YALE UNIVERSITY

Solutions to Problem Set 1

Problem 1 (2.13.2)

First notice that $9 \cdot 3 \equiv_{26} 1$. That means that 9 and 3 are inverses in $(\bmod 26)$. Given that and the encryption function, $E(x)=9 x+2$, the decryption function is $D(x)=3 x-6$. So

$$
\begin{gathered}
D(U=20)=3 \cdot 20-6=54 \equiv_{26} 2=C \\
D(C=2)=3 \cdot 2-6 \equiv_{26} 0=A \\
D(R=17)=3 \cdot 17-6 \equiv_{26} 19=T
\end{gathered}
$$

Problem 2 (2.13.11)

Let's first notice that if the key is of length k then the m-th letter of the plain-text, P_{m}, was encrypted with the $m \bmod k$ letter of the key $K_{m \bmod k}$. That means that given the key length we can separate the cipher-text in subsets of letters that were encrypted with the same key, therefore a frequency analysis will get some information on each subset them.

The cyphertext, written numerically, is 0121011102 .
For key size one we do a simple count

position	0	1	2
0	0.3	0.5	0.2

For key size of two we will distinguish keys in position $\equiv_{2} 0$ and $\equiv_{2} 1$ in the text

position	0	1	2
0	0.3	0.1	0.1
1	0	0.4	0.1

Notice that if we shift row 1 one to the left and add up the columns we get the exact distribution given distribution. So size two is a good candidate.

For key size three similar thing but we have to consider 3 possible positions for each letter.

position	0	1	2
0	0.083	0.16	0.083
1	0.111	0.222	0
2	0.111	0.111	0.111

In this case is clear that no matter how we shift the rows we don't get to a distribution close to the objective. The best candidate is $k=2$ for shift $0 a \rightarrow a$ and for shift $1 a \rightarrow b$ so the most likely key is $a b$.

Problem 3 (2.13.13)

The Hill cipher of size 2 takes pairs of letters and encrypts them by multiplying them by a key matrix. To decrypt it we need to invert the matrix using modular arithmetic:

$$
\left(\begin{array}{rr}
9 & 13 \\
2 & 3
\end{array}\right)^{-1}=\frac{1}{9 \cdot 3-2 \cdot 13}\left(\begin{array}{rr}
3 & -13 \\
-2 & 9
\end{array}\right)
$$

So far we have only used the standard 2×2 matrix inversion formula. Now we need to do all the operations mod 26. So $9 \cdot 3-2 \cdot 13 \equiv_{26} 1,-2 \equiv_{26} 26-2 \equiv_{26} 24,-13 \equiv_{26} 26-13 \equiv_{26} 13$. Then the inverse is

$$
\left(\begin{array}{rr}
3 & 13 \\
24 & 9
\end{array}\right)
$$

Since $C=P \cdot A$ then $P=C \cdot A^{-1}$ so

$$
\begin{aligned}
\left(\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right) & =\left(\begin{array}{ll}
Y=24 & I=8
\end{array}\right) \cdot\left(\begin{array}{rr}
3 & 13 \\
24 & 9
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 \cdot 24+8 \cdot 24 & 13 \cdot 24+9 \cdot 8
\end{array}\right) \equiv_{26}\left(\begin{array}{ll}
4=e & 20=u
\end{array}\right) \\
\left(\begin{array}{ll}
P_{3} & P_{4}
\end{array}\right) & =\left(\begin{array}{ll}
F=5 & Z=25
\end{array}\right) \cdot\left(\begin{array}{rr}
3 & 13 \\
24 & 9
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 \cdot 5+25 \cdot 24 & 13 \cdot 5+9 \cdot 25
\end{array}\right) \equiv_{26}\left(\begin{array}{ll}
17=r & 4=e
\end{array}\right) \\
\left(\begin{array}{ll}
P_{5} & P_{6}
\end{array}\right) & =\left(\begin{array}{ll}
M=12 & A=0
\end{array}\right) \cdot\left(\begin{array}{rr}
3 & 13 \\
24 & 9
\end{array}\right) \\
& =\left(\begin{array}{ll}
12 \cdot 3+0 \cdot 24 & 13 \cdot 12+0 \cdot 9
\end{array}\right) \equiv_{26}\left(\begin{array}{ll}
10=k & 0=a
\end{array}\right)
\end{aligned}
$$

Problem 4 (2.13.20)

A sequence generated by the given recurrence would look like $1010101010101010101 \ldots$.. If we assume that $x_{n+2}=c_{0} \cdot x_{n}+c_{1} \cdot x_{n+1}$ we can write the equations for a recurrence of size 2 for the first 4 values of the series:

$$
\begin{gathered}
1 \equiv c_{0} \cdot 1+c_{1} \cdot 0 \\
0 \equiv c_{0} \cdot 0+c_{1} \cdot 1 \\
\binom{1}{0} \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{c_{0}}{c_{1}}
\end{gathered}
$$

Solving for the system we get that $c_{0}=1$ and $c_{1}=0$. Therefore the recurrence is $x_{n+2}=$ $0 \cdot x_{n}+1 \cdot x_{n+1}$.

Problem 5 (2.13.23)

$\frac{10^{100}}{120 \cdot 365 \cdot 24 \cdot 60 \cdot 60} \approx 2 \cdot 10^{90} \ldots$ a lot if you think that a modern computer runs at around 4 Ghz that can count at most $4 \cdot 10^{9}$ numbers per second.

Problem 6 (15.6.9)

a

$$
H(P)=-\sum p_{i} \log p_{i}=-\frac{1}{3} \log \frac{1}{3}-\frac{2}{3} \log \frac{2}{3}
$$

b

If we redefine $a=0, A=0, b=1, B=1, k_{1}=0$ and $k_{2}=1$ the mentioned cipher is one time pad, so it has perfect secrecy. Then

$$
H(P \mid C)=H(P)
$$

