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Lecture Notes 13

1 Quadratic Residues

1.1 Squares and square roots

An integer a is called a quadratic residue (or perfect square) modulo n if a ≡ b2 (mod n) for some
integer b. Such a b is said to be a square root of a modulo n. We let

QRn = {a ∈ Z∗n | a is a quadratic residue modulo n}.

be the set of quadratic residues in Z∗n, and we denote the set of non-quadratic residues in Z∗n by
QNRn = Z∗n −QRn.

1.2 Square roots modulo a prime

Claim 1 For an odd prime p, every a ∈ QRp has exactly two square roots in Z∗p, and exactly 1/2 of
the elements of Z∗p are quadratic residues.

For example, take p = 11. The following table shows all of the elements of Z∗11 and their squares.

a a2 mod 11
1 1
2 4
3 9
4 5
5 3
6 = −5 3
7 = −4 5
8 = −3 9
9 = −2 4

10 = −1 1

Thus, we see that QR11 = {1, 3, 4, 5, 9} and QNR11 = {2, 6, 7, 8, 10}.

Proof: We now prove Claim 1. Consider the mapping sq : Z∗p → QRp defined by b 7→ b2 mod p.
We show that this is a 2-to-1 mapping from Z∗p onto QRp.

Let a ∈ QRp, and let b2 ≡ a (mod p) be a square root of a. Then −b is also a square root of a,
and b 6≡ −b (mod p) since p ∼| 2b. Hence, a has at least two distinct square roots (mod n). Now
let c be any square root of a.

c2 ≡ a ≡ b2 (mod p).

Then p | c2 − b2, so p | (c − b)(c + b). Since p is prime, then either p | (c − b), in which case c ≡ b
(mod p), or p | (c + b), in which case c ≡ −b (mod p). Hence c ≡ ±b (mod p). Since c was an
arbitrary square root of a, it follows that ±b are the only two square roots of a. Hence, sq() is a
2-to-1 function, and |QRp| = 1

2 |Z
∗
p| as desired.
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1.3 Square roots modulo the product of two primes

Claim 2 Let n = pq for p, q distinct odd primes. Then every a ∈ QRn has exactly four square
roots in Z∗n, and exactly 1/4 of the elements of Z∗n are quadratic residues.

Proof: Consider the mapping sq : Z∗n → QRn defined by b 7→ b2 mod n. We show that this is a
4-to-1 mapping from Z∗n onto QRn.

Let a ∈ QRn and let b2 ≡ a (mod n) be a square root of a. Then also b2 ≡ a (mod p)
and b2 ≡ a (mod q), so b is a square root of a (mod p) and b is a square root of a (mod q).
Conversely, if bp is a square root of a (mod p) and bq is a square root of a (mod q), then by the
Chinese Remainder theorem, the unique number b ∈ Z∗n such that b ≡ bp (mod p) and b ≡ bq

(mod q) is a square root of a (mod n). Since a has two square roots mod p and two square
roots mod q, it follows that a has four square roots mod n. Thus, sq() is a 4-to-1 function, and
|QRn| = 1

4 |Z
∗
n| as desired.

1.4 Euler criterion

There is a simple test due to Euler for whether a number is in QRp for p prime.

Claim 3 (Euler Criterion): An integer a is a non-trivial1 quadratic residue modulo p iff

a(p−1)/2 ≡ 1 (mod p).

Proof: Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem.
For the other direction, suppose a(p−1)/2 ≡ 1 (mod p). Let g be a primitive root of p, and

choose k so that a ≡ gk (mod p). Then

a(p−1)/2 ≡ (gk)(p−1)/2 ≡ g(p−1)k/2 ≡ 1 (mod p).

Because g is a primitive root, g` ≡ 1 (mod p) implies that ` is a multiple of p−1 for any `. Taking
` = (p − 1)k/2, we have that p − 1 | (p − 1)k/2, from which we conclude that 2|k. Hence, k/2 is
an integer, and b = gk/2 6≡ 0 (mod p) is a square root of a, so a is a non-trivial quadratic residue
modulo p.

1.5 Finding square roots

The Euler criterion lets us test membership in QRp for prime p, but it doesn’t tell us how to find
square roots. In case p ≡ 3 (mod 4), there is an easy algorithm for finding the square roots of any
member of QRp.

Claim 4 Let p ≡ 3 (mod 4), a ∈ QRp. Then b = a(p+1)/4 is a square root of a (mod p).

Proof: Under the assumptions of the claim, p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a1+(p−1)/2 ≡ a · a(p−1)/2 ≡ a · 1 ≡ a (mod p)

by the Euler Criterion (Claim 3).
1A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).
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2 QR Probabilistic Cryptosystem

Let n = pq, p, q distinct odd primes. We can divide the numbers in Z∗n into four classes depending
on their membership in QRp and QRq.2 Let Q11

n be those numbers that are quadratic residues mod
both p and q; let Q10

n be those numbers that are quadratic residues mod p but not mod q; let Q01
n

be those numbers that are quadratic residues mod q but not mod p; and let Q00
n be those numbers

that are neither quadratic residues mod p nor mod q. Under these definitions, Q11
n = QRn and

Q00
n ∪Q01

n ∪Q10
n = QNRn.

Fact Given a ∈ Q00
n ∪ Q11

n , there is no known feasible algorithm for determining whether or not
a ∈ QRn that gives the correct answer significantly more than 1/2 the time.

The Goldwasser-Micali cryptosystem is based on this fact. The public key consist of a pair
e = (n, y), where n = pq for distinct odd primes p, q, and y ∈ Q00

n . The private key consists of p.
The message space is M = {0, 1}.

To encrypt m ∈ M, Alice chooses a random a ∈ QRn. She does this by choosing a random
member of Z∗n and squaring it. If m = 0, then c = a mod n. If m = 1, then c = ay mod n. The
ciphertext is c.

It is easily shown that if m = 0, then c ∈ Q11
n , and if m = 1, then c ∈ Q00

n . One can also show
that every a ∈ Q11

n is equally likely to be chosen as the ciphertext in case m = 0, and every a ∈ Q00
n

is equally likely to be chosen as the ciphertext in case m = 1. Eve’s problem of determining whether
c encrypts 0 or 1 is the same as the problem of distinguishing between membership in Q00

n and Q11
n ,

which by the above fact is believed to be hard. Anyone knowing the private key p, however, can use
the Euler Criterion to quickly determine whether or not c is a quadratic residue mod p and hence
whether c ∈ Q11

n or c ∈ Q00
n , thereby determining m.

3 Legendre Symbol

Let p be an odd prime, a an integer. The Legendre symbol
(

a
p

)
is a number in {−1, 0,+1}, defined

as follows: (
a

p

)
=


+1 if a is a non-trivial quadratic residue modulo p

0 if a ≡ 0 (mod p)
−1 if a is not a quadratic residue modulo p

By the Euler Criterion (see Claim 3), we have

Theorem 1 Let p be an odd prime. Then(
a

p

)
≡ a( p−1

2 ) (mod p)

Note that this theorem holds even when p |a.
The Legendre symbol satisfies the following multiplicative property:

Fact Let p be an odd prime. Then (
a1a2

p

)
=

(
a1

p

) (
a2

p

)
2To be strictly formal, we classify a ∈ Z∗n according to whether or not (a mod p) ∈ QRp and whether or not

(a mod q) ∈ QRq .
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Not surprisingly, if a1 and a2 are both non-trivial quadratic residues, then so is a1a2. This shows
that the fact is true for the case that (

a1

p

)
=

(
a2

p

)
= 1.

More surprising is the case when neither a1 nor a2 are quadratic residues, so(
a1

p

)
=

(
a2

p

)
= −1.

In this case, the above fact says that the product a1a2 is a quadratic residue since(
a1a2

p

)
= (−1)(−1) = 1.

Here’s a way to see this. Let g be a primitive root of p. Write a1 ≡ gk1 (mod p) and a2 ≡ gk2

(mod p). Since a1 and a2 are not quadratic residues, it must be the case that k1 and k2 are both
odd; otherwise gk1/2 would be a square root of a1, or gk2/2 would be a square root of a2. But then
k1 + k2 is even since the sum of any two odd numbers is always even. Hence, g(k1+k2)/2 is a square
root of a1a2 ≡ gk1+k2 (mod p), so a1a2 is a quadratic residue.
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