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Lecture Notes 11

27 Statistical Closeness

Let X = {Xn}n∈N, Y = {Yn}n∈N be probability ensembles. X , Y are statistically close if their
statistical difference ∆(n) is negligible, where

∆(n) =
1
2

∑
α

|Pr[Xn = α]− Pr[Yn = α]|.

Theorem 1 If X , Y are statistically close, then X , Y are indistinguishable in polynomial time.

Here’s the proof that I only sketched in class.

Proof: We prove the contrapositive. Suppose X , Y are not indistinguishable in polynomial time.
Then there exists a p.p.t. algorithm D and a positive polynomial p(·) such that for infinitely many
n,

|Pr[D(Xn, 1n) = 1]− Pr[D(Yn, 1n) = 1]| ≥ 1
p(n)

(1)

For α a length-n string, let p(α) df= Pr[D(α, 1n) = 1]. Then

Pr[D(Xn, 1n) = 1] =
∑
α

p(α) · Pr[Xn = α]. (2)

Pr[D(Yn, 1n) = 1] =
∑
α

p(α) · Pr[Yn = α]. (3)

Plugging (2) and (3) into (1) gives

1
p(n)

≤ |
∑
α

p(α) · Pr[Xn = α]−
∑
α

p(α) · Pr[Yn = α]| (4)

= |
∑
α

p(α) · (Pr[Xn = α]− Pr[Yn = α])| (5)

≤
∑
α

p(α) · |Pr[Xn = α]− Pr[Yn = α]| (6)

≤
∑
α

|Pr[Xn = α]− Pr[Yn = α]| (7)

= 2∆(n). (8)

Thus, ∆(n) is not negligible, so X , Y are not statistically close.

The converse to theorem 1 does not hold.

Theorem 2 There exists X = {Xn}n∈N that is indistinguishable from the uniform ensemble U =
{Un}n∈N in polynomial time, yet X and U are not statistically close. Furthermore, Xn assigns all
probability mass to a set Sn consisting of at most 2n/2 strings of length n.
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Proof: We construct the ensemble X = {Xn}n∈N by choosing for each n a set Sn ⊆ {0, 1}n of
cardinalityN = 2n/2 and lettingXn be the uniformly distributed on Sn. Thus, Pr[Xn = α] = 1/N
for α ∈ Sn, and Pr[Xn = α] = 0 for α 6∈ Sn.

The fact that X , U are not statistically close is immediate from the above. Using the facts that
2n = N2 and |Sn| = N , and |Sn| = N2 −N , we get

∆(n) =
1
2

∑
α

|Pr[Xn = α]− Pr[Un = α]|

=
1
2

∑
α∈Sn

|Pr[Xn = α]− 1
N2
|+

∑
α 6∈Sn

|Pr[Xn = α]− 1
N2
|


=

1
2

∑
α∈Sn

| 1
N
− 1
N2
|+

∑
α 6∈Sn

|0− 1
N2
|


=

1
2
·
(
N ·

(
1
N
− 1
N2

)
+ (N2 −N)

1
N2

)
= 1− 1

N

The proof in the textbook supplies the low-level details needed to establish this theorem, but it
is a little unclear about the construction itself, particularly about how the set Sn is chosen.

We wish to choose a set Sn for which the corresponding distribution Xn is indistinguishable
from Un by every polynomial size circuit C. We do this by diagonalizing over all circuits of size
2n/8. We start with all size 2N subsets of {0, 1}n as candidates for Sn. For each such circuit
C, we discard from consideration all candidates on which C is too successful at distinguishing
the corresponding ensemble from uniform. By a counting argument, we show that not very many
candidates get thrown out at each stage—so few in fact that there are still candidates left after all
of the size 2n/8 circuits have been considered. We choose any remaining candidate for Sn and
conclude that no size 2n/8 circuit is very successful at distinguishing Xn from Un.

More precisely, here’s how to determine which candidates to discard. First, consider an n-input
circuit C with at most 2n/8 gates. Let pC be C’s expected output on uniformly chosen inputs. Then
C(x) = 1 for a pC fraction of all length n strings, and C(x) = 0 for the remainder.

Let Sn = {S ⊆ {0, 1}n | |S| = 2N}. This is the initial family of candidate sets. Let
fC : Sn → {0, 1}, where

fC(S) =
∣∣∣∣∑s∈S C(s)

N
− pC

∣∣∣∣ .
Thus, fC(S) is the amount that the average value of C(s) taken over strings s ∈ S differs from the
average value of C(u) taken over all length-n strings u. By the law of large numbers, we would
expect fC(S) to be very small with high probability for randomly chosen S ∈ S . Call a set S bad
for C if fC(S) ≥ 2−n/8. Using the Chernoff bound, one shows that the fraction of sets S ∈ Sn that
are bad for C is less than 2−2n/4

. (Details are in the book.)
Next, one argues that there are at most 22n/4

circuits of size 2n/8. (This is by a counting argu-
ment. Details are not in the book and should be verified.) From this, it follows that there is at least
one set Sn ∈ Sn which is not bad for any such circuit. Fix such a set.

Now, letXn be uniformly distributed over Sn. Observe that the following three quantities are all
the same: the expected value ofC(Xn), Pr[C(Xn) = 1], and

∑
s∈S C(s)/N . Hence, for all circuits

C of size at most 2n/8, we have |Pr[C(Xn) = 1] − Pr[C(Un) = 1]| = fC(Sn) < 2−n/8, which



CPSC 461b Lecture Notes 11 (rev. 1) 3

grows more slowly than 1/p(n) for any polynomial p(·). We conclude that the probabilistic ensem-
bles U andX are indistinguishable by polynomial-size circuits, which also implies polynomial-time
indistinguishability by probabilistic polynomial-time Turing machines.

We remark that a consequence of theorem 2 is that the set Sn on which Xn has non-zero prob-
ability mass cannot be recognized in polynomial time. Assume to the contrary that it could be
recognized by some polynomial time algorithm A, that is, A(x) = 1 if x ∈ Sn and A(x) = 0
otherwise.. Then A itself would distinguish Xn from Un. Clearly, Pr[A(Xn) = 1] = 1 but
Pr[A(Un) = 1] = |Sn|/2n. Since |Sn| = 2n/2, these two probabilities differ by 1 − 1

2n/2 which is
greater than 1

2 for all sufficiently large n. (Note that the constant 2 is also a polynomial!)

28 Indistinguishability by Repeated Sampling

The definition of polynomial time indistinguishability given in section 26 gives the distinguishing
algorithm D a single random sample from either X or Y and compare the two probabilities of it
outputting a 1. We can generalize that definition in a straightforward way by providing D with
multiple samples, as long as the number of samples is itself bounded by a polynomial m(n). If
the difference in output probabilities in this case is a negligible function, we say that X , Y are
indistinguishable by polynomial-time sampling. See Definition 3.2.4 of the textbook for details

Giving D multiple samples allows for new possible distinguishing algorithms. For example,
consider the algorithm Eq(x, y) that outputs 1 if x = y and 0 otherwise. Eq able to distinguish the
ensemble X of Theorem 2 from U . Let’s analyze the probabilities.

Pr[Eq(X1
n, X

2
n) = 1] =

1
N

since no matter what valueX1
n assumes, there is a 1/N chance that the second (independent) sample

is equal to it. (Recall that N = 2n/2.) On the other hand,

Pr[Eq(U1
n, U

2
n) = 1] =

1
N2

.

The difference of these two probabilities is clearly non-negligible.
However, it turns out that multiple samples are only helpful in cases such as this where at least

one of the distributions cannot be constructed in polynomial time, as we shall see.

28.1 Efficiently constructible ensembles

We say that an ensemble X = {Xn}n∈N is polynomial-time constructible if there exists a
polynomial-time probabilistic algorithm S such that the output distribution S(1n) and Xn are iden-
tically distributed.

28.2 Multiple samples don’t help with constructible ensembles

Theorem 3 Let probability ensembles X , Y be indistinguishable in polynomial time, and suppose
both are polynomial-time constructible. Then X , Y are indistinguisable by polynomial-time sam-
pling.

Proof: The proof is an example of the hybrid technique, also sometimes called an interpolation
proof. Here’s the outline of it.
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Assume X , Y are distinguishable by D using m = m(n) samples. Let X(1)
n , . . . , X

(m)
n be

independent random variables identically distributed to Xn and similarly for Y . Let

p(X) = Pr[D(X(1)
n , . . . , X(m)

n ) = 1],

and let
p(Y ) = Pr[D(Y (1)

n , . . . , Y (m)
n ) = 1].

By assumption, D can distinguish X , Y , so the difference δ(n) = |p(x) = p(y)| is non-negligible.
We now construct a sequence of hybrid m-tuples of random variables for k = 0, . . . ,m:

Hk
n

df= (X(1)
n , . . . , X(k)

n , Y (k+1)
n , . . . , Y (m)

n )

Clearly, H0
n consists of all Y ’s, and Hm

n consists of all X’s. Hence, D distinguishes between H0
n

and Hm
n with probability δ(n).

Now let δk(n) be the absolute value of the difference in D’s probability of outputting a 1 given
Hk
n and Hk+1

n . It is easily seen that
∑m−1

k=0 δk(n) ≥ δ(n); hence, for some particular value of
k = k0,

δk0(n) ≥ δ(n)
m

.

We now describe a single-sample distinguisherD′. On input α, it first chooses a random number
k from {0, . . . ,m − 1} Next, it generates k independent random numbers x1, . . . , xk distributed
according to Xn and m − k − 1 random numbers yk+2, . . . , ym distributed according to Yn. It
can do this by the assumption that X and Y are polynomial-time constructible. It then constructs
h = (x1, . . . , xk, α, yk+2, . . . , ym), runs D(h), and outputs the result.

Note that h is distributed according to Hk
n if α was chosen according to Y , and h is distributed

according to Hk+1
n if α was chosen according to X . Thus, the probability that D′ outputs 1 given a

sample from X or a sample from Y is at least 1/m, the probability that D′ chooses k = k0, times
δk0(n). Hence, D′ distinguishes with probability difference at least δ(n)/m2, which contradicts the
assumption that X , Y are indistinguishable in polynomial time.
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