
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography Notes 21 (rev. 1)
Professor M. J. Fischer April 9, 2009

Lecture Notes 21

53 The Millionaire’s Problem

The Millionaire’s Problem, introduced by Andy Yao in 1982, began the study of privacy-preserving
multiparty computation.

Alice and Bob want to know who is the richer without revealing how much they are actually
worth. Alice is worth I million dollars; Bob is worth J million dollars. They want to determine
whether or not I ≥ J , but at the end of the protocol, neither should have learned any more about
the other person’s wealth than is implied by the truth value of the predicate I ≥ J .

For simplicity, we assume that I and J are both in the set {1, 2, . . . , 10}. Let N be a security
parameter, and assume that Alice has public and private RSA keys (e, n) and (d, n), respectively,
where n = p̄q̄, and |p̄| ≈ |q̄| ≈ N

2 . A protocol that intuitively works is shown in Figure 53.1.1

Alice Bob

1. Choose random x such that |x| = N .
Let C = E(e,n)(x).

m←− Let m = C − J + 1 mod n.
2. Yi = D(d,n)(m+ i− 1), i ∈ [1, 10].

[Note: YJ = x.]

Choose random prime p s.t. |p| = N
2

and |Zi − Zj | ≥ 2 for i 6= j, where
Zi = (Yi mod p), i ∈ [1, 10].

Wi = (Zi + (i > I)) mod p,

i ∈ [1, 10].
p,W1,...,W10−→

3. result←− result = (WJ ≡ x (mod p)).

Figure 53.1: Solution to Yao’s Millionaire’s problem.

In step 1, Bob sends Alice a random-looking numberm. The numberm+J−1 is the encryption
of Bob’s secret x. Alice decrypts the numbersm,m+1, . . . ,m+9 to get corresponding Y1, . . . , Y10.
The number YJ is Bob’s secret x, but Alice doesn’t know which it is since all of the Yi’s “look”
random. She then reduces them all mod a random prime p, resulting in Z1, . . . , Z10. Note that
ZJ = x mod p and the other Zi’s look random. Finally, she adds 1 (modp) to each of the numbers
Zi for which i is greater than her own wealth I . If she adds 1 to ZJ , this means that J > I; if not
J ≤ I . Bob can tell with is the case from the numbers that Alice sends him in step 2. Namely, if
WJ ≡ x (mod p), this means that 1 was not added, so I ≥ J . Otherwise, I < J .

Clearly, all that Alice learns from Bob is a set of random-looking numbers m, . . . ,m + 9, one
of which corresponds to Bob’s wealth J , but she has no way of telling which, since any number

1Adapted from web page “Solution to the Millionaire’s Problem”.

http://www.proproco.co.uk/million.html

2 CPSC 461b Lecture Notes 21 (rev. 1)

in Z∗n is the RSA encryption of some plaintext message. Bob on the other hand receives p and
W1, . . . ,W10 from Alice in step 2. However, he does not know any Zi for i 6= J since he cannot the
corresponding numbers m + i− 1. He also cannot recover Yi from Wi because of the information
loss implicit in the “mod p” operation. Thus, he also learns nothing about Alice’s wealth I except
for the value of the predicate I ≥ J .

We remark that this protocol works only in the semi-honest model in which both Alice and Bob
follow their protocol, but both will try to infer whatever they can about the other’s secrets after the
fact.

54 Ideal versus Real Protocol Security Model

How to define security in a multiparty protocol is far from obvious. For example, in the millionaire’s
problem, there is no way to prevent either Alice or Bob from lying about their wealth, nor is it
possible to prevent either of them voluntarily giving up secrecy by broadcasting their wealth. Thus,
we can’t hope to find a protocol that will prevent all kinds of cheating. What we do instead is
to compare a given “real” protocol with a corresponding very simple “ideal” protocol involving a
trusted party. The idea is that the real protocol should simulate the ideal protocol, much the same
as the simulator of a zero knowledge proof system simulates the real interaction between prover
and verifier. The real protocol is deemed to be secure if any bad things that can happen in the real
protocol are also possible in the ideal protocol.

For example, the ideal protocol for the millionaire’s problem has just two steps: In step 1, Alice
and Bob send their secrets I and J , respectively, to the trusted party across a private, secure channel.
In step 2, the trusted party computes the value of the predicate I ≥ J and sends the result back to
both Alice and Bob. The goal of the real protocol is that Alice and Bob don’t learn any more than
they could learn in the ideal protocol.

55 Functionality

But what is it that an ideal multiparty protocol computes? Suppose there are m parties to the
protocol, P1, . . . , Pm. Each Pi has a private input xi and receives a private output yi. We say that
F is a (multi-party) functionality if F is a random process that maps m inputs to m outputs. As
a special case, we say that F is deterministic if the m outputs are uniquely determined by the m
inputs.

The millionaire’s problem can be expressed simply as the problem of securely computing the
(deterministic) functionality F (I, J) = ((I ≥ J), (I ≥ J)) in the semi-honest model.

56 Security Parameters for Multiparty Protocols

There is no simple choice of the “right” security model for multiparty computations. As with other
aspects of cryptography, different kinds of threats are deemed significant in different situations. We
list below some of the parameters that are important in the literature on secure multiparty computa-
tion.

Channels:

• Reliable but not private.

• Private channel.

CPSC 461b Lecture Notes 21 (rev. 1) 3

Computational limitations:

• Adversary assume to be a probabilistic polynomial time Turing machine.

• Adversary has unbounded computational power.

Choice of corrupted parties:

• Adversary may dynamically corrupt parties as the computation progresses.

• Non-adaptive: Adversary chooses dishonest parties before the protocol begins (but cor-
rupted parties are not known to the honest parties).

Adversary actions:

• Malicious adversary: Actively disrupts the protocol.

• Semi-honest: Follows the protocol but gathers information (which it may share with
other corrupted parties).

Protocol disruption:

• Adversary may prematurely terminate the protocol.

• No premature abort.

Bounds on corruption: The number of dishonest parties may be bounded, e.g., < n/2 or < n/3.

57 Oblivious Transfer

OTk
1 , 1-out-of-k oblivious transfer, is the functionality

OTk
1((σ1, . . . , σk), i) = (λ, σi)

where σ1, . . . , σk ∈ {0, 1} and i ∈ {1, . . . , k}. Here, the first party (Alice) has k secret bits
σ1, . . . , σk. Bob has a secret index i. At the end of the protocol, Bob learns only σi and Alice learns
nothing (λ). In particular, Alice does not know which of her bits was learned by Bob, and Bob does
not learn σj for any j 6= i.

Oblivious transfer is central to many of the constructions for secure multiparty computation. We
give a protocol for OTk

1 in the semi-honest model. Our construction assumes an enhanced trapdoor
permutation {fα : Dα → Dα}α∈I . (See appendix of Volume 2 for technical information on exactly
what it means to be enhanced.) Roughly speaking, given a security parameter 1n and a random
string r, there is an algorithm G(1n, r) that returns a pair (α, t), where α is the index of a trapdoor
permutation fα and t is a trapdoor. (Think of RSA key generation, where we randomly generate a
public and private key pair.) Moreover, there is a feasible algorithm for computing fα(x) given α
and x, and there is a feasible algorithm for computing f−1

α (y) given t and y. We also assume that b
is a hard-core predicate for fα.

Our construction is shown in Figure 57.1. The idea behind the protocol is that Bob sends Alice
a k-tuple (y1, . . . , yk) of numbers. All yj are random except for yi; yi is the encryption of a random
number xi. Alice decrypts them all to get z1, . . . , zk, XOR’s the associated hard-core predicate
b(zj) with each of her secrets σj , and sends the encrypted secrets (c1, . . . , ck) to Bob. Because yi is
the encryption of xi, then zi = xi, so Bob is able to compute b(zi) and decrypt ci to obtain σi. He
doesn’t learn the other secrets since for j 6= i, he knows only xj = fα(zi). He cannot predict b(zi)
given xj with more than an negligible advantage since b is hard-core for fα.

4 CPSC 461b Lecture Notes 21 (rev. 1)

Common input: Security parameter 1n.

Alice Bob

Private input: (σ1, . . . , σk). Private input: i.

1. Choose random r.
Compute (α, t) = G(1n, r). α−→

2. Choose random x1, . . . , xk ∈ Dα.

Let yj =
{
fα(xj) if j = i
xj if j 6= i.

(y1,...,yk)←−
3. For j ∈ {1, . . . , k}:

zj = f−1
α (yj) .

cj = σj ⊕ b(zj).
(Note: zi = xi and ci = σi ⊕ b(xi).)

(c1,...,ck)−→
4. Output ci ⊕ b(xi).

Figure 57.1: An OTk
1 oblivious transfer protocol.

Theorem 1 Suppose {fα : Dα → Dα}α∈I is a collection of enhanced trapdoor permutations and
b is a hard-core predicate for them. Then the protocol of Figure 57.1 privately computes OTk

1 in the
semi-honest model.

	The Millionaire's Problem
	Ideal versus Real Protocol Security Model
	Functionality
	Security Parameters for Multiparty Protocols
	Oblivious Transfer

