
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #12 (rev. 2)
Felipe Saint-Jean October 18, 2005

Solutions to Problem Set 3

In the problems below, “textbook” refers to Introduction to Cryptography with Coding Theory:
Second Edition by Trappe and Washington..

Problem 11: Euclidean Algorithm

Textbook, problem 3.13.4.

Solution:

part a
gcd(30030, 257) = gcd(257, 218)

= gcd(218, 39)
= gcd(39, 23)
= gcd(23, 16)
= gcd(16, 7)
= gcd(7, 2)
= 1

part b

The fact that gcd(30030, 257) = 1 and 30030 = 2 · 3 · 5 · 7 · 11 · 13 tells us that none of the factors
of 30030 are factors of 257. The next prime is 17, but 172 = 289 that is bigger than 257 so if 257
is composite it has to have a prime factor smaller or equal to 17 but, as said, none of the primes
smaller that 17 are factors; therefore 257 must be prime.

Problem 12: Divisibility

Textbook, problem 3.13.7.

Solution:

part a

If ab ≡ 0 (mod p) then p |ab. Because p is prime then either p |a or p |b (or both). Therefore either
a ≡ 0 (mod p) or b ≡ 0 (mod p) (or both).

part b

The intuition is that if gcd(n, a) = 1 and n |ab all the prime factors of n have to be in b since none
are in a. Formally if gcd(n, a) = 1 then we can find u and v s.t. 1 = n · u + a · v. Multiplying both
sides by b we get that b = b · n · u + b · a · v. Because n |n and n |ab then n |b.

2 Solutions to Problem Set 3

Problem 13: RSA Encryption

Textbook, problem 6.8.1.

Solution:

First we will find d s.t. ed ≡ 1 (mod φ(n)). φ(n) = 100 · 112 = 11200. Using the extended
Euclid’s algorithm:

gcd(e, φ(n)) = u · e + v · φ(n)
11200 = 0 · 7467 + 1 · 11200
7467 = 1 · 7467 + 0 · 11200 q1 = 1
3733 = −1 · 7467 + 1 · 11200 q2 = 2

1 = 3 · 7467 − 2 · 11200

so d = 3. Now we need to compute md ≡ 58593 ≡ 1415 (mod 11413).

Problem 14: RSA Chosen Ciphertext Attack

Textbook, problem 6.8.7.

Solution:

(2ec)d ≡ 2edcd ≡ 2cd ≡ 2m (mod n). So whatever Bob sends back just needs to be multiplied by
2−1 (mod n) to reveal m.

Problem 15: Factoring by the p − 1 Method

Write a computer program to factor numbers using the p − 1 method, described in §6.4 of the
textbook. Your program should be written in C, C++, or Java and should use one of the big number
libraries—gmp (if written in C), gmp or ln3 (if written in C++), or class BigInteger in java.math (if
written in Java). Use your program to solve the following:

(a) Textbook, problem 6.9.4.

(b) Textbook, problem 6.9.5.

Note: The downloadable computer files referenced in the textbook are for Maple, Mathematica, and
Matlab, which we are not using in this course. However, I have typed the numbers to be factored for
this problem into files prob15a.dat and prob15b.dat and put them on the Zoo in the folder
/c/cs467/course/assignments/ps3. This will save you the trouble of copying them from
the textbook and the aggravation of having your programs fail because of a data input error.

Solution:

The program implementing the p − 1 method is given in Figure 1. Using it, we obtain the answers
to the two parts:

part a

618240007109027021 = 250387201 × 2469135821.

Handout #12 (rev. 2)—October 18, 2005 3

part b

8834884587090814646372459890377418962766907
= 364438989216827965440001× 24242424242468686907

Program p15.java

import java.math.BigInteger;

public class p15 {
public static BigInteger pm1factor(BigInteger n){

BigInteger a = new BigInteger("2");
int bound = 2000;
BigInteger bigi;
BigInteger b = a.mod(n);
for (int i=1;i<=bound;i++){

bigi = new BigInteger(i+"");
b = b.modPow(bigi, n);

}
return b.subtract(BigInteger.ONE).gcd(n);

}
static void partA(){

BigInteger n = new BigInteger("618240007109027021");
factor(n);

}
static void partB(){

BigInteger n = new BigInteger("8834884587090814646372459890377418962766907");
factor(n);

}
static void factor(BigInteger n){

BigInteger f1 = pm1factor(n);
if (f1.equals(BigInteger.ONE) || f1.equals(n))

return;
BigInteger f2 = n.divide(f1);
System.out.println(f1);
System.out.println(f2);
factor(f1);
factor(f2);

}
public static void main(String[] args) {

partA();
partB();

}
}

Figure 1: Code for solving Problem 15

	Euclidean Algorithm
	Divisibility
	RSA Encryption
	RSA Chosen Ciphertext Attack
	Factoring by the p-1 Method

