Solutions to Problem Set 3

In the problems below, "textbook" refers to Introduction to Cryptography with Coding Theory: Second Edition by Trappe and Washington..

Problem 11: Euclidean Algorithm

Textbook, problem 3.13.4.

Solution:

part a

$$
\begin{aligned}
\operatorname{gcd}(30030,257) & =\operatorname{gcd}(257,218) \\
& =\operatorname{gcd}(218,39) \\
& =\operatorname{gcd}(39,23) \\
& =\operatorname{gcd}(23,16) \\
& =\operatorname{gcd}(16,7) \\
& =\operatorname{gcd}(7,2) \\
& =1
\end{aligned}
$$

part b

The fact that $\operatorname{gcd}(30030,257)=1$ and $30030=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$ tells us that none of the factors of 30030 are factors of 257 . The next prime is 17 , but $17^{2}=289$ that is bigger than 257 so if 257 is composite it has to have a prime factor smaller or equal to 17 but, as said, none of the primes smaller that 17 are factors; therefore 257 must be prime.

Problem 12: Divisibility

Textbook, problem 3.13.7.

Solution:

part a
If $a b \equiv 0(\bmod p)$ then $p \mid a b$. Because p is prime then either $p \mid a$ or $p \mid b$ (or both). Therefore either $a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)($ or both).
part b
The intuition is that if $\operatorname{gcd}(n, a)=1$ and $n \mid a b$ all the prime factors of n have to be in b since none are in a. Formally if $\operatorname{gcd}(n, a)=1$ then we can find u and v s.t. $1=n \cdot u+a \cdot v$. Multiplying both sides by b we get that $b=b \cdot n \cdot u+b \cdot a \cdot v$. Because $n \mid n$ and $n \mid a b$ then $n \mid b$.

Problem 13: RSA Encryption

Textbook, problem 6.8.1.

Solution:

First we will find d s.t. $e d \equiv 1(\bmod \phi(n)) . \phi(n)=100 \cdot 112=11200$. Using the extended Euclid's algorithm:

$$
\begin{array}{rlrll}
\operatorname{gcd}(e, \phi(n)) & = & u \cdot e & +v \cdot \phi(n) & \\
11200 & = & 0 \cdot 7467 & +1 \cdot 11200 & \\
7467 & = & 1 \cdot 7467+0 \cdot 11200 & q_{1}=1 \\
3733 & = & -1 \cdot 7467+1 \cdot 11200 & q_{2}=2 \\
1 & = & 3 \cdot 7467 & -2 \cdot 11200 &
\end{array}
$$

so $d=3$. Now we need to compute $m^{d} \equiv 5859^{3} \equiv 1415(\bmod 11413)$.

Problem 14: RSA Chosen Ciphertext Attack

Textbook, problem 6.8.7.

Solution:

$\left(2^{e} c\right)^{d} \equiv 2^{e d} c^{d} \equiv 2 c^{d} \equiv 2 m(\bmod n)$. So whatever Bob sends back just needs to be multiplied by $2^{-1}(\bmod n)$ to reveal m.

Problem 15: Factoring by the $p-1$ Method

Write a computer program to factor numbers using the $p-1$ method, described in $\S 6.4$ of the textbook. Your program should be written in C, C++, or Java and should use one of the big number libraries-gmp (if written in C), gmp or $\ln 3$ (if written in $C++$), or class BigInteger in java.math (if written in Java). Use your program to solve the following:
(a) Textbook, problem 6.9.4.
(b) Textbook, problem 6.9.5.

Note: The downloadable computer files referenced in the textbook are for Maple, Mathematica, and Matlab, which we are not using in this course. However, I have typed the numbers to be factored for this problem into files prob15a. dat and prob15b. dat and put them on the Zoo in the folder /c/cs467/course/assignments/ps3. This will save you the trouble of copying them from the textbook and the aggravation of having your programs fail because of a data input error.

Solution:

The program implementing the $p-1$ method is given in Figure 1. Using it, we obtain the answers to the two parts:

part a

$618240007109027021=250387201 \times 2469135821$.

part b

8834884587090814646372459890377418962766907
$=364438989216827965440001 \times 24242424242468686907$

Program p15.java

```
import java.math.BigInteger;
public class p15 {
    public static BigInteger pm1factor(BigInteger n) {
        BigInteger a = new BigInteger("2");
        int bound = 2000;
        BigInteger bigi;
        BigInteger b = a.mod(n);
        for (int i=1;i<=bound;i++) {
            bigi = new BigInteger(i+"");
            b = b.modPow(bigi, n);
        }
        return b.subtract(BigInteger.ONE).gcd(n);
    }
    static void partA(){
        BigInteger n = new BigInteger("618240007109027021");
        factor(n);
    }
    static void partB(){
        BigInteger n = new BigInteger("8834884587090814646372459890377418962766907");
        factor(n);
    }
    static void factor(BigInteger n) {
        BigInteger f1 = pm1factor(n);
        if (f1.equals(BigInteger.ONE) || f1.equals(n))
            return;
        BigInteger f2 = n.divide(f1);
        System.out.println(f1);
        System.out.println(f2);
        factor(f1);
        factor(f2);
    }
    public static void main(String[] args) {
        partA();
        partB();
    }
}
```

Figure 1: Code for solving Problem 15

