
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #17
Felipe Saint-Jean November 9, 2005

Solutions to Problem Set 4

In the problems below, “textbook” refers to Introduction to Cryptography with Coding Theory:
Second Edition by Trappe and Washington..

Problem 16: Chinese Remainder Theorem

Textbook, problem 3.13.10.

Solution:

Following the hint the problem can be written as

n ≡ 1 (mod 3)
n ≡ 2 (mod 4)
n ≡ 3 (mod 5)

where n is the number of people in the parade. Defining Ni = N
ni

where N = n1n2n3 = 3 · 4 · 5
we get

N1 = 20
N2 = 15
N3 = 12

Now Mi ≡ N−1
i (mod ni) so using the extended Euclid’s algorithm to compute the inverses

M1 ≡ 2 (mod n1)
M2 ≡ 3 (mod n2)
M3 ≡ 3 (mod n3)

Now the solution is

n =

(
3∑

i=1

aiMiNi

)
mod n = (1 · 20 · 2 + 2 · 15 · 3 + 3 · 12 · 3) mod 60 = 58

It is easy to see that 58 is a solution to the original set of equations. Now CRT gives a unique
solution mod n so the next solution is 58 + 60 = 118.

Problem 17: Modular Exponentiation

By making appropriate use of Euler’s theorem, the following two problems are readily solved with-
out use of a computer or calculator. Solve these problems by hand, and show your work.

(a) Textbook, problem 3.13.12.

(b) Textbook, problem 3.13.13.



2 Solutions to Problem Set 4

Solution:

part 1:

210203 (mod 101). First notice that φ(101) = 100 so 210203 ≡ 210203 (mod 100) ≡ 23 ≡ 8
(mod 101) therefore the reminder is 8.

part 2:

The last two digits are 123562 (mod 100). φ(100) = φ(22 · 52) = 100 · (1− 1
2) · (1− 1

5) = 40. So
123562 ≡ 123562 (mod φ(100)) ≡ 1232 (mod 100) = 29.

Problem 18: ElGamal Cryptosystem

Textbook, problem 7.6.11. In solving this problem, use the version of the ElGamal cryptosystem
that is presented in the book, which differs slightly from the one presented in class.

Solution:

Decryption is done by computing m ≡ tr−a (mod p). In this case t = 6, r = 7, a = 6 and p = 17.
First notice that 7−1 ≡ 5 (mod 17) so tr−a ≡ 6 ·7−6 ≡ 6 ·56 ≡ 13 (mod 17). Therefore m = 12.

Problem 19: Finding Square Roots

Textbook, problem 3.13.25.

Solution:

Part a:

First let’s find the square roots mod the factors of 143 = 11 · 13. Notice that 133 ≡ 1 (mod 11)
so the square roots are trivially 1 and −1. Now 133 ≡ 3 (mod 13). Using brute force we can
get that 42 ≡ 3 (mod 13) so −4 and 4 are square roots. Notice that there are efficient ways of
computing square roots when p ≡/ 3 (mod n) but they were not covered in class and are not in the
book. Combining the previous results using the CRT we get the four square roots. The first system

r1 ≡ 1 (mod 11)
r1 ≡ 4 (mod 13)

gives that r1 ≡ 56,

r2 ≡ −1 (mod 11)
r2 ≡ 4 (mod 13)

gives that r2 ≡ 43,

r3 ≡ 1 (mod 11)
r3 ≡ −4 (mod 13)

gives that r3 ≡ 100, and

r4 ≡ −1 (mod 11)
r4 ≡ −4 (mod 13)

gives that r4 ≡ 87.
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Part b:

Now we want the square roots of 77 (mod 143). We sill find only two square roots because 77 ≡ 0
(mod 11) so 77 has only one square root (mod 11) and that is 0. Modulo 13, 77 has ±5 as a
square root. Using the CRT we can solve the systems and get the two square roots:

r1 ≡ 0 (mod 11)
r1 ≡ 5 (mod 13)

gives that r1 ≡ 44, and

r2 ≡ 0 (mod 11)
r2 ≡ −5 (mod 13)

gives that r2 ≡ 99.

Problem 20: Blum Primes

Show that −1 is a quadratic residue modulo an odd prime p iff p ≡ 1 (mod 4).
[Hint: Apply the Euler criterion.]

Solution:

(⇒) If −1 is a quadratic residue modulo p, then

(−1)(p−1)/2 ≡ 1 (mod p).

But −1 · −1 ≡ 1 (mod p) so (p− 1)/2 has to be even. Thus 4 |(p− 1) so p ≡ 1 (mod 4).

(⇐) If p ≡ 1 (mod 4) then (−1)(p−1)/2 ≡ 1 because it is −1 raised to a even power. Therefore
−1 is a quadratic residue modulo p.

Problem 21: Rabin Cryptosystem

Textbook, problem 3.13.27.

Solution:

part a:

There are at most 4 square roots to the ciphertext, so if the machine chooses one randomly we can
expect the correct one after 4 attempts on average.

part b:

Factoring is equivalent to finding all square roots. Since factoring is believed to be hard, so is the
problem of finding square roots.

part c:

Choosing 1 as the ciphertext, with probability 1/2 we will get a non-trivial square root of 1. Using
that square root we can factor n and from then on decrypt every message. Notice that that makes
the Rabin Cryptosystem weak against chosen ciphertext attacks.
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