
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 10 (rev. 2)

Professor M. J. Fischer October 4, 2005

Lecture Notes 10

1 Exponentiation: Speeding up the Computation

In lecture notes 9, section 4, we explained how to control the growth in the lengths of numbers when
computing me mod n, for numbers m, e, and n which are 1024 bits long. Nevertheless, there is
still a problem with the naive exponentiation algorithm that simply multiplies m by itself a total
of e − 1 times. Since the value of e is roughly 21024, roughly that many iterations of the main
loop would be required, and the computation would run longer than the current age of the universe
(which is estimated to be 15 billion years). Assuming one loop iteration could be done in one
microsecond (very optimistic seeing as each iteration requires computing a product and remainder
of big numbers), only about 30 × 1012 iterations could be performed per year, and only about
450× 1021 iterations in the lifetime of the universe. But 450× 1021 ≈ 279, far less than e− 1.

The trick here is to use a more efficient exponentiation algorithm based on repeated squaring. To
compute me mod n where e = 2k is a power of two requires only k squarings, i.e., one computes

m0 = m
m1 = (m0 ∗m0) mod n
m2 = (m1 ∗m1) mod n

...
mk = (mk−1 ∗mk−1) mod n.

Clearly, each mi = m2i
mod n. me for values of e that are not powers of 2 can be obtained as the

product modulo n of certain mi’s. In particular, express e in binary as e = (bsbs−1 . . . b2b1b0)2.
Then mi is included in the final product if and only if bi = 1.

It is not necessary to perform this computation in two phases as described above. Rather, the two
phases can be combined together, resulting in a slicker and simpler algorithm that does not require
the explicit storage of the mi’s. I will give two versions of the resulting algorithm, a recursive
version and an iterative version. I’ll write both in C notation, but it should be understood that the C
programs only work for numbers smaller than 216. To handle larger numbers requires the use of big
number functions.

/* computes mˆe mod n recursively */
int modexp(int m, int e, int n)
{
int r;
if (e == 0) return 1; /* mˆ0 = 1 */
r = modexp(m*m % n, e/2, n); /* r = (mˆ2)ˆ(e/2) mod n */
if ((e&1) == 1) r = r*m % n; /* handle case of odd e */
return r;

}

This same idea can be expressed iteratively to achieve even greater efficiency.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln09.pdf

2 CPSC 467a Lecture Notes 10 (rev. 2)

/* computes mˆe mod n iteratively */
int modexp(int m, int e, int n)
{
int r = 1;
while (e > 0) {
if ((e&1) == 1) r = r*m % n;
e /= 2;
m = m*m % n;

}
return r;

}

The loop invariant is e > 0 ∧ (me0
0 mod n = rme mod n), where m0 and e0 are the initial values

of m and e, respectively. It is easily checked that this holds at the start of each iteration. If the loop
exits, then e = 0, so r is the desired result. Termination is ensured since e gets reduced during each
iteration.

Note that the last iteration of the loop computes a new value of m that is never used. A slight ef-
ficiency improvement results from restructuring the code to eliminate this unnecessary computation.
Following is one way of doing so.

/* computes mˆe mod n iteratively */
int modexp(int m, int e, int n)
{
int r = ((e&1) == 1) ? m % n : 1;
e /= 2;
while (e > 0) {
m = m*m % n;
if ((e&1) == 1) r = r*m % n;
e /= 2;

}
return r;

}

2 Generating RSA Encryption and Decryption Exponents

We showed in lecture notes 9, section 2, that RSA decryption works for m ∈ Z∗n if e and d are
chosen so that

ed ≡ 1 (mod φ(n)), (1)

that is, d is e−1 (the inverse of e) in Z∗φ(n).
We now turn to the question of how Alice chooses e and d to satisfy (1). One way she can do

this is to choose a random integer e ∈ Z∗φ(n) and then solve (1) for d. We will show how to do this
in Sections 4 and 5 below.

However, there is another issue, namely, how does Alice find random e ∈ Z∗φ(n)? If Z∗φ(n) is
large enough, then she can just choose random elements from Zφ(n) until she encounters one that
lies in Z∗φ(n). But how large is large enough? If φ(φ(n)) (the size of Z∗φ(n)) is much smaller than
φ(n) (the size of Zφ(n)), she might have to search for a long time before finding a suitable candidate
for e.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln09.pdf

CPSC 467a Lecture Notes 10 (rev. 2) 3

In general, Z∗m can be considerably smaller than m. For example, if m = |Zm| = 210, then
|Z∗m| = 48. In this case, the probability that a randomly-chosen element of Zm falls in Z∗m is only
48/210 = 8/35 = 0.228

The following theorem provides a crude lower bound on how small Z∗m can be relative to the
size of Zm that is nevertheless sufficient for our purposes.

Theorem 1 For all m ≥ 2,
|Z∗m|
|Zm|

≥ 1
1 + blog2 mc

.

Proof: Write m in factored form as m =
∏t

i=1 pei
i , where pi is the ith prime that divides m and

ei ≥ 1. Then φ(m) =
∏t

i=1(pi − 1)pei−1
i , so

|Z∗m|
|Zm|

=
φ(m)

m
=

∏t
i=1(pi − 1)pei−1

i∏t
i=1 pei

i

=
t∏

i=1

(
pi − 1

pi

)
. (2)

To estimate the size of
∏t

i=1(pi − 1)/pi, note that (pi − 1)/pi ≥ i/(i + 1). This follows since
(x− 1)/x is monotonic increasing in x, and pi ≥ i + 1. Then

t∏
i=1

(
pi − 1

pi

)
≥

t∏
i=1

(
i

i + 1

)
=

1
2
· 2
3
· 3
4
· · · t

t + 1
=

1
t + 1

. (3)

Clearly t ≤ blog2 mc since 2t ≤
∏t

i=1 pi ≤ m and t is an integer. Combining this fact with
equations (2) and (3) gives the desired result.

For n a 1024-bit integer, φ(n) < n < 21024. Hence, log2(φ(n)) < 1024, so blog2(φ(n))c ≤ 1023.
By Theorem 1, the fraction of elements in Zφ(n) that also lie in Z∗φ(n) is at least 1/1024. Therefore,
the expected number of random trials before Alice finds a number in Z∗φ(n) is provably at most 1024
and is most likely much smaller.

3 Euclidean algorithm

To test if d ∈ Z∗φ(n), Alice can test if gcd(d, φ(n)) = 1. How does she do this?
The basic ideas underlying the Euclidean algorithm were sketched in lecture notes 8, section 2.2.

Euclid’s algorithm is remarkable, not only because it was discovered a very long time ago, but also
because it works without knowing the factorization of a and b. It relies on the equation

gcd(a, b) = gcd(a− b, b) (4)

which holds when a ≥ b ≥ 0. This allows the problem of computing gcd(a, b) to be reduced to the
problem of computing gcd(a − b, b), which is “smaller” if b > 0. Here we measure the size of the
problem (a, b) by the sum a + b of the two arguments. (4) leads in turn leads to an easy recursive
algorithm:

int gcd(int a, int b)
{
if (a < b) return gcd(b, a);
else if (b == 0) return a;
else return gcd(a-b, b);

}

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln08.pdf

4 CPSC 467a Lecture Notes 10 (rev. 2)

Nevertheless, this algorithm is not very efficient, as you will quickly discover if you attempt to use
it, say, to compute gcd(1000000, 2).

Repeatedly applying (4) to the pair (a, b) until it can’t be applied any more produces the se-
quence of pairs (a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b). The sequence stops when a− qb < b.
But the number of times you can subtract b from a is just the quotient ba/bc, and the amount a− qb
that is left is just the remainder a mod b. Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b). Since a mod b < b, it is also convenient to swap the elements of the pair. This results
in the Euclidean algorithm (in C notation):

int gcd(int a, int b)
{
if (b == 0) return a;
else return gcd(b, a % b);

}

4 Diophantine equations and modular inverses

Now that Alice knows how to choose d ∈ Z∗φ(n), how does she find e? That is, how does she solve
(1)? Note that e, if it exists, is a multiplicative inverse of d (mod n), that is, a number that, when
multiplied by d, gives 1.

Equation (1) is an instance of the general Diophantine equation

ax + by = c (5)

Here, a, b, c are given integers. A solution consists of integer values for the unknowns x and y. To
put (1) into this form, we note that ed ≡ 1 (mod φ(n)) iff ed+uφ(n) = 1 for some integer u. This
is seen to be an equation in the form of (5) where the unknowns x and y are e and u, respectively,
and the coefficients a, b, c are d, φ(n), and 1, respectively.

5 Extended Euclidean algorithm

It turns out that (5) is closely related to the greatest common divisor, for it has a solution iff
gcd(a, b) | c. It can be solved by a process akin to the Euclidean algorithm, which we call the
Extended Euclidean algorithm. Here’s how it works.

The algorithm generates a sequence of triples of numbers Ti = (ri, ui, vi), each satisfying the
invariant

ri = aui + bvi ≥ 0. (6)

The first triple T1 is (a, 1, 0) if a ≥ 0 and (−a,−1, 0) if a < 0. The second trip T2 is (b, 0, 1) if
b ≥ 0 and (−b, 0,−1) if b < 0.

The algorithm generates Ti+2 from Ti and Ti+1 much the same as the Euclidean algorithm
generates (a mod b) from a and b. More precisely, let qi+1 = bri/ri+1c. Then Ti+2 = Ti −
qi+1Ti+1, that is,

ri+2 = ri − qi+1ri+1

ui+2 = ui − qi+1ui+1

vi+2 = vi − qi+1vi+1

CPSC 467a Lecture Notes 10 (rev. 2) 5

Note that ri+2 = (ri mod ri+1), 1 so one sees that the sequence of generated pairs (r1, r2), (r2, r3),
(r3, r4), . . . , is exactly the same as the sequence of pairs generated by the Euclidean algorithm. Like
the Euclidean algorithm, we stop when rt = 0. Then rt−1 = gcd(a, b), and from (6) it follows that

gcd(a, b) = aut−1 + bvt−1 (7)

Returning to equation (5), if c = gcd(a, b), then x = ut−1 and y = vt−1 is a solution. If c is a
multiple of gcd(a, b), then c = k gcd(a, b) for some k and x = kut−1 and y = kvt−1 is a solution.
Otherwise, gcd(a, b) does not divide c, and one can show that (5) has no solution. See Handout
5 for further details, as well as for a discussion of how many solutions (5) has and how to find all
solutions.

Here’s an example. Suppose one wants to solve the equation

31x− 45y = 3 (8)

In this example, a = 31 and b = −45. We begin with the triples

T1 = (31, 1, 0)
T2 = (45, 0,−1)

The computation is shown in the following table:

i ri ui vi qi

1 31 1 0
2 45 0 −1 0
3 31 1 0 1
4 14 −1 −1 2
5 3 3 2 4
6 2 −13 −9 1
7 1 16 11 2
8 0 −45 −31

From T7 = (1, 16, 11) and (6), we obtain

1 = a× 16 + b× 11

Plugging in values a = 31 and b = −45, we compute

31× 16 + (−45)× 11 = 496− 495 = 1

as desired. The solution to (8) is then x = 3× 16 = 48 and y = 3× 11 = 33.

6 Generating RSA Modulus

We finally turn to the question of generating the RSA modulus, n = pq. Recall that the numbers p
and q should be random distinct primes of about the same length. The method for finding p and q is
similar to the “guess-and-check” method used in Section 2 to find random numbers in Z∗n. Namely,
keep generating random numbers p of the right length until a prime is found. Then keep generating
random numbers q of the right length until one is found that is prime and different from p.

1This follows from the division theorem, which can be written in the form a = b · ba/bc + (a mod b).

http://zoo.cs.yale.edu/classes/cs467/2005f/course/handouts/ho05.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/handouts/ho05.pdf

6 CPSC 467a Lecture Notes 10 (rev. 2)

To generate a random prime of a given length, say k bits long, generate k − 1 random bits, put
a “1” at the front, regard the result as binary number, and test if it is prime. We defer the question
of how to test if the number is prime and look now at the expected number of trials before this
procedure will terminate.

The above procedure samples uniformly from the set Bk = Z2k − Z2k−1 of binary numbers of
length exactly k. Let pk be the fraction of elements in Bk that are prime. Then the expected number
of trials to find a prime will be 1/pk. While pk is difficult to determine exactly, the celebrated Prime
Number Theorem allows us to get a good estimate on that number.

Let π(n) be the number of numbers ≤ n that are prime. For example, π(10) = 4 since there
are four primes ≤ 10, namely, 2, 3, 5, 7. The prime number theorem asserts that π(n) is “approx-
imately”2 n/(lnn), where lnn is the natural logarithm (loge) of n. The chance that a randomly
picked number in Zn is prime is then π(n− 1)/n ≈ ((n− 1)/ ln(n− 1))/n ≈ 1/(lnn).

Since Bk = Z2k − Z2k−1 , we have

pk =
π(2k − 1)− π(2k−1 − 1)

2k−1

=
2π(2k − 1)

2k
− π(2k−1 − 1)

2k−1

≈ 2
ln 2k

− 1
ln 2k−1

≈ 1
ln 2k

=
1

k ln 2
.

Hence, the expected number of trials before success is approximately k ln 2. For k = 512, this
works out to 512× 0.693 . . . ≈ 355.

2We ignore the critical issue of how good an approximation this is in these notes. The interested reader is referred to
a good mathematical text on number theory.

	Exponentiation: Speeding up the Computation
	Generating RSA Encryption and Decryption Exponents
	Euclidean algorithm
	Diophantine equations and modular inverses
	Extended Euclidean algorithm
	Generating RSA Modulus

