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Solutions to Midterm Examination

Instructions:

This is a closed book examination. Answer any 5 of the following 6 questions. Write the numbers of
the five questions that you want graded on the cover of your bluebook. All questions count equally.
You have 75 minutes. Remember to write your name on your bluebook and to justify your answers.
Good Luck!

Problem 1: Hill cipher

Eve captures Bob’s Hill cipher machine, which uses a 2-by-2 matrix M mod 26. She tries a chosen
plaintext attack. She finds that the plaintext ba encrypts to H C' and the plaintext zz encrypts to GT'.
What is the matrix M?

Solution:

Using the standard letter-integer conversiona = 0, b = 1,2 =25, H =7,C = 2, G = 6 and
T = 19. In the Hill Cipher encryption is done by C' = P - A, so the system we need to solve is

(1 cy= (o) (0 m)
(6 1)=(= =) (70 ).

Writing both equations as a single system and converting the letters into numbers we get

6 19\ [ 25 25 moo  Mo1
7T 2 - 1 0 mio Mio )

Solving
25 25\ (6 19) [ me ma
1 0 72 ) \mio mpo )
Now .
25 25 1 0 =25 \_( 0 1
1 0 - —25\ -1 25 —\ 25 25 )°
Finally

moo Mo1 . 0 1 6 19 . 7 2 _ 7 2
mig mi )\ 25 25 7 2 )\ (25-6+25-7) (25-19+25-2) /]~ \ 13 5

)
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Problem 2: Information-theoretic security

(a) Consider the cryptosystem with M = {a,b} and C = K = {0,1,2}. The encryption
function is given by Ex(m) = (m + k) mod 3. Is this system information-theoretically
secure? Explain.

(b) Suppose now M = {a,b},C = {0,1}, and K = {0, 1,2}. Does there exist an information-
theoretically secure encryption function on these sets? Explain.
Solution
part a

It is information-theoretically secure. The pre-images of any element M is C with the same prob-
ability distribution as without information about C. As a result the entropy doesn’t change. Notice
that seeing a ciphertext leaks information about the key but no information about the message. That
is what information-theoretically secure is all about.

part b

It is NOT information-theoretically secure. In a similar argument as before the pre-images of an
element in M is not C with the same probability distribution. That is because the size of the key
space K is bigger so there have to be two keys that map each element in M to the same one in C.
The result is a change in the probability distribution; therefore the entropy changes.

Problem 3: Feistel network

Happy Hacker was asked to implement a Feistel network, but he couldn’t quite remember how stage
1 worked, so he wrote down the equations:

Liy1 = R;
Riy1 = f(Li ® Ry, K3).

However, Happy was having trouble figuring how to decrypt messages encoded in this way.

(a) Show why Happy couldn’t come up with a general decryption algorithm by exhibiting a
particular function f; which makes it impossible to recover (L;, R;) from (L;+1, R;11) when
f11s used for f in Happy’s scheme.

(b) Would have decryption been possible using your function f; of part (a)) if Happy had gotten
the Feistel network correct in the first place? Explain.

(c) Happy finally noticed that he could decrypt if he chose f to be
f(X,K)=XaoK.
Explain how to decrypt in this case.

(d) What can you say about the security of the system using Happy’s function f> from part (c)?
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Solution:
part a
Any non-invertible function will make L; to be lost. For example f(X, K) = K makes the cryp-
tosystem non-decryptable.
part b
Yes, a correct Feistel network does not require inverting the function f so any deterministic function
decrypts correctly.
part ¢
The encryption is
Lipn = R;
Riy1 = Li®R; DK,

so the decryption is

R, = Ly

Li = Ry1®Liy1 DK,
To decrypt we need to run backwards from ¢ = n, ..., 1, where n is the number of rounds.
part d

To build a cryptosystem out of a Feistel network several rounds are used (as in DES). Doing some
rounds using the given round we get

Ll = Ro

Ry = Lo® Ro® Ko

Ly = Lo® Ry® Ky

Ry = Roy®Lo® Ry® Kyg® Ky

Ly = Ro®Lo® Ry® Ko K,

R3; = Ry®DLoDRyDKyD K1 D LyD Rod Ky Ko

So after a few rounds we that that L; = R§ ® Lg ®Kgrand R; = Rg &b Lg @ K1, where the exponent
is over the operation . If the exponent is even then the element is zero. «, 3, v and § depends only
on the number of rounds and K7, and Ky are & of some K;. As a result of this a known plaintext
attack will reveal K and KR, and that is all that is needed to decrypt. That means that Happy’s
cryptosystem will be weak against known plaintext attack.
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Problem 4: Chaining modes

Let Ex(m), Dg(c) be a block cipher. Fischer Spiffy Mixer mode (FSM) encrypts a sequence of
message blocks my, msg,... by the sequence of ciphertext blocks ¢y, ca, ... using the following
method:

¢i =mi—1® Ex(m; ®ci—1)
myg and ¢g are fixed (public) initialization vectors.
(a) Describe how to decrypt.
(b) Suppose ciphertext block c3 is damaged in transit. Which plaintext blocks become undeci-
pherable as a result? Explain.
Solution:
part a

XORing m;_1 to both sides of the encryption equation gives
ci ®mi—1 = Ep(m; ® ci—1).
Applying the decryption function on both sides gives
Dy(ci @ mi—1) = m; © ¢i—1,
SO
m; = ¢i—1 ® Di(c; ® mi_q).
partb
If ¢; was damaged then m; is damaged. If m; is damaged m;; is damaged. From then on all
messages are damaged.

Problem 5: RSA decryption exponent
Bob chooses an RSA modulus n = 13 x 7 = 91.

(a) He wants an easily-remembered encryption exponent, so he wants to use either e = 10 (the
number of decimal digits) or e = 26 (the size of the English alphabet). However, one of these
will not work. Which one won’t work and why?

(b) Since Bob didn’t study for his crypto midterm, he couldn’t answer part (a). To play it safe, he
decided to stick to primes, so he choose e = 17. Find the corresponding decryption exponent
d and show how you derived it.

Solution:

part a:

The condition is that ed = 1 mod ¢(n). For e to have an inverse we need that ged(b, ¢(n)) = 1.
Since ¢(91) = 72 and both 10 and 26 are even we know that the gcd is at least 2 so none has inverse
mod72.
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part b:

To find the inverse we need to use the Extended Euclid’s Algorithm.

72 = 1-7240-17

17 = 0-72+4+1-17

4 = 1-72—-4-17
= —4-72+17-17

Therefore 17 - 17 =1 mod 72 so d = 17.

Problem 6: An attack on RSA

Bob received an RSA-encoded message c from Alice. He decrypted it using the fast modular expo-
nentiation algorithm described in class and reproduced here:

/* computes m“e mod n iteratively =*/
int modexp( int m, int e, int n)
{
int r = 1;
while (e > 0 )
if ( (e&l) ==
e /= 2;
m = mxm % n;
}
return r;

}

{
1) r=r+xm % n;

Nasty manages to break into Bob’s machine and to get a snapshot of the stack frame of Bob’s process
while it was in the middle of decrypting c. In this way, Nasty learns the values of the variables r, e,
m, n as they were at some instant in time during the execution of modexp.

(a) Explain why modexp is relevant to Bob’s task of decrypting c.
(b) Explain how Nasty can use the values he has captured to decrypt c.

(c) Alice sends Bob another RSA-encoded message ¢’. Can Nasty also decrypt it with the infor-
mation already at hand? Why or why not?
Solution:
part a

RSA decryption requires that Bob compute ¢? mod n. The call modexp(c, d, n) does that.

part b

What Nasty does is just keep running the algorithm to finish it. He might not know exactly in what
line of the program he got the variables from, but it is a small number, and he can try all possible
starting points.
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part c

In general he will not be able to decrypt a different message. Nasty did gain some bits of d that will
reduce his search space in a brute force attack, but unless he was lucky and captured Bob’s values
near the beginning of the computation (when most of the bits of d were still available in ), he won’t
be able to decrypt arbitrary messages without a big effort.

(end of exam)
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