
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 11 (rev. 2)

Professor M. J. Fischer October 6, 2005

Lecture Notes 11

1 Generating RSA Modulus: Part 2

The remaining problem for generating an RSA key is how to test if a large number is prime. Until
very recently, no deterministic polynomial time algorithm was known for testing primality, and even
now it is not known whether any deterministic algorithm is feasible in practice. However, there do
exist fast probabilistic algorithms for testing primality, which we now discuss

1.1 Probabilistic Primality Testing

A deterministic test for primality is a procedure that, given as input a number n, correctly returns
the answer ‘composite’ or ‘prime’.1 To arrive at a probabilistic algorithm, we extend the notion
of a deterministic primality test in two ways: We give it an extra “helper” string a, and we allow
it to answer ‘?’, meaning “I don’t know”. Given input n and helper string a, such an output may
correctly answer either ‘composite’ or ‘?’ when n is composite, and it may correctly answer either
‘prime’ or ‘?’ when n is prime. If the algorithm gives a non-”?” answer, we say that the helper
string a is a witness to that answer.

Given an extended primality test T (n, a), we can use it to build a strong probabilistic primality
testing algorithm. On input n, do the following:

Algorithm P1(n):
repeat forever {

Generate a random helper string a;
Let r = T (n, a);
if (r 6= ‘?’) return r;

};

This algorithm has the property that it might not terminate (in case there are no witnesses to the
correct answer for n), but when it does terminate, the answer is correct.

Unfortunately, we do not know of any test that results in an efficient strong probabilistic primal-
ity testing algorithm. However, the above algorithm can be weakened slightly and still be useful.
What we do is to add a parameter t which is the maximum number of trials that we are willing to
perform. The algorithm then becomes:

Algorithm P2(n, t):
repeat t times {

Generate a random helper string a;
Let r = T (n, a);
if (r 6= ‘?’) return r;

}
return ‘?’;

1We assume that n ≥ 2, so that n is either composite or prime.

2 CPSC 467a Lecture Notes 11 (rev. 2)

Now the algorithm is allowed to give up and return ‘?’, but only after trying t times to find the
correct answer. If there are lots of witnesses to the correct answer, then the probability will be high
of finding one, so most of the time the algorithm will succeed. But even this assumption is stronger
than we know how to achieve.

1.2 Tests of compositeness

The tests that we will present are asymmetric. When n is composite, there are many witnesses to
that effect, but when n is prime, there are none. Hence, the test either outputs ‘composite’ or ‘?’ but
never ‘prime’. We call these tests of compositeness since an answer of ‘composite’ means that n is
definitely composite, but these tests can never say for sure that n is prime.

When algorithm P2 uses a test of compositeness, an answer of ‘composite’ likewise means that
n is definitely composite. Moreover, if there are many witnesses to n’s being composite and t is
sufficiently large, then the probability that P2(n, t) outputs ‘composite’ will be high. However, if n
is prime, then both the test and P2 will always output ‘?’. It is tempting to interpret P2’s output of
‘?’ to mean “n is probably prime”, but of course, it makes no sense to say that n is probably prime;
n either is or is not prime. But what does make sense is to say that the probability is very small that
P2 answers ‘?’ when n is composite.

In practice, we will indeed interpret the output ‘?’ to mean ‘prime’, but we understand that the
algorithm has the possibility of giving the wrong answer when n is composite. Whereas before our
algorithm would only report an answer when it was sure and would answer ‘?’ otherwise, now we
are considering algorithms that are allowed to make mistakes with (hopefully) small probability.

1.3 Formal definition

Formally, a test of compositeness is a set T = {τ1, . . . , τs}, where τi : Z → {true, false} has the
property that

τa(n) = true ⇒ n is composite.

If τa(n) = true, we say that τa(n) succeeds, and a is a witness to the compositeness of n. If
τa(n) = false, then the test fails and gives no information about the compositeness of n. Clearly, if
n is prime, then all τa fail on n, but if n is composite, then τa(n) may either succeed or fail.

A test of compositeness T is useful if there is a feasible algorithm T (n, a) that computes τa(n),
and for every composite number n, a fraction c > 0 of the tests succeed on n. Suppose for simplicity
that c = 1/2 and one applies 100 randomly-chosen tests to n. If any of them succeeds, we have a
proof that n is composite. If all fail, we don’t know whether or not n is prime or composite. But
what we do know is that if n is composite, the probability that all 100 tests fail is only 1/2100.

In practice, what we do to choose RSA primes p and q is to choose numbers at random and
apply some fixed number of randomly-chosen tests to each candidate,2 rejecting the candidate if it
proves to be composite. We keep the candidate (and assume it to be prime) if all of the tests for
compositeness fail. We never know whether or not our resulting numbers p and q really are prime,
but we can adjust the parameters to reduce the probability to an acceptable level that we will end up
a number p or q that is not prime (and hence that we have unknowingly generated a bad RSA key).

1.4 Example tests of compositeness

Here are two examples of tests for compositeness.

2This is what Algorithm P2 does.

CPSC 467a Lecture Notes 11 (rev. 2) 3

1. Let δa(n) = (2 ≤ a ≤ n − 1 and a|n). Test δa succeeds on n if a is a proper divisor of n,
which indeed implies that n is composite. Thus, {δa}a∈Z is a valid test of compositeness.
Unfortunately, it isn’t very useful in a probabilistic primality algorithm since the number of
tests that succeed when n is composite are too small. For example, if n = pq for p, q prime,
then the only tests that succeed are δp and δq.

2. Let ζa(n) = (2 ≤ a ≤ n − 1 and an−1 6≡ 1 (mod n). By Fermat’s theorem, if p is prime
and gcd(a, p) = 1, then ap−1 ≡ 1 (mod p). Hence, if ζa(n) succeeds, it must be the case
that n is not prime. This shows that {ζa}a∈Z is a valid test of compositeness. For this test
to be adequate for a probabilistic primality algorithm, we would need to know that for all
composite numbers n, a significant fraction of the tests ζa succeed on n. Unfortunately, there
are certain compositeness numbers n called pseudoprimes for which all of the tests ζa fail.
Such n are fairly rare, but they do exist. The ζa tests are unable to distinguish pseudoprimes
from true primes, so they are not adequate for testing primality.

We will return to this topic later when we have developed sufficient number theory to present tests
of compositeness that do have the properties needed to make them useful in probabilistic primality
algorithms.

2 Chinese Remainder Theorem

We now return to a basic result of number theory that will be used later.
Let n1, n2, . . . , nk be positive pairwise relatively prime positive integers3, let n =

∏k
i=1 ni, and

let ai ∈ Zi for i = 1, . . . , k. Consider the system of congruence equations with unknown x:

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

(1)

The Chinese Remainder Theorem says that (1) has a unique solution in Zn.
To solve for x, let

Ni = n/ni = n1n2 . . . ni−1︸ ︷︷ ︸ ·ni+1 . . . nk︸ ︷︷ ︸,
and compute Mi = N−1

i mod ni, for 1 ≤ i ≤ k. Note that N−1
i (mod ni) exists since

gcd(Ni, ni) = 1 by the pairwise relatively prime condition. We can compute N−1
i using the meth-

ods of lecture 10, section 5. Now let

x = (
k∑

i=1

aiMiNi) mod n (2)

If j 6= i, then MjNj ≡ 0 (mod ni) since ni|Nj . On the other hand, MiNi ≡ 1 (mod ni) by
definition of Mi. Hence,

x ≡
k∑

i=1

aiMiNi ≡ 0a1 + . . . + 0ai−1︸ ︷︷ ︸ +1ai + 0ai+1 . . . 0ak︸ ︷︷ ︸ ≡ ai (mod ni) (3)

for all 1 ≤ i ≤ k, establishing that (2) is a solution of (1).
3This means that gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln10.pdf

4 CPSC 467a Lecture Notes 11 (rev. 2)

To see that the solution is unique in Zn, let χ be the mapping x 7→ (x mod n1, . . . , x mod nk).
χ is a surjection4 from Zn to Zn1 × . . . × Znk

since we have just shown for all (a1, . . . , ak) ∈
Zn1 × . . . × Znk

that there exists x ∈ Zn such that χ(x) = (a1, . . . , ak). Since also |Zn| =
|Zn1 × . . .× Znk

|, χ is a bijection, and (1) has only one solution in Zn.

2.1 Homomorphic property of χ

The bijection χ is interesting in its own right, for it establishes a one-to-one correspondence between
members of Zn and k-tuples (a1, . . . , ak) in Zn1× . . .×Znk

. This lets us reason about and compute
with k-tuples and then translate the results back to Zn.

The homomorphic property of χ means that performing an arithmetic operation on x ∈ Zn cor-
responds to performing the similar operation on each of the components of χ(x). More precisely, let
� be one of the arithmetic operations +, −, or ×. If χ(x) = (a1, . . . , ak) and χ(y) = (b1, . . . , bk),
then

χ((x� y) mod n) = ((a1 � b1) mod n1, . . . , (ak � bk) mod nk). (4)

In other words, if one first performs z = (x� y) mod n and then computes z mod ni, the result is
the same as if one instead first computed ai = (x mod ni) and bi = (y mod ni) and then performed
(ai� bi) mod ni. This relies on the fact that (z mod n) mod ni = z mod ni, which holds because
ni |n.

2.2 RSA Decryption Works for All of Zn

In lecture 9, section 2, we showed that RSA decryption works when m, c ∈ Z∗n. We now show
using the Chinese Remainder Theorem that it works for all m, c ∈ Zn.

Let n = pq be an RSA modulus, p, q distinct primes, and let e and d be the RSA encryption and
decryption exponents, respectively. We show med ≡ m (mod n) for all m ∈ Zn.

Define a = (m mod p) and b = (m mod q), so

m ≡ a (mod p)
m ≡ b (mod q)

(5)

Raising both sides to the power ed gives

med ≡ aed (mod p)
med ≡ bed (mod q)

(6)

We now argue that aed ≡ a (mod p). If a ≡ 0 (mod p), then obviously aed ≡ 0 ≡ a (mod p).
If a 6≡ 0 (mod p), then gcd(a, p) = 1 since p is prime, so a ∈ Z∗p. By Euler’s theorem,

aφ(p) ≡ 1 (mod p)

Since ed ≡ 1 (mod φ(n)), we have ed = 1 + uφ(n) = 1 + uφ(p)φ(q) for some integer u. Hence,

aed ≡ a1+uφ(p)φ(q) ≡ a ·
(
aφ(p)

)uφ(q)
≡ a · 1uφ(q) ≡ a (mod p) (7)

Similarly,
bed ≡ b (mod q) (8)

4A surjection is an onto function.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln09.pdf

CPSC 467a Lecture Notes 11 (rev. 2) 5

Combining the pair (6) with (7) and (8) yields

med ≡ a (mod p)
med ≡ b (mod q)

Thus, med is a solution to the system of equations

x ≡ a (mod p)
x ≡ b (mod q)

(9)

From (5), m is also a solution of (9). By the Chinese Remainder Theorem, the solution to (9) is
unique modulo n, so med ≡ m (mod n) as desired.

	Generating RSA Modulus: Part 2
	Probabilistic Primality Testing
	Tests of compositeness
	Formal definition
	Example tests of compositeness

	Chinese Remainder Theorem
	Homomorphic property of
	RSA Decryption Works for All of Zn

