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Lecture Notes 12

29 Pseudorandom Generators

Definition: An ensemble X = { X, },,cn is pseudorandom if X, U are indistinguishable in poly-
nomial time, where U = {U, } ,en is the uniform ensemble.

Thus, X is pseudorandom if it “looks” the same to all probabilistic polynomial time algorithms.

Definition: A pseudorandom generator is a deterministic polynomial time function G that satisfies
two properties:

1. G maps strings of length n to strings of length £(n) > n. £(n) is called the expansion factor.

2. {G(Uy,) }nen is pseudorandom.

We remark that if G is a pseudorandom generator, then G/(U,,) is not statistically close to Up(y,).
To see this, let R = {G(z) | x € {0,1}"} be the range of G. Clearly, |Rg| < 2", and for all
y & R, Pr[G(Uy) = y] = 0. On the other hand, for the uniform ensemble, Pr[Uy,,) = y] = 2—14
Hence, the statistical difference
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is not negligible, so G(U,,) and U, ¢(n) are not statistically close.

We now describe how to build a pseudorandom number generator G with polynomial expansion
factor starting from a generator G; with expansion factor ¢(n) = n + 1.

Fix a polynomial p(n). For s € {0,1}", write the length-(n + 1) string G1(s) as os’, where
lo] = 1 and [s'| = n. On input s, iteratively define the sequences so, 51,52, ..., Sp(n) and
01,02, ..., 0p(y) as follows:

So = S
oisi = Gi(si—1), fori =0,1,2,...,p(n) — 1.

The output of G(s) is the sequence 7103 . .. 0,,). G(s) is easily computed in polynomial time by
a simple iterative program that calls G a total of p(n) times.

Theorem 1 [If G is pseudorandom, then so is G.
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Proof is by a hybrid argument. We let hybrid H* consist of & uniform random bits followed by
the first p(n) — k bits of G(sg), which we write as G(s,): [1, p(n) — k]. In symbols,

HE = Uy, - G(Uy): [1,p(n) — K].

Clearly, H) = G(U,,) and HZ™ = Uy
Suppose D distinguishes G(Uy,) from U,,,,) with absolute probability difference 6(r). Then for
some k, D distinguishes H” from H**+! with absolute probability difference > &§(n)/p(n).
We now describe an algorithm D’ that attempts to distinguish G (U,,) from U,, 1. On length-

(n+ 1) input v, D' does the following:

Write « = 7 - o, where |7| = 1 and |&/| = n.
Choose index k uniformly from {0, 1,...,p(n) — 1}.
Choose a uniformly distributed string  of length k.
Constructy = -7 - G(d/): [1,p(n) — k — 1].

, Compute and output D(y).

.

If o is uniformly distributed, then 7 and o are both uniformly distributed, so y = H**1. On the
other hand, if & = G'1(s0), where sq is uniformly distributed, then 7 = oy and & = s1,s0y = HE.
This is because

G(so):[L,p(n) — k] =7-G(s1):[1,p(n) — k — 1]

Hence, D’ distinguishes G1(U,,) from U,,+1 with absolute probability difference > §(n)/p(n).
We omit the remaining details of showing how this leads to a contradiction of the assumption
that G is not pseudorandom.

30 Unpredictability

Our formal definition of pseudorandomness is based on the indistinguishability of an entire
polynomial-length generated sequence from a uniformly distributed random sequence. However,
the traditional notion of a pseudorandom generator is based on repeated experiments. The output
bits x1, x3, . .. are assumed to be generated one at a time. The generator is called pseudorandom if
each x; “appears” to result from an independent and uniformly distributed random event such as the
flip of a fair coin.

The notion of “appears” is can be captured in terms of unpredictability. We say that x;1 is
unpredictable if no polynomial time algorithm that attempts to guess it is correct with more than a
tiny advantage over chance, even given all of the prior bits z1, ..., z;.

More formally, a predictor is a p.p.t. algorithm A that is allowed to read the input sequence = a
bit at a time in order. After reading bit ¢, the algorithm can choose to output a guess b and halt, or
it can continue. In any case, it must halt and emit a guess after reading the next-to-last bit of x. Let
k be the last bit read by A. Then A is correct if k < |z| and b = x11. In addition to the input z,
which A is allowed to read only a bit at a time, A is also given an input 1", where n = |z|. This
way, A can determine the length of & without having to read it all.

Notation: The textbook uses the notation next 4 (x) to denote the next bit of x following the last
bit that A read. The intent is that the event [A(1%7| X,) = next 4(X,,)] should mean that a string
x is chosen according to the distribution X,,, A is run on inputs 1" and z, A reads the first & bits of
x for some k and outputs b, and b = x5, 1, the “next” bit of z. That is, the event is that A correctly
predicts some bit of a randomly chosen x from distribution X,.
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A better notation would make & explicit. For example, we could pretend that A outputs a pair
(k, b) with the meaning that k is the index of the last bit of x that A read, and b is A’s prediction for
Zp+1. We could then define nextz(x) = {(k,zr+1) | £ € [0,n — 1]}. Now, A correctly predicts
the next bit if A(11%1,2) = (k,b) and (k,b) € next (x).

Definition: An ensemble { X, },cn is called unpredictable in polynomial time if for every p.p.t. A,
every positive polynomial p(-), and all sufficiently large n,

Pr[A(1%]) 2) € next(z)] < % + o)’

Theorem 2 An ensemble X is pseudorandom if and only if it is unpredictable in polynomial time.

Proof:
(=) The theorem in the forward direction is straightforward. We sketch the general ideas and leave
the details to the reader.

If there were a predictor A for X, then a distinguisher D is easily built. Namely, D(x) outputs 1
iff A(1*l, z) correctly predicts the next bit. If z comes from X, D(z) will output 1 with probability
at least % + ﬁ, but if  comes from U, then clearly D(x) will output 1 with probability exactly %
Hence, D successfully distinguishes X from U.

(<) The theorem in the reverse direction is proved by another hybrid argument. We sketch a
few of the main ideas. Assume X is both unpredictable but not pseudorandom. Then there is a
distinguisher D such that

1
Pr[D(X,) =1]-Pr[DU,) =1]| > —

[Pr[D(Xy) = 1] = Pr[D(Un) H_p(n)

for infinitely many n. We may without loss of generality drop the absolute value brackets and
assume that

1
PrD(X,) = 1] = Pr[D(Un) = 1] > s

for infinitely many n. The reasoning is that either Pr[D(X,,) = 1] > Pr[D(U,,) = 1] for infinitely
many n, or Pr[D(X,,) = 1] < Pr[D(U,,) = 1] for infinitely many n. If the latter, then Pr[D(X,,) =
1] > Pr[D(U,) = 1] for the algorithm D that is identical to D except that it complements the
output.

We build a next-bit predictor A. Let hybrid H* consist of the first k bits from X,, followed
by the last n — k bits from U,. Then H” = X, and H? = U,. The predictor A(1!*l,z)
guesses a number k € [0,|z| — 1], reads only the first k& bits of x, and constructs the string
Y = T1,..., Ty Ugt1, - - -, Uy, Where the u;’s are uniformly distributed random bits. It then runs
D(y). If D(y) = 1, then A predicts bit k£ + 1 to be ugy;. Otherwise, A predicts bit k£ + 1 to be
—Ug41 (the complement of w4 1).

We omit the non-trivial analysis needed to show that algorithm A has a sufficient advantage as
a next-bit predictor to contradict the assumption that X is unpredictable. [ |

31 Pseudorandom Generators and One-Way Functions

We now show that the existence of pseudorandom generators implies the existence of one-way
functions.
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Theorem 3 Let G be a pseudorandom generator with expansion factor £(n) = 2n. Define the
function f(x,y) = G(x) for all |x| = |y|. Then f is a strongly one-way function.

Proof: Suppose f is not strongly one-way. Let A be an inverter for f(Us,,) with success probability
at least zﬁ for infinitely many n. We construct a distinguisher D that distinguishes G(U,,) from
Us,, on those same n.

D(«) uses A to attempt to find 3 such that f(5) = «. If A succeeds, then D outputs 1;
otherwise D outputs 0. Since f(Us,) = G(U,), then

Pr[D(G(U,)) = 1] = Pr{f(A(f (Uzn)) = f(Usn)] > p(ln) (1)
On the other hand, .
Pr[D(Uzn) = 1] = Pr{f(A(Uzn)) = Uz] < 5. 2)

This is because f(x,y) depends only on z, so the range of f on pairs of length-n inputs has size
< 2". Since f(A(Uaz,)) is in the range of f, the probability that Us, is in the range, much less
actually equal to f(A(Usy,)), is at most 27", Subtracting [2 from [1] gives

1 1
Pr|D(G(U,)) =1] — Pr[D(Us,) =1] > — — — > .
Thus, D distinguishes G(U,,) from Uy, for infinitely many n, contradicting the assumption that G
is a pseudorandom generator. |
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