Lecture Notes 13

1 Quadratic Residues

1.1 Squares and square roots

An integer a is called a quadratic residue (or perfect square) modulo n if $a \equiv b^{2}(\bmod n)$ for some integer b. Such a b is said to be a square root of a modulo n. We let

$$
\mathrm{QR}_{n}=\left\{a \in \mathbf{Z}_{n}^{*} \mid a \text { is a quadratic residue modulo } n\right\} .
$$

be the set of quadratic residues in \mathbf{Z}_{n}^{*}, and we denote the set of non-quadratic residues in \mathbf{Z}_{n}^{*} by $\mathrm{QNR}_{n}=\mathbf{Z}_{n}^{*}-\mathrm{QR}_{n}$.

1.2 Square roots modulo a prime

Claim 1 For an odd prime p, every $a \in Q R_{p}$ has exactly two square roots in \mathbf{Z}_{p}^{*}, and exactly $1 / 2$ of the elements of \mathbf{Z}_{p}^{*} are quadratic residues.

For example, take $p=11$. The following table shows all of the elements of \mathbf{Z}_{11}^{*} and their squares.

a	$a^{2} \bmod 11$
1	
2	
3	
4	4
5	5
$6=-5$	3
7	$=-4$
8	$=-3$
9	$=-2$
10	$=-1$

Thus, we see that $\mathrm{QR}_{11}=\{1,3,4,5,9\}$ and $\mathrm{QNR}_{11}=\{2,6,7,8,10\}$.
Proof: We now prove Claim 1 . Consider the mapping sq: $\mathbf{Z}_{p}^{*} \rightarrow \mathrm{QR}_{p}$ defined by $b \mapsto b^{2} \bmod p$. We show that this is a 2-to-1 mapping from \mathbf{Z}_{p}^{*} onto QR_{p}.

Let $a \in \mathrm{QR}_{p}$, and let $b^{2} \equiv a(\bmod p)$ be a square root of a. Then $-b$ is also a square root of a, and $b \not \equiv-b(\bmod p)$ since $p \nmid 2 b$. Hence, a has at least two distinct square roots $(\bmod n)$. Now let c be any square root of a.

$$
c^{2} \equiv a \equiv b^{2}(\bmod p) .
$$

Then $p \mid c^{2}-b^{2}$, so $p \mid(c-b)(c+b)$. Since p is prime, then either $p \mid(c-b)$, in which case $c \equiv b$ $(\bmod p)$, or $p \mid(c+b)$, in which case $c \equiv-b(\bmod p)$. Hence $c \equiv \pm b(\bmod p)$. Since c was an arbitrary square root of a, it follows that $\pm b$ are the only two square roots of a. Hence, sq() is a 2-to-1 function, and $\left|\mathrm{QR}_{p}\right|=\frac{1}{2}\left|\mathbf{Z}_{p}^{*}\right|$ as desired.

1.3 Square roots modulo the product of two primes

Claim 2 Let $n=p q$ for p, q distinct odd primes. Then every $a \in Q R_{n}$ has exactly four square roots in \mathbf{Z}_{n}^{*}, and exactly $1 / 4$ of the elements of \mathbf{Z}_{n}^{*} are quadratic residues.

Proof: Consider the mapping sq : $\mathbf{Z}_{n}^{*} \rightarrow \mathrm{QR}_{n}$ defined by $b \mapsto b^{2} \bmod n$. We show that this is a 4-to-1 mapping from \mathbf{Z}_{n}^{*} onto QR_{n}.

Let $a \in \mathrm{QR}_{n}$ and let $b^{2} \equiv a(\bmod n)$ be a square root of a. Then also $b^{2} \equiv a(\bmod p)$ and $b^{2} \equiv a(\bmod q)$, so b is a square root of $a(\bmod p)$ and b is a square root of $a(\bmod q)$. Conversely, if b_{p} is a square root of $a(\bmod p)$ and b_{q} is a square root of $a(\bmod q)$, then by the Chinese Remainder theorem, the unique number $b \in \mathbf{Z}_{n}^{*}$ such that $b \equiv b_{p}(\bmod p)$ and $b \equiv b_{q}$ $(\bmod q)$ is a square root of $a(\bmod n)$. Since a has two square roots $\bmod p$ and two square roots $\bmod q$, it follows that a has four square roots $\bmod n$. Thus, sq() is a 4-to- 1 function, and $\left|\mathrm{QR}_{n}\right|=\frac{1}{4}\left|\mathbf{Z}_{n}^{*}\right|$ as desired.

1.4 Euler criterion

There is a simple test due to Euler for whether a number is in QR_{p} for p prime.
Claim 3 (Euler Criterion): An integer a is a non-trivia \square^{\square} quadratic residue modulo p iff

$$
a^{(p-1) / 2} \equiv 1(\bmod p) .
$$

Proof: Let $a \equiv b^{2}(\bmod p)$ for some $b \not \equiv 0(\bmod p)$. Then

$$
a^{(p-1) / 2} \equiv\left(b^{2}\right)^{(p-1) / 2} \equiv b^{p-1} \equiv 1(\bmod p)
$$

by Euler's theorem.
For the other direction, suppose $a^{(p-1) / 2} \equiv 1(\bmod p)$. Let g be a primitive root of p, and choose k so that $a \equiv g^{k}(\bmod p)$. Then

$$
a^{(p-1) / 2} \equiv\left(g^{k}\right)^{(p-1) / 2} \equiv g^{(p-1) k / 2} \equiv 1(\bmod p) .
$$

Because g is a primitive root, $g^{\ell} \equiv 1(\bmod p)$ implies that ℓ is a multiple of $p-1$ for any ℓ. Taking $\ell=(p-1) k / 2$, we have that $p-1 \mid(p-1) k / 2$, from which we conclude that $2 \mid k$. Hence, $k / 2$ is an integer, and $b=g^{k / 2} \not \equiv 0(\bmod p)$ is a square root of a, so a is a non-trivial quadratic residue modulo p.

1.5 Finding square roots

The Euler criterion lets us test membership in QR_{p} for prime p, but it doesn't tell us how to find square roots. In case $p \equiv 3(\bmod 4)$, there is an easy algorithm for finding the square roots of any member of QR_{p}.

Claim 4 Let $p \equiv 3(\bmod 4), a \in \mathrm{QR}_{p}$. Then $b=a^{(p+1) / 4}$ is a square root of $a(\bmod p)$.
Proof: Under the assumptions of the claim, $p+1$ is divisible by 4 , so $(p+1) / 4$ is an integer. Then

$$
b^{2} \equiv\left(a^{(p+1) / 4}\right)^{2} \equiv a^{(p+1) / 2} \equiv a^{1+(p-1) / 2} \equiv a \cdot a^{(p-1) / 2} \equiv a \cdot 1 \equiv a(\bmod p)
$$

by the Euler Criterion (Claim3).

[^0]
2 QR Probabilistic Cryptosystem

Let $n=p q, p, q$ distinct odd primes. We can divide the numbers in \mathbf{Z}_{n}^{*} into four classes depending on their membership in QR_{p} and $\mathrm{QR}_{q} \cdot{ }^{2}$ Let Q_{n}^{11} be those numbers that are quadratic residues mod both p and q; let Q_{n}^{10} be those numbers that are quadratic residues $\bmod p$ but not $\bmod q$; let Q_{n}^{01} be those numbers that are quadratic residues $\bmod q$ but not $\bmod p$; and let Q_{n}^{00} be those numbers that are neither quadratic residues $\bmod p$ nor $\bmod q$. Under these definitions, $Q_{n}^{11}=\mathrm{QR}_{n}$ and $Q_{n}^{00} \cup Q_{n}^{01} \cup Q_{n}^{10}=\mathrm{QNR}_{n}$.

Fact Given $a \in Q_{n}^{00} \cup Q_{n}^{11}$, there is no known feasible algorithm for determining whether or not $a \in \mathrm{QR}_{n}$ that gives the correct answer significantly more than $1 / 2$ the time.

The Goldwasser-Micali cryptosystem is based on this fact. The public key consist of a pair $e=(n, y)$, where $n=p q$ for distinct odd primes p, q, and $y \in Q_{n}^{00}$. The private key consists of p. The message space is $\mathcal{M}=\{0,1\}$.

To encrypt $m \in \mathcal{M}$, Alice chooses a random $a \in \mathrm{QR}_{n}$. She does this by choosing a random member of \mathbf{Z}_{n}^{*} and squaring it. If $m=0$, then $c=a \bmod n$. If $m=1$, then $c=a y \bmod n$. The ciphertext is c.

It is easily shown that if $m=0$, then $c \in Q_{n}^{11}$, and if $m=1$, then $c \in Q_{n}^{00}$. One can also show that every $a \in Q_{n}^{11}$ is equally likely to be chosen as the ciphertext in case $m=0$, and every $a \in Q_{n}^{00}$ is equally likely to be chosen as the ciphertext in case $m=1$. Eve's problem of determining whether c encrypts 0 or 1 is the same as the problem of distinguishing between membership in Q_{n}^{00} and Q_{n}^{11}, which by the above fact is believed to be hard. Anyone knowing the private key p, however, can use the Euler Criterion to quickly determine whether or not c is a quadratic residue $\bmod p$ and hence whether $c \in Q_{n}^{11}$ or $c \in Q_{n}^{00}$, thereby determining m.

3 Legendre Symbol

Let p be an odd prime, a an integer. The Legendre symbol $\left(\frac{a}{p}\right)$ is a number in $\{-1,0,+1\}$, defined as follows:

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
+1 & \text { if } a \text { is a non-trivial quadratic residue modulo } p \\
0 & \text { if } a \equiv 0(\bmod p) \\
-1 & \text { if } a \text { is not a quadratic residue modulo } p
\end{aligned}\right.
$$

By the Euler Criterion (see Claim 3), we have
Theorem 1 Let p be an odd prime. Then

$$
\left(\frac{a}{p}\right) \equiv a^{\left(\frac{p-1}{2}\right)}(\bmod p)
$$

Note that this theorem holds even when $p \mid a$.
The Legendre symbol satisfies the following multiplicative property:
Fact Let p be an odd prime. Then

$$
\left(\frac{a_{1} a_{2}}{p}\right)=\left(\frac{a_{1}}{p}\right)\left(\frac{a_{2}}{p}\right)
$$

[^1]Not surprisingly, if a_{1} and a_{2} are both non-trivial quadratic residues, then so is $a_{1} a_{2}$. This shows that the fact is true for the case that

$$
\left(\frac{a_{1}}{p}\right)=\left(\frac{a_{2}}{p}\right)=1
$$

More surprising is the case when neither a_{1} nor a_{2} are quadratic residues, so

$$
\left(\frac{a_{1}}{p}\right)=\left(\frac{a_{2}}{p}\right)=-1 .
$$

In this case, the above fact says that the product $a_{1} a_{2}$ is a quadratic residue since

$$
\left(\frac{a_{1} a_{2}}{p}\right)=(-1)(-1)=1 .
$$

Here's a way to see this. Let g be a primitive root of p. Write $a_{1} \equiv g^{k_{1}}(\bmod p)$ and $a_{2} \equiv g^{k_{2}}$ $(\bmod p)$. Since a_{1} and a_{2} are not quadratic residues, it must be the case that k_{1} and k_{2} are both odd; otherwise $g^{k_{1} / 2}$ would be a square root of a_{1}, or $g^{k_{2} / 2}$ would be a square root of a_{2}. But then $k_{1}+k_{2}$ is even since the sum of any two odd numbers is always even. Hence, $g^{\left(k_{1}+k_{2}\right) / 2}$ is a square root of $a_{1} a_{2} \equiv g^{k_{1}+k_{2}}(\bmod p)$, so $a_{1} a_{2}$ is a quadratic residue.

[^0]: ${ }^{1}$ A non-trivial quadratic residue is one that is not equivalent to $0(\bmod p)$.

[^1]: ${ }^{2}$ To be strictly formal, we classify $a \in \mathbf{Z}_{n}^{*}$ according to whether or not $(a \bmod p) \in \mathrm{QR}_{p}$ and whether or not $(a \bmod q) \in \mathrm{QR}_{q}$.

