Lecture Notes 3

1 Some Classical Encryption Methods

1.1 Monoalphabetic ciphers

The Caeser cipher uses only the 26 rotations out of the 26 ! permutations on the alphabet. The monoalphabetic cipher uses them all. A key k is an arbitrary permutation of the alphabet. $E_{k}(m)$ replaces each letter a of m by $k(a)$ to yield c. To decrypt, $D_{k}(c)$ replaces each letter b of c by $k^{-1}(b)$.

The size of the key space is $|\mathcal{K}|=26!>2^{74}$, which is too large for a successful brute force attack. However, monoalphabetic ciphers can be readily broken using letter frequency analysis, given a long enough message. Because each occurrence of a letter a in the message is replaced by the same letter $k(a)$, the most frequently-occurring letter of m will correspond to the most frequently-occurring letter of c. While Eve might not know what the most frequently-occurring letter of m is, if the message is long enough and she knows that it is English, then it is quite likely that the most frequently-occurring letter in m is one of the most frequently-occurring letters in English, i.e., ' e ' or maybe ' t '. She can then assume that the most frequent letter b_{1} in c is ' e ', the next most frequent letter b_{2} is ' t ', and so forth. Of course, not all of these guesses will be correct, but the number of likely candidates for each ciphertext letter is greatly reduced. Moreover, many wrong guesses can be quickly discarded even without constructing the entire trial key because they lead to unlikely letter combinations.

1.2 Playfair cipher

A cipher that encrypts two letters at a time is much harder to break than a monoalphabetic cipher since it tends to mask the letter frequencies. The Playfair cipher, popularized by L. Playfair in England circa 1854, is one such example ${ }^{1}$ Here, the key is a 5×5 matrix of letters. Pairs of plaintext letters are located in the matrix and used to produce a corresponding pair of ciphertext letters.

For example, consider the key matrix that might result from the passphrase, "CRYPTOGRAPHY REQUIRES STRONG KEYS":

C	R	Y	P	T
O	G	A	H	E
Q	U	I/J	S	N
K	B	D	F	L
M	V	W	X	Z

The matrix is constructed by writing the passphrase into the matrix cells from left to right and top to bottom, omitting any letters that have previously been used. It is filled out with the letters of the alphabet that do not occur in the passphrase, in alphabetical order. (In carrying out this process, "I"

[^0]and " J " are identified, so we are effectively working over a 25 -character alphabet.) Note that each letter of the alphabet occurs exactly once in the resulting matrix.

A message to be encrypted is first broken up into pairs of letters. For example, the message "MEET ME AT THE SUBWAY" would be broken into the pairs "ME" "ET" "ME" "AT" "TH" "ES" "UB" "WA" "YX". Note that we have padded the message with a trailing " X " in order to make its length even, and spaces have been suppressed. Now, each pair of plaintext letters is encrypted. For example, the pair "AT" would be encrypted by taking the rectangle with "A" and " T " as its corners and then using the letters from the other two corners as the cipher text. In this example, the encryption of "AT" is "EY". Decryption is by a similar procedure. The cipher also contains rules for handling various special cases such as when both plaintext letters occur in the same row or the same column or both. In decrypting, one also must resolve the I/J ambiguity and figure out when to remove the padding character.

1.3 Hill cipher

The Hill cipher is another example of a cipher that encrypts groups of letters at once, thereby tending to mask letter frequencies. It is based on linear algebra. The key is, say, a non-singular 3×3 matrix K. The message m is divided into vectors m_{i} of 3 letters each. Encryption is just the matrix-vector product $K v$. Decryption is the same using K^{-1}.

Unfortunately, the Hill cipher succumbs to a known plaintext attack. Given three linearly independent vectors m_{1}, m_{2}, and m_{3} and the corresponding ciphertexts $c_{i}=K m_{i}, i=1,2,3$, it is straightforward to solve for K.

1.4 Polyalphabetic ciphers

Another way to strengthen monoalphabetic ciphers is to use different substitutions for different letter positions. For example, one might choose 10 different alphabet permutations k_{1}, \ldots, k_{10}, use k_{1} for the first letter of m, k_{2} for the second letter, and so forth, repeating this sequence after every 10 letters. While this is much harder to break than monoalphabetic ciphers, it turns out that letter frequency analysis can still be used. Every 10th letter is encrypted using the same permutation, so the submessage consisting of just those letters still exhibits normal English language letter frequencies.

1.5 Transposition techniques

All of the methods discussed so far are based on letter substitution. Another technique is to rearrange the letters of the plaintext. For example, one might write a plaintext message into a matrix by rows and then read it out by columns. While transposition does not seem like a very powerful technique by itself, when used in combination with substitution techniques it can be quite effective. Most practical symmetric cryptosystems are built by composing together many stages of substitutions and transpositions.

1.6 Rotor machines

Rotor machines had an important history during the Second World War. The Germans believed their Enigma machine was unbreakable, but the Allies, with great effort, succeeded in breaking it and in reading many of the top-secret military communications. This is said to have changed the course of the war.

The basic idea of a rotor machine is to use electrical switches to create a permutation of 26 input wires to 26 output wires. Each input wire is attached to a key on a keyboard. Each output wire is
attached to a lamp. The keys are associated with letters just like on a computer keyboard. Each lamp is also labeled by a letter from the alphabet. Pressing a key on the keyboard causes one of the lamps to light, which indicates the ciphertext character corresponding to the key pressed. The operator types the message one character at a time and writes down for each letter the corresponding lamp. To decrypt, one could switch inputs and outputs to obtain the inverse permutation, type in the ciphertext, and read out the plaintext.

What I have described so far is just an electro-mechanical device for implementing a monoalphabetic cipher. However, rotor machine gain their power by changing the permutation after each letter. Each rotor is individually wired to produce some random-looking fixed permutation π. Several rotors stacked together produce the composition of the permutations implemented by the individual rotors. In addition, the rotors can rotate relative to each other, implementing in effect a rotation permutation (like the Caeser cipher uses). Let $\rho_{k}(x)=x+k \bmod 26$. Then rotor in position k implements permutation $\rho_{k} \pi \rho_{k}^{-1}$. Several rotors could be stacked together to implement the composition of the permutations computed by each. For example, three rotors implementing permutations π_{1}, π_{2}, and π_{3}, placed in positions r_{1}, r_{2}, and r_{3}, respectively, would produce the permutation

$$
\begin{align*}
& \rho_{r_{1}} \cdot \pi_{1} \cdot \rho_{-r_{1}} \cdot \rho_{r_{2}} \cdot \pi_{2} \cdot \rho_{-r_{2}} \cdot \rho_{r_{3}} \cdot \pi_{3} \cdot \rho_{-r_{3}} \\
& \quad=\rho_{r_{1}} \cdot \pi_{1} \cdot \rho_{r_{2}-r_{1}} \cdot \pi_{2} \cdot \rho_{r_{3}-r_{2}} \cdot \pi_{3} \cdot \rho_{-r_{3}} \tag{1}
\end{align*}
$$

After each letter is typed, some of the rotors change position, much like the mechanical odometer used in older cars. The period before the rotor positions repeat is quite long, allowing long messages to be sent without ever repeating the same permutation. Thus, a rotor machine is much like a polyalphabetic substitution cipher, but with a very long period. However, unlike a pure polyalphabetic cipher, the successive permutations until the cycle repeats are not independent of each other but are related to each other by (1). This gives the first toehold into methods for breaking the cipher (which are far beyond the scope of this course).

Several different kinds of rotor machines were built and used, both by the Germans and by others, some of which work somewhat differently from what I described above. However, the basic principles are the same. The interested reader can find much detailed material on the web by searching for "enigma cipher machine" and "rotor cipher machine". Nice description may be found at http://en.wikipedia.org/wiki/Enigma_machine and http: //www.quadibloc.com/crypto/intro.htm.

1.7 Steganography

Steganography, hiding one message inside another, is an old technique that is still in use. For example, a message can be hidden inside a graphics image file by using the low-order bit of each pixel to encode the message. The visual effect of these tiny changes is probably too small to be noticed by the user. The message can be hidden further by compressing it or by encrypting it with a conventional cryptosystem. Unlike conventional cryptosystems, where we assume the attacker knows everything about the cryptosystem except for the secret key, steganography relies on the secrecy of the method of hiding for its security. If Eve does not even recognize the message as ciphertext, then she is not likely to attempt to decrypt it.

[^0]: ${ }^{1}$ See Memezes et. al., "Handbook of Applied Cryptography", p. 239-240, for details.

