Solutions to Problem Set 5

In the problems below, "textbook" refers to Introduction to Cryptography with Coding Theory: Second Edition by Trappe and Washington..

Problem 22: Factoring RSA Modulus

Alice's public RSA key is $n=3737, e=77$. Eve discovers that $d=3413$. Use the method of lecture notes 12 , section 1.3 , to factor n. You may use a calculator or computer if you wish, but you should show the steps of the algorithm in finding the factors.

Solution:

$e d-1=262800$ that written in binary is 1000000001010010000 . Using the notation in the lecture notes, we have $s=4$ and $t=16425$ so that $e d-1=t 2^{s}$ with t odd. Now let's choose a random a, say $a=978$. Therefore $b_{0} \equiv a^{t} \equiv 1000(\bmod n)$.

$$
\begin{array}{ll}
b_{0} & 1000
\end{array}
$$

$b_{1} 2221$
$b_{2} \quad 1$
Thus we found a non-trivial square root of $1(\bmod n)$ because $2221^{2} \equiv 1(\bmod n)$. Now $\operatorname{gcd}(2221-1,3737)=37$. Therefore, 37 is a factor of n.

Problem 23: Solving Diophantine Equations

Textbook, problem 3.14.2 (computer problem).

Solution:

part a
Using the extended Euclid's Algorithm, we get that $65537 \times(-1405)+3511 \times 26226=1$.
part b
Multiplying the above result times 17 , we get $65537 \times(-23885)+3511 \times 445842=17$.

Problem 24: Finding Primitive Roots

Textbook, problem 3.13.21.

Solution:

part a
Any number r that divides 600 is the product of some subset of $S=(2,2,2,3,5,5)$. If $r<600$ then it is a subset of size at most 5 . S has 3 unique subsets of size 5 that give the numbers 300,200 , and 120. Any subset of size 5 or less has to be a subset of one of those three therefore dividing one of 300,200 , or 120 .
part b
We know, from Lagrange's Theorem, that ord $(7) \mid \phi(601)$. If $\operatorname{ord}(7)<600$ using part a it has to divide one of 300,200 or 120.
part \mathbf{c}
If $\operatorname{ord}(7) \mid k$ then $\operatorname{ord}(7) \cdot m=k$ for some m. Then

$$
7^{k} \equiv 7^{\operatorname{ord}(7) \cdot m}(\bmod 601)
$$

Since, by definition, $7^{\operatorname{ord}(7)} \equiv 1(\bmod 601)$ then $7^{k} \equiv 1(\bmod 601)$. So going back to the question, at least one of the values would be 1 and none is.

part d

Because ord $(7) \mid 600$, by contradiction, if we assume that ord $(7)<600$, then it has to divide 300 , 200 or 120 . But in part c we showed that it is not true. Therefore, $\operatorname{ord}(7)=600$ being that the definition of a primitive root.
part e
To test if a number a is a primitive root of n we have to verify that

$$
a^{\frac{\phi(n)}{q_{i}}} \not \equiv 1(\bmod n)
$$

for all q_{i} distinct prime divisor of $\phi(n)$.

Problem 25: Legendre Symbol

Textbook, problem 3.13.29.

Solution:

part a
$\left(\frac{123}{401}\right)=123^{\frac{401-1}{2}}(\bmod 401) \equiv-1$. Therefore there is no solution.
part b
$\left(\frac{43}{179}\right)=43^{\frac{179-1}{2}}(\bmod 179) \equiv 1$. Therefore yes, there is a solution.
part \mathbf{c}
$\left(\frac{1093}{65537}\right)=1093 \frac{65537-1}{2}(\bmod 65537) \equiv-1$. Therefore no, there is no solution.

Problem 26: Jacobi Symbol

Textbook, problem 3.13.30.

solution:

part a
If a has a a square root r then $r^{2} \equiv a(\bmod n)$. Because $\operatorname{gcd}\left(r^{2}, n\right)=1$, using rule 2 for Jacobi symbols,

$$
\left(\frac{r^{2}}{n}\right)=\left(\frac{r}{n}\right)^{2} \neq-1
$$

Therefore it can't be that a has a square root. This proof was submitted by Doug Swanson as part of his solution and I found it to be much more elegant than mine.
part b
$\left(\frac{3}{35}\right)=\left(\frac{3}{5}\right)\left(\frac{3}{7}\right)$. Also $\left(\frac{3}{5}\right)=-1$ and $\left(\frac{3}{7}\right)=-1$ thus $\left(\frac{3}{35}\right)=1$.
part \mathbf{c}
If $a^{2} \equiv 3(\bmod 35)$ then, since $5 \mid 35, a^{2} \equiv 3(\bmod 5)$ but we know that 3 has no square roots $(\bmod 5)$ because $\left(\frac{3}{5}\right)=-1$.

