
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #10
Felipe Saint-Jean October 10, 2005

Solutions to Problem Set 2
In the problems below, “textbook” refers to Introduction to Cryptography with Coding Theory:
Second Edition by Trappe and Washington..

Problem 7: Simplified CFB Mode

Textbook, problem 4.9.9.
Solution:

part a

The encryption is
Cj = Pj ⊕ L32(EK(Xj))

with
Xj+1 = R32(Xj)||Cj

Therefore to decrypt we need to generate the Xj sequence and a Pj based on known values. At step
j we know Cj so the Xj generation stays the same:

Xj+1 = R32(Xj)||Cj

Because X1 is given we can generate all Xj . Using the xor properties we can solve for Pj and get
the decryption algorithm for Pj as

Pj = Cj ⊕ L32(Ek(Xj))

part b

Let’s start by unfolding the decryption algorithm

P̃1 =C̃1 ⊕ L32(Ek(X1)) (1)

X̃2 =R32(X1)||C̃1 (2)

P̃2 =C2 ⊕ L32(Ek(X̃2)) (3)

X̃3 =R32(X̃2)||C2 = C̃1||C2 (4)

P̃3 =C3 ⊕ L32(Ek(X̃3)) (5)

X4 =R32(X̃3)||C3 = C2||C3 (6)

P4 =C4 ⊕ L32(Ek(X4)) (7)

The key point to notice that X4 and P4 are correct even though X̃3 is broken R32(X̃3) = C2 is
correct because C2 is correct. P̃3 is broken because X̃3 6= X3 therefore EK(X̃3) 6= EK(X3).

2 Solutions to Problem Set 2

Problem 8: DES Brute Force Speedup

Textbook, problem 4.9.11.
Solution:
In the general case to search for a 56 bit key we need to try all 256 possibilities. If C1 =

EK∗(M1) and C2 = EK∗(M̄1), where K∗ is the key we are looking for, then in the p-th attempt
to find the key if EKp(M1) = C1 then we know the key is Kp. If C̄2 = EKp(M1) then we know
that the key is K̄p because of the complementation property. This allows an attacker to search only
in half of the complete key space since he has only to look in the ”uncomplemented” half. An easy
way to do that is to fix say the first bit to 0. Then every key with the first bit 1 is the complement of
a key with first bit 0 reducing the search space to a half.

Problem 9: Birthday Paradox Calculation

Write a computer program to compute pn, the probability that at least two people in a random
collection of n people have the same birthday. Ignore leap years and assume the probability of a
person’s birthday falling on any given day is exactly 1/365, independent of everyone else in the set.
Your program should work for n in the range [1, 365]. Using your program, find the smallest value
of n for which pn ≥ 1/2 and for which pn ≥ 3/4.

Solution:
The simplest way to think the probability is by actually thinking of the complement. What is

the probability of not having two people with the same birthday in a room with n persons. That
probability is

1− pn = 1 · 365− 1
365

· 365− 2
365

... · 365− n + 1
365

=
n−1∏
i=0

365− i

365

The intuitive argument is that the first person can have his birthday any day without colliding,
so his probability is 365

365 = 1. The second guy can have his birthday any day except the first guy’s
birthday so his probability of not colliding is 365−1

365 and so on.
Then the probability of two or more persons having their birthday the same day is

pn = 1−
n−1∏
i=0

365− i

365

because it is the complementary event. For n = 23 the probability is slightly higher than 1
2 . For

n = 32 it is just more than 3
4 .

n prob
22 0.475695
23 0.507297
31 0.730455
32 0.753348

Program p9.c

#include <stdio.h>
double prob(int n){

// This computes the probability that
// there is no two persons with the same Bday
int i;

Handout #10—October 10, 2005 3

double prob = 1;
for (i=0;i<n;i++){

prob *= (365.0-i)/365.0;
}
return 1.0 - prob;

}

int main(int argc, char **argv){

int n;
n=1;
for(n=1;prob(n)<0.5;n++);
printf("for n=%d prob=%f\n",n,prob(n));

for(n=1;prob(n)<0.75;n++);
printf("for n=%d prob=%f\n",n,prob(n));

}

Problem 10: Simplified DES Implementation

Textbook, problem 4.10.1.
Solution:

part a

See code at the end.

part b

For the key 011001011 and plain text 011100100110 the encryptions are

C1 100110011000
C2 011000000010
C3 000010111111
C4 111111111100

part c

A weak key is a key in which ∀MEK(EK(M)) = M . To prove there are no weak keys we need to
find a message MK for each key K s.t. EK(EK(MK)) 6= Mk. Even though finding a single M s.t.
EK(EK(M)) 6= M proves the statement above, it is a stronger statement and it might not be true
(although it is possible to do so).

part d

By swapping L and T after the forth stage two EK functions applied one after the other so encryption
and decryption become exactly the same function except for the key ordering. So any key s.t.

K1 =K4 (8)

K2 =K3 (9)

(10)

will be a weak key. Thus 000000000 and 111111111 are weak keys with the given key generating
scheme.

4 Solutions to Problem Set 2

Program p10.c

#include <stdio.h>

#define assert(x) if(!(x)) fprintf(stderr,"Error in line %d file %s\n", __LINE__,__FILE__)

#define eval_box(b,x) b[(x)>>3][(x) & 0x7]

char *binString(int n, unsigned int mask, char *buff){
int i;
int top;
for (top=31;!((1<<top) &mask);top--);
top++;
for (i=0;i<top;i++){

buff[top-i-1] =(1<<i)&n?’1’:’0’;
}
buff[top]=0;
return buff;

}

unsigned char s1[2][8] = {{5,2,1,6,1,4,7,0},
{1,4,6,2,0,7,5,3}};

unsigned char s2[2][8] = {{4,0,6,5,7,1,3,2},
{5,3,0,7,6,2,1,4 }};

unsigned char expand(unsigned char c){
assert(c<64);
return ((c & 0x30) << 2)| ((c & 0x4) << 3) | ((c & 0xc)<<1)|((0x9 & c) >> 1) | (c & 0x3);

}

unsigned char keyRound(unsigned int K, int round){
unsigned int mask = (1<<(9-round+1))-1;
unsigned char ret;
if (round > 1)

ret = ((K & mask) << (round-2) | (K & (˜mask))>>(9-round+2));
else

ret = K>>1;
//printf("Key %X round %d\n",ret,round);
return ret;

// return (K & mask) << (round-2); //| (K & (˜mask))>>(9-round+1));
}
unsigned char f(unsigned char R, unsigned char K){

unsigned char iv;
iv = expand(R) ˆ K;
return (eval_box(s1,iv>>4) << 3) | eval_box(s2,iv & 0xf);

}

unsigned int encript(unsigned int pt, unsigned int K, int rounds){
int i;
unsigned char L,R,tmp;
L = 0x3f & (pt >> 6);
R = pt & 0x3f;
for (i=1;i<=rounds;i++){

// printf("1:L=%x R=%x key = %x\n",L,R,keyRound(K,i));
tmp = (L ˆ f(R,keyRound(K,i)));
L = R;
R=tmp;

// printf("2:L=%x R=%x\n",L,R);
}
return (L<<6) | R;

Handout #10—October 10, 2005 5

}

unsigned int decript(unsigned int ct, unsigned int K, int rounds){
int i;
unsigned char L,R,tmp;
// Right is L and Left is Right
R = 0x3f & (ct >> 6);
L = ct & 0x3f;
for (i=rounds;i>=1;i--){

// printf("1:L=%x R=%x\n",L,R);
tmp = (L ˆ f(R,keyRound(K,i)));
L = R;
R=tmp;

// printf("2:L=%x R=%x\n",L,R);
}
return (R<<6) | L;

}
int readInt(){

char buff[255];
int i=0;
char c;
while(((c = getchar()) != ’\n’) && i++<255){

buff[i-1]=c;
}
buff[i]=0;
return atoi(buff);

}

unsigned int readBin(int bits){
char c;
int i;
unsigned int ret = 0;
for (i=bits-1;i>=0;i--){

c = getchar();
ret = ret | (c == ’1’?1<<i:0);

}
while (getchar()!=’\n’);
return ret;

}

int main(int argc, char **argv){
int weak_flag = 0;
unsigned int i;
unsigned int key = 0x99;
unsigned int pt = 0xbee;
unsigned int ct = 0x00;
char buff[32];
int rounds;
printf("Key?");
key = readBin(9);
printf("Plaintext?");
pt = readBin(12);
printf("Key %s\n",binString(key,0x1ff,buff));
// part b
for (i=1;i<=4;i++){

printf("\nRounds %d\n",i);
printf("Plaint text %X = %s\n",pt,binString(pt ,0xfff,buff));
ct = encript(pt, key,i);
printf("Cipher text %X = %s\n",ct,binString(ct ,0xfff,buff));
pt = decript(ct, key,i);
printf("Plaint text %X = %s\n",pt,binString(pt ,0xfff,buff));

}

// part c
weak_flag = 0;
for (i=0;i<(1<<9);i++){

int weak = 0;

6 Solutions to Problem Set 2

for (pt=0;pt<(1<<12);pt++){
if (pt != encript(encript(pt, i ,4), i ,4))

break;

if (pt == ((1<<12)-1))
weak++;

}
}
if (weak_flag)

printf("Found a weak key");
else

printf("No weak key found");
}

	Simplified CFB Mode
	DES Brute Force Speedup
	Birthday Paradox Calculation
	Simplified DES Implementation

