
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 4 (rev. 1)

Professor M. J. Fischer September 13, 2005

Lecture Notes 4

1 Using Symmetric Cryptosystems

Symmetric (one-key) cryptosystems fall into two broad classes, block ciphers and stream ciphers.
A block cipher takes as inputs a key and a fixed-length plaintext block and produces a fixed-length
ciphertext block as output. Most of the ciphers we have been discussing so far are of this type. A
stream cipher on the other hand process a stream of characters in an on-line fashion, emitting the
ciphertext characters as it goes. The rotor machines are examples of stream ciphers.

1.1 Stream ciphers

A stream cipher has two components, the cipher that is used to encrypt a given character, and a
keystream generator that produces a different key to be used for each successive letter.

A simple stream cipher can be built from the XOR cryptosystem used in the one-time pad.
However, rather than using a random key as long as the message, we instead generate the keystream
on the fly using a state machine. A keystream generator consists of three parts: an internal state,
a next-state generator, and an output function. The next-state generator and output functions can
both depend on (original) key. At each stage, the state is updated and the output function applied
to obtain the next component of the keystream. Like a one-time pad, one must use different key for
each message; otherwise the system is easy to break.

To be secure, the keystream generator must be a good pseudorandom sequence generator. Any
regularities in the output of the keystream generator will give an attacker information about the
plaintext. In particular, if the attacker is ever able to figure out the internal state of the keystream
generator, then she will be able to predict all future outputs of the generator and decipher the re-
mainder of the ciphertext. It turns out that the linear congruential pseudorandom number generators
typically found in software libraries are quite insecure. After observing a relatively short sequence
of outputs from the generator, one can solve for the state and correctly predict all future outputs. For
the simple XOR cipher to be secure, a cryptographically strong pseudorandom number generator
must be used. Even so, the fact that a different key must be used for each message sent makes it
problematic in practice. It’s at least an improvement to make the next-state generator depend on the
current plaintext or ciphertext characters so that the generated keystreams will diverge on different
messages, even if the key is the same.

1.2 Block ciphers

A block cipher operates on an entire block of plaintext to produce a block of ciphertext. So does a
stream cipher, but with a stream cipher the block size is very small (typically one bit or one byte),
whereas a block cipher operates on fairly long blocks, e.g., 64-bits for DES, 128-bits for Rijndal
(AES). With a stream cipher, security rests with the keystream generator, for the ciphers used to
encrypt the individual characters are all subject to known-plaintext attacks. On the other hand,
block ciphers can be designed to resist known-plaintext attacks and can therefore be pretty secure,
even if the same key is used to encrypt a succession of blocks, as is often the case.



2 CPSC 467a Lecture Notes 4 (rev. 1)

Of course, the length messages one wants to send are rarely exactly the block length. To use a
block cipher to encrypt long messages, one first divides the message into blocks of the right length,
padding the last partial block according to a suitable padding rule. Then the block cipher is used
in some chaining mode to encrypt the sequence of resulting blocks. A chaining mode tells how
to encrypt a sequence of plaintext blocks m1,m2, . . . ,mt to produce a corresponding sequence of
ciphertext blocks c1, c2, . . . , ct, and conversely, how to recover the mi’s given the ci’s.

Some standard chaining modes are:

• Electronic Codebook Mode (ECB) – apply cipher to each plaintext block. That is, ci =
Ek(mi) for each i. This becomes in effect a monoalphabetic cipher, where the “alphabet” is
the set of all possible blocks and the permutation is defined by Ek. To decrypt, Bob computes
mi = Dk(ci).

• Cipher Block Chaining Mode (CBC) – encrypt the XOR of the current plaintext block with the
previous ciphertext block to produce the current ciphertext block. That is, ci = Ek(mi⊕ci−1).
To get started, we take c0 = IV, where IV is a fixed initialization vector which we assume is
publicly known. To decrypt, Bob computes mi = Dk(ci)⊕ ci−1.

• Cipher-Feedback Mode (CFB) – XOR the current plaintext block with the encryption of the
previous ciphertext block. That is, ci = mi⊕Ek(ci−1), where again, c0 is a fixed initialization
vector. To decrypt, Bob computes mi = ci ⊕ Ek(ci−1). Note that Bob is able to decrypt
without using the block decryption function Dk. In fact, it is not even necessary for Ek to be
a one-to-one function (but using a non one-to-one function might weaken security).

• Output Feedback Mode (OFB) – the encryption function is iterated on an initial vector (IV) to
produce a stream of block keys, which in turn are XORed with the successive plaintext blocks
to produce the successive ciphertext blocks. (This is similar to a simple keystream generator.)
That is, ci = mi⊕ki, where ki = Ek(ki−1) is a block key. k0 is a fixed initialization vector IV.
To decrypt, Bob can apply exactly the same method to the ciphertext to get the plaintext, that
is, mi = ci ⊕ ki, where ki = Ek(ki−1).

• Propagating Cipher-Block Chaining Mode (PCBC) – encrypt the XOR of the current plaintext
block, previous plaintext block, and previous ciphertext block. That is, ci = Ek(mi⊕mi−1⊕
ci−1). Here, both m0 and c0 are fixed initialization vectors. To decrypt, Bob computes
mi = Dk(ci)⊕mi−1 ⊕ ci−1.

Remarks

1. Both CFB and OFB are closely related to stream ciphers since in both cases, ci is mi XORed
with some function of stuff that came before stage i. Like a one-time pad and other simple
XOR stream ciphers, OFB becomes insecure if the same key is ever reused, for the sequence
of ki’s generated will be the same. CFB, however, avoids this problem, for even if the same
key k is used for two different message sequences mi and m′

i, it will not generally be the case
that mi⊕m′

i = ci⊕c′i; rather, mi⊕m′
i = ci⊕c′i⊕Ek(ci−1)⊕Ek(c′i−1), and the dependency

on k does not drop out.

2. The different modes differ in their sensitivity to data corruption. With ECB and OFB, if Bob
receives a bad block ci, then he cannot recover the corresponding mi, but all good ciphertext
blocks can be decrypted. With CBC and CFB, he needs both good ci and ci−1 blocks in order
to decrypt mi. Therefore, a bad block ci renders both mi and mi+1 unreadable. With PCBC,
a bad block ci renders mj unreadable for all j ≥ i.



CPSC 467a Lecture Notes 4 (rev. 1) 3

3. Other modes can be easily invented. We see that in all cases, ci is computed by some ex-
pression (which may depend on i) built from Ek() and ⊕ applied to blocks c1, . . . , ci−1,
m1, . . . ,mi, and the initialization vectors. Any such equation that can be “solved” for mi

(by possibly using Dk() to invert Ek()) is a suitable chaining mode in the sense that Alice is
able to produce the ciphertext and Bob is able to decrypt it. Of course, the resulting security
properties depend heavily on the particular expression chosen.


	Using Symmetric Cryptosystems
	Stream ciphers
	Block ciphers


