Y 's, and H_{n}^{m} consists of all X 's. Hence, D distinguishes between H_{n}^{0} and H_{n}^{m} with probability $\delta(n)$.

Now let $\delta_{k}(n)$ be the absolute value of the difference in D 's probability of outputting a 1 given H_{n}^{k} and H_{n}^{k+1}. It is easily seen that $\sum_{k=0}^{m-1} \delta_{k}(n) \geq \delta(n)$; hence, for some particular value of $k=k_{0}$,

$$
\delta_{k_{0}}(n) \geq \frac{\delta(n)}{m}
$$

We now describe a single-sample distinguisher D^{\prime}. On input α, it first chooses a random number k from $\{0, \ldots, m-1\}$ Next, it generates k independent random numbers x_{1}, \ldots, x_{k} distributed according to X_{n} and $m-k-1$ random numbers y_{k+2}, \ldots, y_{m} distributed according to Y_{n}. It can do this by the assumption that X and Y are polynomial-time constructible. It then constructs $h=\left(x_{1}, \ldots, x_{k}, \alpha, y_{k+2}, \ldots, y_{m}\right)$, runs $D(h)$, and outputs the result.

Note that h is distributed according to H_{n}^{k} if α was chosen according to Y, and h is distributed according to H_{n}^{k+1} if α was chosen according to X. Thus, the probability that D^{\prime} outputs 1 given a sample from X or a sample from Y is at least $1 / m$, the probability that D^{\prime} chooses $k=k_{0}$, times $\delta_{k_{0}}(n)$. Hence, D^{\prime} distinguishes with probability difference at least $\delta(n) / m^{2}$, which contradicts the assumption that X, Y are indistinguishable in polynomial time.

