
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 7 (rev. 1)

Professor M. J. Fischer September 22, 2005

Lecture Notes 7

1 Message authentication codes (MACs)

So far in the course, we have been discussing only a single cryptographic application, namely, secret
message transmission from Alice to Bob over a a publicly-readable channel. Our goal has been to
maintain privacy in the face of an eavesdropper Eve.

Once we assume that Eve has the power to modify messages and generate her own messages
as well as eavesdrop, life becomes more difficult. We usually call that kind of a malicious active
adversary “Mallory” (to distinguish him from Eve, who only eavesdrops).

1.1 Attacks by malicious active adversaries

Encryption alone no longer solves Alice and Bob’s problem. Alice sends c = Ek(m), but Bob may
receive a corrupted or forged c′ 6= c. How then does Bob know that the message he receives really
was sent by Alice?

The naive answer is that Bob computes m′ = Dk(c′), and if m′ “looks like” a valid message,
then Bob accepts it as having come from Alice. The reasoning here is that Mallory, not knowing k,
could not possibly have produced a valid-looking message.

For any particular cipher such as DES, that assumption may or may not be valid, but here are
two things to watch out for:

1. There are three successively easier possible attacks in which Mallory might produce fraudu-
lent messages:

(a) He might produce c′ = Ek(m′) for a message m′ of his choosing.

(b) He might produce a message c′ for which the corresponding plaintext m′ is a valid
message, even though he could not choose m′ in advance, nor perhaps he does not even
know what m′ is.

(c) He might be able to alter a legitimate message c from Alice to produce a new message
c′ that corresponds to an altered form m′ of the true message m. For example, if m
represents an amount of money, it is conceivable that Mallory could find the encryption
of m + 1 given the encryption of m, without knowing either m or m + 1.

Attack (1a) is similar to, but not the same as, the notion of breaking the cryptosystem that
we have been studying. We have been asking that it be hard for Eve to compute m = Dk(c)
knowing c but not k. To carry out attack (1a) requires that Mallory compute Ek(m) knowing
m but not k. It’s conceivable that he could do the latter without being able to do the former.

One form of attack (1b) clearly is possible, the so-called replay attack. This is when Mallory
substitutes a legitimate old encrypted message c′ for the current message c. It can be thwarted
by adding timestamps and/or sequence numbers to the messages, so that Bob can recognize
when old messages are being received. Of course, this only works if Alice and Bob anticipate
the attack and incorporate appropriate countermeasures into the protocol they are using.



2 CPSC 467a Lecture Notes 7 (rev. 1)

However, even if replay attacks are ruled out, a cryptosystem that is secure against attack (1a)
might still permit attack (1b). There are all sorts of ways that Mallory can generate values c′.
What gives us confidence that Bob won’t accept one of them as being valid?

Attack (1c) might be possible even in a cryptosystem that is free from attacks (1a) and (1b).
For example, if c1 and c2 are encryptions of valid messages, perhaps so is c1 ⊕ c2. Whether
or not it is depends entirely on particular properties of Ek. It does not follow in general from
the difficulty of decrypting a given ciphertext. We will see some cryptosystems later which
do have the property of being vulnerable to attack (1c). In some contexts, this can actually be
a useful property, as we will see.

2. Cryptosystems are not always used to send natural language or other highly-redundant mes-
sages. For example, suppose Alice wants to send Bob her password to a web site. Knowing
full well the dangers of sending passwords in the clear over the internet, she chooses to en-
crypt it instead. Since passwords are supposed to look like random strings of characters, Bob
will likely accept anything he gets from Alice. He could be quite embarrassed (or worse)
claiming he knew the correct password when in fact the password he thought was from Alice
was actually a fraudulent one derived from a random ciphertext c′ produced by Mallory.

What Alice and Bob need to solve their problem is called a Message Authentication Code or
MAC. A MAC is generated by a function function Ck(m) that can be computed by anyone knowing
a secret key k. However, it should be hard for an attacker to find any pair (m, ξ) such that ξ =
Ck(m) without knowing k. In fact, this should remain hard even if the attacker knows a set of valid
MAC pairs {(m1, ξ1), . . . , (mt, ξt)}, so long as m itself is not the message in one of the known
pairs.

Using a MAC, Alice can send both c = Ek(m) and also ξ = Ck(m). Bob receives c′ and
ξ′, possibly different from what Alice sent. Bob computes m′ = Dk(c′) and then checks that
ξ′ = Ck(m′). If the check succeeds, then Bob accepts m′ as a valid message from Alice. We say
that Mallory successfully cheats if Bob accepts m′ as valid but either m′ 6= m or Alice sent no
message at all.

1.2 Computing MACs

A block cipher such as DES can be used to compute a MAC by making use of one of the ciphertext
chaining modes, CBC or CFB. (See Lecture notes 4.) In these modes, the last ciphertext block ct

depends on all t message blocks m1, . . . ,mt. Therefore, we define Ck(m) = ct. The result of
this process is reputed to be a good MAC generation function. Note that the MAC is only a single
block long, which in general is much shorter than the message. A MAC acts like a checksum for
preserving data integrity, but it has the advantage that an adversary cannot compute a valid MAC
for an altered message.

2 Asymmetric cryptosystems

A major advance in cryptography is the modern development of asymmetric (also called 2-key or
public key) cryptosystems. The idea is simple. Instead of having a single key k that is used by
both Alice and Bob, an asymmetric cryptosystem has a pair of related keys, an encryption key e
and a decryption key d. Alice encrypts a message m by computing c = Ee(m). Bob decrypts by

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln04.pdf


CPSC 467a Lecture Notes 7 (rev. 1) 3

computing m = Dd(c).1 As always, the decryption function inverts the encryption function, so the
following is always satisfied:

m = Dd(Ee(m)).

What makes asymmetric systems useful is the additional requirement that it be difficult to find
d from e, and more generally, that it be difficult to find m given both e and c = Ee(m). Thus, the
system remains secure even if the encryption key e is made public!

There are several reasons to make e public. One is that it is then possible for anybody to send
a private message to Bob. Sandra need only obtain Bob’s public key e and send Bob Ee(m). Bob
recovers m by applying Dd to the received ciphertext. This greatly simplifies the key management
problem, for there is no longer the need for a secure channel between Alice and Bob for the initial
key distribution (which I have carefully avoided talking about so far).

Of course, an active adversary Mallory can still do some nasty things. For example, he could
send his own encryption key to Sandra when she attempts to obtain Bob’s key. Not knowing she
has been duped, Sandra would then encrypt her private data in a way that Bob could not read
but Mallory could! If Mallory wanted to carry out this charade for a longer time without being
discovered, he could intercept each message from Sandra to Mallory, decrypt the message using his
own decryption key, then re-encrypt it using Bob’s public encryption key and send it on its way to
Bob. Bob, receiving a validly encrypted message, will be none the wiser to Mallory’s shenanigans.
This is an example of a man-in-the-middle attack.

The security requirements for an asymmetric cryptosystem are more stringent than for a sym-
metric cryptosystem. For example, the system must be secure against large-scale chosen plaintext
attacks, for Eve can generate as many plaintext-ciphertext pairs as she wishes using the public en-
cryption function Ee().

The public encryption function also gives Eve a way to check the validity of a potential decryp-
tion. Namely, if Eve guesses that Dd(c) = m0 for some candidate message m0, she can check her
guess by testing if c = Ee(m0). Thus, whether or not there is redundancy in the set of meaning-
ful messages is of no consequence to her since she now has an independent way of determining a
successful decryption.

Designing a good asymmetric cryptosystem is much harder than designing a good symmetric
cryptosystem. All of the known asymmetric systems are orders of magnitude slower than cor-
responding symmetric systems. Therefore, they are often used in conjunction with a symmetric
cipher to form a hybrid system. Here’s how this works. Suppose (E2, D2) is a 2-key cryptosystem
and (E1, D1) is a 1-key cryptosystem. To send a secret message m to Bob, Alice first generates a
random session key k for use with the 1-key system. which she then uses to encrypt m. She then en-
crypts the session key using Bob’s public key for the 2-key system and sends Bob both ciphertexts.
In formulas, she sends Bob c1 = E1

k(m) and c2 = E2
e (k). Bob decrypts c2 using D2

d() to obtain
k and then decrypts c1 using D1

k() to obtain m. This is much more efficient than simply sending
D2

e(m) in the common case that m is much longer than k.

1We often get sloppy with notation when discussing asymmetric cryptosystems. Let k = (e, d) be a key pair. We
sometimes write ke and kd for the first and second keys, respectively, so we might use the rather cumbersome notation
Eke(m) and Dkd(c). But then we might simplify this by dropping the second-level subscripts to get the same notation
we use for symmetric cryptosystems, namely Ek(m) and Dk(c). Nevertheless, it should still be understood that the “k”
in Ek refers to the first element of the key pair, whereas the “k” in Dk refers to the second. In practice, it isn’t generally
as confusing as all this. but the potential for misunderstanding is there.


	Message authentication codes (MACs)
	Attacks by malicious active adversaries
	Computing MACs

	Asymmetric cryptosystems

