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Lecture Notes 13

1 Quadratic Residues

1.1 Squares and square roots

An integer a is called a quadratic residue (or perfect square) modulo n if a = b* (mod n) for some
integer b. Such a b is said to be a square root of a modulo n. We let

QR,, = {a € Z | a is a quadratic residue modulo n}.
be the set of quadratic residues in Z,, and we denote the set of non-quadratic residues in Z;, by
QNR,, =Z; — QR,,.
1.2 Square roots modulo a prime

Claim 1 For an odd prime p, every a € QR,, has exactly two square roots in Z, and exactly 1/2 of
the elements of Z,, are quadratic residues.

For example, take p = 11. The following table shows all of the elements of Z7; and their squares.

a a’® mod 11
1 1
2 4
3 9
4 )
5 3
6 =-5 3
7T =—4 5
8 =-3 9
9 =-2 4
10 =-1 1

Thus, we see that QR,; = {1, 3,4, 5,9} and QNR; = {2,6,7,8,10}.

Proof: We now prove Claim Consider the mapping sq : Z;, — QR,, defined by b — b2 mod p.
We show that this is a 2-to-1 mapping from Z; onto QR,,.

Leta € QR,, and let b> = a (mod p) be a square root of a. Then —b is also a square root of a,
and b Z —b (mod p) since p + 2b. Hence, a has at least two distinct square roots (mod n). Now
let ¢ be any square root of a.

& =a="b* (mod p).

Then p|c® — b2, s0 p|(c — b)(c +b). Since p is prime, then either p| (¢ — b), in which case ¢ = b
(mod p), or p|(c + b), in which case ¢ = —b (mod p). Hence ¢ = +b (mod p). Since ¢ was an
arbitrary square root of a, it follows that b are the only two square roots of a. Hence, sq() is a
2-to-1 function, and [QR,,| = %|Z;§| as desired. [ |
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1.3 Square roots modulo the product of two primes

Claim 2 Let n = pq for p, q distinct odd primes. Then every a € QR,, has exactly four square
roots in Z, and exactly 1/4 of the elements of Z;, are quadratic residues.

Proof: Consider the mapping sq : Z% — QR,, defined by b — b? mod n. We show that this is a
4-to-1 mapping from Z7 onto QR,,.

Let a € QR,, and let b> = a (mod n) be a square root of a. Then also b> = a (mod p)
and b> = a (mod q), so b is a square root of a (mod p) and b is a square root of a (mod q).
Conversely, if b, is a square root of & (mod p) and b, is a square root of a (mod ¢), then by the
Chinese Remainder theorem, the unique number b € Z7 such that b = b, (mod p) and b = b,
(mod q) is a square root of a (mod n). Since a has two square roots mod p and two square
roots mod g, it follows that a has four square roots mod n. Thus, sq() is a 4-to-1 function, and
|QR,,| = 1|Z;| as desired. [ |

1.4 Euler criterion
There is a simple test due to Euler for whether a number is in QR,, for p prime.
Claim 3 (Euler Criterion): An integer a is a non-triviaﬂ quadratic residue modulo p iff
a? /2 =1 (mod p).
Proof: Leta = b? (mod p) for some b % 0 (mod p). Then
aP=D/2 = (p?)P=D/2 = pp=1 = 1 (mod p)

by Euler’s theorem.
For the other direction, suppose a?~1/2 = 1 (mod p). Let g be a primitive root of p, and
choose k so that a = g* (mod p). Then

aP=1/2 = (gF)P=1/2 = g(P=DE/2 = 1 (mod p).
Because g is a primitive root, ¢ = 1 (mod p) implies that £ is a multiple of p — 1 for any . Taking
¢ = (p—1)k/2, we have that p — 1| (p — 1)k/2, from which we conclude that 2|k. Hence, k/2 is

an integer, and b = g% £ 0 (mod p) is a square root of a, so a is a non-trivial quadratic residue
modulo p. L

1.5 Finding square roots

The Euler criterion lets us test membership in QR,, for prime p, but it doesn’t tell us how to find
square roots. In case p = 3 (mod 4), there is an easy algorithm for finding the square roots of any
member of QR,,.

Claim4 Letp =3 (mod 4), a € QR,,. Then b = aPtD/% s a square root of a (mod p).

Proof: Under the assumptions of the claim, p + 1 is divisible by 4, so (p+ 1)/4 is an integer. Then

B = (a2 = opH)/2 = (1412 = ¢ q(P~D/2 = 4.1 = ¢ (mod p)

by the Euler Criterion (Claim [3). [ |

' A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).
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2 QR Probabilistic Cryptosystem

Let n = pq, p, q distinct odd primes. We can divide the numbers in Z into four classes depending
on their membership in QR,, and QRq Let Q1! be those numbers that are quadratic residues mod
both p and ¢; let Q.0 be those numbers that are quadratic residues mod p but not mod ¢; let Q0!
be those numbers that are quadratic residues mod ¢ but not mod p; and let QY° be those numbers
that are neither quadratic residues mod p nor mod ¢q. Under these definitions, Q,lll = QR,, and

QYUY UQ, = QNR,,

Fact Given a € Q% U QL!, there is no known feasible algorithm for determining whether or not
a € QR,, that gives the correct answer significantly more than 1/2 the time.

The Goldwasser-Micali cryptosystem is based on this fact. The public key consist of a pair
e = (n,y), where n = pq for distinct odd primes p, ¢, and y € Q9. The private key consists of p.
The message space is M = {0, 1}.

To encrypt m € M, Alice chooses a random a € QR,,. She does this by choosing a random
member of Z} and squaring it. If m = 0, then ¢ = @ mod n. If m = 1, then ¢ = ay mod n. The
ciphertext is c.

It is easily shown that if m = 0, then ¢ € Q}Tl, andif m = 1,thenc € Q?LO. One can also show
that every a € Q1! is equally likely to be chosen as the ciphertext in case m = 0, and every a € Q%
is equally likely to be chosen as the ciphertext in case m = 1. Eve’s problem of determining whether
cencrypts 0 or 1 is the same as the problem of distinguishing between membership in Q% and Q1!,
which by the above fact is believed to be hard. Anyone knowing the private key p, however, can use
the Euler Criterion to quickly determine whether or not c is a quadratic residue mod p and hence
whether ¢ € QL1 or ¢ € QV°, thereby determining m.

3 Legendre Symbol

Let p be an odd prime, a an integer. The Legendre symbol (%) is a number in {—1, 0, +1}, defined
as follows:
+1 if a is a non-trivial quadratic residue modulo p

<a) _ 0 ifa=0 (mod p)

p —1 if ais not a quadratic residue modulo p

By the Euler Criterion (see Claim 3)), we have

Theorem 1 Let p be an odd prime. Then
(a) = o(*7) (mod p)
p

Note that this theorem holds even when p | a.
The Legendre symbol satisfies the following multiplicative property:

p p p
*To be strictly formal, we classify a € Z?, according to whether or not (¢ mod p) € QR,, and whether or not
(amod q) € QR,.

Fact Let p be an odd prime. Then
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Not surprisingly, if a; and ay are both non-trivial quadratic residues, then so is ajas. This shows
that the fact is true for the case that
a a
()= (3)-
p p

More surprising is the case when neither a; nor ag are quadratic residues, so

a a
()- ()~
D p
In this case, the above fact says that the product a;jas is a quadratic residue since

(“”2) = (~1)(~1) =1.

p

Here’s a way to see this. Let ¢ be a primitive root of p. Write a; = ¢~ (mod p) and ay = gk?
(mod p). Since a; and ay are not quadratic residues, it must be the case that k; and ko are both
odd; otherwise ¢*1/2 would be a square root of aj, or ¢"2/2 would be a square root of as. But then
k1 + ks is even since the sum of any two odd numbers is always even. Hence, ¢(%11%2)/2 i5 a square
root of ajas = g¥'**2 (mod p), so ajas is a quadratic residue.
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