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Lecture Notes 12

29 Pseudorandom Generators

Definition: An ensemble X = {Xn}n∈N is pseudorandom if X , U are indistinguishable in poly-
nomial time, where U = {Un}n∈N is the uniform ensemble.

Thus, X is pseudorandom if it “looks” the same to all probabilistic polynomial time algorithms.

Definition: A pseudorandom generator is a deterministic polynomial time function G that satisfies
two properties:

1. G maps strings of length n to strings of length `(n) > n. `(n) is called the expansion factor.

2. {G(Un)}n∈N is pseudorandom.

We remark that if G is a pseudorandom generator, then G(Un) is not statistically close to U`(n).
To see this, let RG = {G(x) | x ∈ {0, 1}n} be the range of G. Clearly, |RG| ≤ 2n, and for all
y 6∈ RG, Pr[G(Un) = y] = 0. On the other hand, for the uniform ensemble, Pr[U`(n) = y] = 1

2` .
Hence, the statistical difference

∆(`(n)) =
1
2

∑
α∈{0,1}`(n)

|Pr[G(Un) = α]− Pr[U`(n) = α]|

≥ 1
2

∑
α∈RG

|Pr[G(Un) = α]− Pr[U`(n) = α]|

=
1
2

∑
α∈RG

|0− 1
2`
|

=
1
2
· 2` − 2n

2`
≥ 1
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is not negligible, so G(Un) and U`(n) are not statistically close.
We now describe how to build a pseudorandom number generatorG with polynomial expansion

factor starting from a generator G1 with expansion factor `(n) = n+ 1.
Fix a polynomial p(n). For s ∈ {0, 1}n, write the length-(n + 1) string G1(s) as σs′, where

|σ| = 1 and |s′| = n. On input s, iteratively define the sequences s0, s1, s2, . . . , sp(n) and
σ1, σ2, . . . , σp(n) as follows:

s0 = s
σisi = G1(si−1), for i = 0, 1, 2, . . . , p(n)− 1.

The output of G(s) is the sequence σ1σ2 . . . σp(n). G(s) is easily computed in polynomial time by
a simple iterative program that calls G1 a total of p(n) times.

Theorem 1 If G1 is pseudorandom, then so is G.
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Proof is by a hybrid argument. We let hybrid Hk
n consist of k uniform random bits followed by

the first p(n)− k bits of G(s0), which we write as G(so): [1, p(n)− k]. In symbols,

Hk
n = Uk ·G(Un): [1, p(n)− k].

Clearly, H0
n = G(Un) and Hp(n)

n = Up(n).
Suppose D distinguishes G(Un) from Up(n) with absolute probability difference δ(n). Then for

some k, D distinguishes Hk
n from Hk+1

n with absolute probability difference ≥ δ(n)/p(n).
We now describe an algorithm D′ that attempts to distinguish G1(Un) from Un+1. On length-

(n+ 1) input α, D′ does the following:

1. Write α = τ · α′, where |τ | = 1 and |α′| = n.
2. Choose index k uniformly from {0, 1, . . . , p(n)− 1}.
3. Choose a uniformly distributed string β of length k.
4. Construct y = β · τ ·G(α′): [1, p(n)− k − 1].
5, Compute and output D(y).

If α is uniformly distributed, then τ and α′ are both uniformly distributed, so y = Hk+1
n . On the

other hand, if α = G1(s0), where s0 is uniformly distributed, then τ = σ1 and α′ = s1, so y = Hk
n .

This is because
G(s0): [1, p(n)− k] = τ ·G(s1): [1, p(n)− k − 1]

Hence, D′ distinguishes G1(Un) from Un+1 with absolute probability difference ≥ δ(n)/p(n).
We omit the remaining details of showing how this leads to a contradiction of the assumption

that G is not pseudorandom.

30 Unpredictability

Our formal definition of pseudorandomness is based on the indistinguishability of an entire
polynomial-length generated sequence from a uniformly distributed random sequence. However,
the traditional notion of a pseudorandom generator is based on repeated experiments. The output
bits x1, x2, . . . are assumed to be generated one at a time. The generator is called pseudorandom if
each xi “appears” to result from an independent and uniformly distributed random event such as the
flip of a fair coin.

The notion of “appears” is can be captured in terms of unpredictability. We say that xi+1 is
unpredictable if no polynomial time algorithm that attempts to guess it is correct with more than a
tiny advantage over chance, even given all of the prior bits x1, . . . , xi.

More formally, a predictor is a p.p.t. algorithm A that is allowed to read the input sequence x a
bit at a time in order. After reading bit i, the algorithm can choose to output a guess b and halt, or
it can continue. In any case, it must halt and emit a guess after reading the next-to-last bit of x. Let
k be the last bit read by A. Then A is correct if k < |x| and b = xk+1. In addition to the input x,
which A is allowed to read only a bit at a time, A is also given an input 1n, where n = |x|. This
way, A can determine the length of x without having to read it all.

Notation: The textbook uses the notation nextA(x) to denote the next bit of x following the last
bit that A read. The intent is that the event [A(1|Xn|, Xn) = nextA(Xn)] should mean that a string
x is chosen according to the distribution Xn, A is run on inputs 1n and x, A reads the first k bits of
x for some k and outputs b, and b = xk+1, the “next” bit of x. That is, the event is that A correctly
predicts some bit of a randomly chosen x from distribution Xn.
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A better notation would make k explicit. For example, we could pretend that A outputs a pair
(k, b) with the meaning that k is the index of the last bit of x that A read, and b is A’s prediction for
xk+1. We could then define nextA(x) = {(k, xk+1) | k ∈ [0, n − 1]}. Now, A correctly predicts
the next bit if A(1|x|, x) = (k, b) and (k, b) ∈ nextA(x).

Definition: An ensemble {Xn}n∈N is called unpredictable in polynomial time if for every p.p.t. A,
every positive polynomial p(·), and all sufficiently large n,

Pr[A(1|x|, x) ∈ nextA(x)] <
1
2

+
1

p(n)
.

Theorem 2 An ensemble X is pseudorandom if and only if it is unpredictable in polynomial time.

Proof:
(⇒) The theorem in the forward direction is straightforward. We sketch the general ideas and leave
the details to the reader.

If there were a predictorA forX , then a distinguisherD is easily built. Namely, D(x) outputs 1
iffA(1|x|, x) correctly predicts the next bit. If x comes fromX , D(x) will output 1 with probability
at least 1

2 + 1
p(n) , but if x comes from U , then clearly D(x) will output 1 with probability exactly 1

2 .
Hence, D successfully distinguishes X from U .
(⇐) The theorem in the reverse direction is proved by another hybrid argument. We sketch a
few of the main ideas. Assume X is both unpredictable but not pseudorandom. Then there is a
distinguisher D such that

|Pr[D(Xn) = 1]− Pr[D(Un) = 1]| ≥ 1
p(n)

for infinitely many n. We may without loss of generality drop the absolute value brackets and
assume that

Pr[D(Xn) = 1]− Pr[D(Un) = 1] ≥ 1
p(n)

for infinitely many n. The reasoning is that either Pr[D(Xn) = 1] ≥ Pr[D(Un) = 1] for infinitely
many n, or Pr[D(Xn) = 1] ≤ Pr[D(Un) = 1] for infinitely many n. If the latter, then Pr[D̄(Xn) =
1] ≥ Pr[D̄(Un) = 1] for the algorithm D̄ that is identical to D except that it complements the
output.

We build a next-bit predictor A. Let hybrid Hk
n consist of the first k bits from Xn followed

by the last n − k bits from Un. Then Hn
n = Xn and H0

n = Un. The predictor A(1|x|, x)
guesses a number k ∈ [0, |x| − 1], reads only the first k bits of x, and constructs the string
y = x1, . . . , xk, uk+1, . . . , un, where the uj’s are uniformly distributed random bits. It then runs
D(y). If D(y) = 1, then A predicts bit k + 1 to be uk+1. Otherwise, A predicts bit k + 1 to be
¬uk+1 (the complement of uk+1).

We omit the non-trivial analysis needed to show that algorithm A has a sufficient advantage as
a next-bit predictor to contradict the assumption that X is unpredictable.

31 Pseudorandom Generators and One-Way Functions

We now show that the existence of pseudorandom generators implies the existence of one-way
functions.
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Theorem 3 Let G be a pseudorandom generator with expansion factor `(n) = 2n. Define the
function f(x, y) = G(x) for all |x| = |y|. Then f is a strongly one-way function.

Proof: Suppose f is not strongly one-way. LetA be an inverter for f(U2n) with success probability
at least 1

p(n) for infinitely many n. We construct a distinguisher D that distinguishes G(Un) from
U2n on those same n.

D(α) uses A to attempt to find β such that f(β) = α. If A succeeds, then D outputs 1;
otherwise D outputs 0. Since f(U2n) = G(Un), then

Pr[D(G(Un)) = 1] = Pr[f(A(f(U2n))) = f(U2n)] ≥ 1
p(n)

. (1)

On the other hand,

Pr[D(U2n) = 1] = Pr[f(A(U2n)) = U2n] ≤ 1
2n
. (2)

This is because f(x, y) depends only on x, so the range of f on pairs of length-n inputs has size
≤ 2n. Since f(A(U2n)) is in the range of f , the probability that U2n is in the range, much less
actually equal to f(A(U2n)), is at most 2−n. Subtracting 2 from 1 gives

Pr[D(G(Un)) = 1]− Pr[D(U2n) = 1] ≥ 1
p(n)

− 1
2n
≥ 1

2p(n)
. (3)

Thus, D distinguishes G(Un) from U2n for infinitely many n, contradicting the assumption that G
is a pseudorandom generator.
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