
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 8 (rev. 1)

Professor M. J. Fischer September 27, 2005

Lecture Notes 8

1 RSA

Probably the most commonly used asymmetric cryptosystem in use today is RSA, named from the
initials of its three inventors, Rivest, Shamir, and Adelman. Unlike the symmetric systems we have
been talking about so far, RSA is based not on substitution and transposition but on arithmetic in-
volving very large integers, numbers that are hundreds or even thousands of bits long. To understand
how RSA works requires knowing a bit of number theory, which we will be presenting in the next
few lectures. However, the basic ideas can be presented quite simply, which I will do now.

RSA assumes the message space, ciphertext space, and key space are the set of integers between
0 and n − 1, where n is a large integer. For now, think of n as a number so large that its binary
representation is 1024 bits long. To use RSA in the usual case where we are interested in sending bit
strings, Alice must first convert her message to an integer, and Bob must convert the integer he gets
from decryption back to a bit string. Many such encodings are possible, but perhaps the simplest is
to prepend a “1” to the bit string x and regard the result as a binary integer m. To decode m to a bit
string, write out m in binary and then delete the initial “1” bit. To ensure that m < n as required,
we will limit the length of our binary messages to 1022 bits.

Here’s how RSA works. Alice chooses two sufficiently large prime numbers p and q and com-
putes n = pq. For security, p and q should be about the same length (when written in binary). She
then computes two numbers e and d with a certain number-theoretic relationship. The public key
is the pair (e, n) The private key is the pair (d, n). The primes p and q are no longer needed and
should be discarded.

To encrypt, Alice computes c = me mod n.1 To decrypt, Bob computes m = cd (mod n).
Here, a mod n means the remainder when a is divided by n. That’s all there is to it, once the keys
have been found. It turns out that most of the complexity in implementing RSA has to do with key
generation, which fortunately is done only infrequently.

You should already be asking yourself the following questions:

• How does one find p, q, e, d with the desired properties?

• What are the desired properties that make RSA work? A priori, it seems pretty unlikely that
Dd(Ee(m)) = (me mod n)d mod n = m.

• Why is RSA believed to be secure?

• How can one implement RSA on a computer when most computers only support arithmetic
on 32-bit integers, and how long does it take?

• How can one possibly compute me mod n for 1024 bit numbers. me, before taking the
remainder, is a number that is roughly 21024 bits long. No computer has enough memory to
store that number, and no computer is fast enough to compute it.

1In the remainder of this discussion, messages and ciphertexts will refer to integers in the range 0 to n− 1, not to bit
strings.

2 CPSC 467a Lecture Notes 8 (rev. 1)

To answer these questions will require the study of clever algorithms for primality testing, fast ex-
ponentiation, and modular inverse computation. It will also require some theory of Zn, the integers
modulo n, and some properties of numbers n that are the product of two primes. In particular, the
security of RSA is based on the premise that the factoring problem on large integers is infeasible,
that is, given n that is known to be the the product of two primes p and q, to find p and q.

2 Number Theory Review

We next review some number theory that is needed for understanding RSA. These lecture notes
only provide a high-level overview. Further details are contained in course handouts 4–6 and in
Chapter 3 of the textbook.

2.1 Divisibility properties

Let a, b be integers and assume b > 0. The division theorem asserts that there are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and 0 ≤ r < b. In case r = 0 we say that
b divides a (exactly) and write b |a.

Fact If d |(a + b), then either d divides both a and b, or d divides neither of them.

To see this, suppose d | (a + b) and d | a. Then by the division theorem, a + b = dq1 and a = dq2

for some integers q1 and q2. Subsituting for a and solving for b, we get

b = dq1 − dq2 = d(q1 − q2).

But this implies d |b, again by the division theorem.

2.2 Greatest common divisor

The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer d such
that d |a and d |b. The gcd is always defined since 1 is a divisor of every integer, and the divisor of
a number cannot be larger (in absolute value) than the number itself.

The gcd of a and b is easily found if a and b are already given in factored form. Namely,
let pi be the ith prime and write a =

∏
pei

i and b =
∏

p fi
i . Then gcd(a, b) =

∏
p
min(ei,fi)
i .

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm
is currently known. Indeed, if it were, then Eve could use it to break RSA, and RSA would be of no
interest as a cryptosystem.

Fortunately, gcd(a, b) can be computed efficiently without the need to factor a and b. Here’s a
sketch of the ideas that lead to the famous Euclidean algorithm.

The gcd function satisfies several identities. In the following, assume a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (1)

gcd(a, 0) = a (2)

gcd(a, b) = gcd(a− b, b) (3)

Identity 3 follows from the Fact above. A simple inductive proof shows that identity 3 can be
strengthened to

gcd(a, b) = gcd(a mod b, b) (4)

CPSC 467a Lecture Notes 8 (rev. 1) 3

where a mod b is the remainder of a divided by b. The Euclidean algorithm uses identities 1, 2,
and 4 recursively to compute gcd(a, b) in O(n) stages, where n is the sum of the lengths of a and
b when written in binary notation, and each stage requires at most one remainder computation. We
will return to this topic in lecture 10.

2.3 Basic definitions and notation

The set
Zn = {0, 1, . . . , n− 1}

contains the non-negative integers less than n. If one defines a binary “addition” operation on Zn

by
a⊕ b

df= (a + b) mod n

then Zn can be regarded as an Abelian group under addition (⊕).
The set

Z∗n = {x ∈ Zn | gcd(x, n) = 1}

contains the non-negative integers less than n that are relatively prime to n, that is, which do not
share any non-trivial common factor with n. If one defines a binary “multiplication” operation on
Z∗n by

a⊗ b
df= (a · b) mod n

then it can be shown that Z∗n is an Abelian group under multiplication (⊗).
Euler’s totient (φ) function is defined to be the cardinality of Z∗n:

φ(n) = |Z∗n|

Properties of φ(n):

1. If p is prime, then φ(p) = p− 1.

2. More generally, if p is prime and k ≥ 1, then φ(pk) = pk − pk−1 = (p− 1)pk−1.

3. If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).

These properties enable one to compute φ(n) for all n ≥ 1 provided one knows the factorization
of n. For example,

φ(126) = φ(2)φ(32)φ(7) = (2− 1)(3− 1)(32−1)(7− 1) = 1 · 2 · 3 · 6 = 36.

The 36 elements of Z∗126 are: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 65,
67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln10.pdf

	RSA
	Number Theory Review
	Divisibility properties
	Greatest common divisor
	Basic definitions and notation

