Three Proofs of a Simple Lemma

We give three proofs of a claim from the textbook:
Claim 2.5.2.1: There exists a set $S_{n} \subseteq\{0,1\}^{n}$ of cardinality at least $\frac{\varepsilon(n)}{2} \cdot 2^{n}$ such that for every $x \in S_{n}$, it holds that

$$
s(x) \stackrel{\text { df }}{=} \operatorname{Pr}\left[G\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{\varepsilon(n)}{2}
$$

This claim is stated in a rather awkward way. Instead of existentially quantifying S_{n}, it is simpler to just define it in terms of $s(\cdot)$, namely,

Definition:

$$
S_{n}=\left\{x \in\{0,1\}^{*} \left\lvert\, s(x) \geq \frac{1}{2}+\frac{\varepsilon(n)}{2}\right.\right\} .
$$

Then the claim we are trying to prove follows from the slightly stronger

Lemma 1

$$
\left|S_{n}\right| \geq \varepsilon(n) \cdot 2^{n} .
$$

We will need one further fact about $s(\cdot)$.
Fact

$$
E\left(s\left(X_{n}\right)\right)=\frac{1}{2}+\varepsilon(n)
$$

This follows immediately from the definition of $\varepsilon(n)$ given in the book.
We give three proofs of the lemma-one algebraic, one geometric, and one using Markov's inequality.

1 Algebraic proof

The algebraic proof relies on the definition of expectation, namely, that

$$
E\left(s\left(X_{n}\right)\right)=\sum_{x} \operatorname{Pr}\left[X_{n}=x\right] \cdot s(x)=2^{-n} \sum_{x} s(x) .
$$

The key idea is to split the sum into two parts, those terms where $x \in S_{n}$ and those terms where $x \notin S_{n}$. Towards this end, define $\bar{S}_{n}=\{0,1\}^{*}-S_{n}$. We then have

$$
\begin{aligned}
\frac{1}{2}+\varepsilon(n) & =E\left(s\left(X_{n}\right)\right)=2^{-n} \sum_{x} s(x) \\
& =2^{-n}\left(\sum_{x \in S_{n}} s(x)+\sum_{x \in \bar{S}_{n}} s(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq 2^{-n}\left(\left|S_{n}\right|+\sum_{x \in \bar{S}_{n}}\left(\frac{1}{2}+\frac{\varepsilon(n)}{2}\right)\right) \\
& =2^{-n}\left(\left|S_{n}\right|+\left|\bar{S}_{n}\right|\left(\frac{1}{2}+\frac{\varepsilon(n)}{2}\right)\right) \\
& =2^{-n}\left(\left|S_{n}\right|+\left(2^{n}-\left|S_{n}\right|\right)\left(\frac{1}{2}+\frac{\varepsilon(n)}{2}\right)\right) \\
& =\frac{1}{2}+\frac{\varepsilon(n)}{2}+2^{-n}\left(\left|S_{n}\right|-\left|S_{n}\right|\left(\frac{1}{2}+\frac{\varepsilon(n)}{2}\right)\right) \\
& \leq \frac{1}{2}+\frac{\varepsilon(n)}{2}+2^{-n}\left(\frac{1}{2}\left|S_{n}\right|\right) .
\end{aligned}
$$

Subtracting $1 / 2+\varepsilon(n) / 2$ from both sides, we have

$$
\frac{\varepsilon(n)}{2} \leq \frac{1}{2} \cdot \frac{\left|S_{n}\right|}{2^{n}}
$$

from which it follows that

$$
\left|S_{n}\right| \geq \varepsilon(n) \cdot 2^{n}
$$

as desired.

2 Geometric proof

Figure 1: Graph of the function $s(x)$.
The geometric proof is based on an analysis of the graph of the function $s(x)$. Assume that the domain of $s(\cdot)$ has been ordered so as to make $s(\cdot)$ non-decreasing. Then the graph of $s(\cdot)$ looks
like the diagram of Figure 1. I have drawn a solid horizontal line at $y=1 / 2+\varepsilon(n)=E\left(s\left(X_{n}\right)\right)$. This is the average value of $s(\cdot)$ over its domain. Hence, the area above the curve and below this line (regions A and B in the diagram) is the same as the area above the line and below the curve (region C in the diagram).

I have drawn a second horizontal line at $y=1 / 2+\varepsilon(n) / 2$. This is the defining threshold for the set S_{n}. I have drawn a vertical dashed line through the point where it intersects the curve. Values of x to the right of this line are in S_{n}, and those to the left are not. The goal is to prove that the line cannot be too far to the right (so that S_{n} isn't too small).

The proof is now fairly straightforward. First of all, as noted before, we have

$$
A+B=C
$$

Clearly, region A includes the skinny rectangle between the two horizontal lines. It has height $\varepsilon(n) / 2$ and width $2^{n}-\left|S_{n}\right|$. Hence,

$$
A \geq \frac{\varepsilon(n)}{2}\left(2^{n}-\left|S_{n}\right|\right)
$$

Region C is entirely contained within the upper right hand rectangle of height $1 / 2-\varepsilon(n)$ and width $\left|S_{n}\right|$. Hence,

$$
C \leq\left(\frac{1}{2}-\varepsilon(n)\right) \cdot\left|S_{n}\right| .
$$

Combining these facts, we have

$$
\begin{aligned}
\left(\frac{1}{2}-\varepsilon(n)\right) \cdot\left|S_{n}\right| & \geq C=A+B \geq A \\
& \geq \frac{\varepsilon(n)}{2}\left(2^{n}-\left|S_{n}\right|\right)
\end{aligned}
$$

Therefore,

$$
\left(\frac{1}{2}-\frac{\varepsilon(n)}{2}\right) \cdot\left|S_{n}\right| \geq \frac{\varepsilon(n)}{2} \cdot 2^{n}
$$

Solving for $\left|S_{n}\right|$, we get

$$
\left|S_{n}\right| \geq \frac{\varepsilon(n) \cdot 2^{n}}{2\left(\frac{1}{2}-\frac{\varepsilon(n)}{2}\right)} \geq \varepsilon(n) \cdot 2^{n}
$$

3 A proof using Markov's inequality

Recall Markov's inequality:

$$
\operatorname{Pr}[X \geq v] \leq \frac{E(X)}{v}
$$

The proof using Markov's inequality applies the inequality to the random variable $1-s\left(X_{n}\right)$ to obtain

$$
\operatorname{Pr}\left[1-s\left(X_{n}\right) \geq \frac{1}{2}-\frac{\varepsilon(n)}{2}\right] \leq \frac{E\left(1-s\left(X_{n}\right)\right)}{\frac{1}{2}-\frac{\varepsilon(n)}{2}}
$$

It uses the fact that

$$
\operatorname{Pr}\left[s\left(X_{n}\right) \geq \frac{1}{2}+\frac{\varepsilon(n)}{2}\right]=\operatorname{Pr}\left[X_{n} \in S_{n}\right]=\frac{\left|S_{n}\right|}{2^{n}} .
$$

Hence, to prove our lemma, we establish a lower bound on this quantity.
The calculation is an exercise in change of signs and negation of events.

$$
\begin{aligned}
\operatorname{Pr}\left[s\left(X_{n}\right) \geq \frac{1}{2}+\frac{\varepsilon(n)}{2}\right] & =1-\operatorname{Pr}\left[s\left(X_{n}\right)<\frac{1}{2}+\frac{\varepsilon(n)}{2}\right] \\
& =1-\operatorname{Pr}\left[1-s\left(X_{n}\right)>\frac{1}{2}-\frac{\varepsilon(n)}{2}\right]
\end{aligned}
$$

We apply Markov's inequality to get

$$
\begin{aligned}
1-\operatorname{Pr}\left[1-s\left(X_{n}\right)>\frac{1}{2}-\frac{\varepsilon(n)}{2}\right] & \geq 1-\frac{E\left(1-s\left(X_{n}\right)\right)}{\frac{1}{2}-\frac{\varepsilon(n)}{2}} \\
& =1-\frac{1-\left(\frac{1}{2}+\varepsilon(n)\right)}{\frac{1}{2}-\frac{\varepsilon(n)}{2}} \\
& =\frac{\varepsilon(n)}{1-\varepsilon(n)} \\
& \geq \varepsilon(n)
\end{aligned}
$$

Thus,

$$
\frac{\left|S_{n}\right|}{2^{n}} \geq \varepsilon(n)
$$

and the lemma follows.

