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Solutions to Problem Set 1

Problem 1 (2.13.2)

First notice that 9 · 3 ≡26 1. That means that 9 and 3 are inverses in (mod 26). Given that and the
encryption function, E(x) = 9x + 2, the decryption function is D(x) = 3x− 6. So

D(U = 20) = 3 · 20− 6 = 54 ≡26 2 = C

D(C = 2) = 3 · 2− 6 ≡26 0 = A

D(R = 17) = 3 · 17− 6 ≡26 19 = T

Problem 2 (2.13.11)

Let’s first notice that if the key is of length k then the m-th letter of the plain-text, Pm, was encrypted
with the m mod k letter of the key Km mod k. That means that given the key length we can separate
the cipher-text in subsets of letters that were encrypted with the same key, therefore a frequency
analysis will get some information on each subset them.

The cyphertext, written numerically, is 0121011102.

For key size one we do a simple count

position 0 1 2
0 0.3 0.5 0.2

For key size of two we will distinguish keys in position ≡2 0 and ≡2 1 in the text

position 0 1 2
0 0.3 0.1 0.1
1 0 0.4 0.1

Notice that if we shift row 1 one to the left and add up the columns we get the exact distribution
given distribution. So size two is a good candidate.

For key size three similar thing but we have to consider 3 possible positions for each letter.



2 Solutions to Problem Set 1

position 0 1 2
0 0.083 0.16 0.083
1 0.111 0.222 0
2 0.111 0.111 0.111

In this case is clear that no matter how we shift the rows we don’t get to a distribution close to
the objective. The best candidate is k = 2 for shift 0 a → a and for shift 1 a → b so the most likely
key is ab.

Problem 3 (2.13.13)

The Hill cipher of size 2 takes pairs of letters and encrypts them by multiplying them by a key
matrix. To decrypt it we need to invert the matrix using modular arithmetic:(

9 13
2 3

)−1

=
1

9 · 3− 2 · 13

(
3 −13

−2 9

)

So far we have only used the standard 2 × 2 matrix inversion formula. Now we need to do all
the operations mod 26. So 9 · 3− 2 · 13 ≡26 1, −2 ≡26 26− 2 ≡26 24, −13 ≡26 26− 13 ≡26 13.
Then the inverse is (

3 13
24 9

)
Since C = P ·A then P = C ·A−1 so(

P1 P2

)
=

(
Y = 24 I = 8

)
·
(

3 13
24 9

)
=

(
3 · 24 + 8 · 24 13 · 24 + 9 · 8

)
≡26

(
4 = e 20 = u

)
(

P3 P4

)
=

(
F = 5 Z = 25

)
·
(

3 13
24 9

)
=

(
3 · 5 + 25 · 24 13 · 5 + 9 · 25

)
≡26

(
17 = r 4 = e

)
(

P5 P6

)
=

(
M = 12 A = 0

)
·
(

3 13
24 9

)
=

(
12 · 3 + 0 · 24 13 · 12 + 0 · 9

)
≡26

(
10 = k 0 = a

)

Problem 4 (2.13.20)

A sequence generated by the given recurrence would look like 1010101010101010101 . . .. If we
assume that xn+2 = c0 · xn + c1 · xn+1 we can write the equations for a recurrence of size 2 for the
first 4 values of the series:
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1 ≡ c0 · 1 + c1 · 0

0 ≡ c0 · 0 + c1 · 1

(
1
0

)
≡
(

1 0
0 1

)(
c0

c1

)

Solving for the system we get that c0 = 1 and c1 = 0. Therefore the recurrence is xn+2 =
0 · xn + 1 · xn+1.

Problem 5 (2.13.23)

10100

120·365·24·60·60 ≈ 2 · 1090 . . . a lot if you think that a modern computer runs at around 4 Ghz that
can count at most 4 · 109 numbers per second.

Problem 6 (15.6.9)

a

H(P ) = −
∑

pi log pi = −1
3

log
1
3
− 2

3
log

2
3

b

If we redefine a = 0, A = 0, b = 1, B = 1, k1 = 0 and k2 = 1 the mentioned cipher is one time
pad, so it has perfect secrecy. Then

H(P |C) = H(P )


