
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 14 (rev. 2)

Professor M. J. Fischer October 20, 2005

Lecture Notes 14

1 Jacobi Symbol

The Jacobi symbol extends the Legendre symbol to the case where the “denominator” is an arbitrary
odd positive number n.

1.1 Definition

Let n be an odd positive integer with prime factorization
∏k

i=1 pi
ei . We define the Jacobi symbol by(

a

n

)
=

k∏
i=1

(
a

pi

) ei

, (1)

where the symbol on the left is the Jacobi symbol, and the symbol on the right is the Legendre
symbol. (By convention, this product is 1 when k = 0, so

(
a
1

)
= 1.) Clearly, when n = p is an odd

prime, the Jacobi symbol and Legendre symbols agree, so the Jacobi symbol is a true extension of
our earlier notion.

What does the Jacobi symbol mean when n is not prime? If
(

a
n

)
= −1 then a is definitely not a

quadratic residue modulo n, but if
(

a
n

)
= 1, a might or might not be a quadratic residue. Consider

the important case of n = pq for p, q distinct odd primes. Then(
a

n

)
=

(
a

p

) (
a

q

)
so there are two cases that result in

(
a
n

)
= 1: either

(
a
p

)
=

(
a
q

)
= +1 or

(
a
p

)
=

(
a
q

)
= −1.

In the first case, a is a quadratic residue modulo both p and q, so a is a quadratic residue modulo n.
In the second case, a is not a quadratic residue modulo either p or q, so it is not a quadratic residue
modulo n, either. Such numbers a are sometimes called “pseudo-squares” since they have Jacobi
symbol 1 but are not quadratic residues.

1.2 Identities

The Jacobi symbol is easily computed if the factorization of n is known using Equation 1 above and
Theorem 1 of lecture 13, section 3. Similarly, gcd(u, v) is easily computed given the factorizations
of u and v, without resort to the Euclidean algorithm. The remarkable fact about the Euclidean
algorithm is that it lets us compute gcd(u, v) efficiently even without knowing the factors of u and
v. A similar algorithm allows the Jacobi symbol

(
a
n

)
to be computed efficiently without knowing

the factorization of a or n.
The algorithm is based on identities satisfied by the Jacobi symbol:

1.
(

0
1

)
= 1;

(
0
n

)
= 0 for n 6= 1;

2.
(

2
n

)
= 1 if n ≡ ±1 (mod 8);

(
2
n

)
= −1 if n ≡ ±3 (mod 8);

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln13.pdf

2 CPSC 467a Lecture Notes 14 (rev. 2)

3.
(a1

n

)
=

(a2
n

)
if a1 ≡ a2 (mod n);

4.
(

2a
n

)
=

(
2
n

) (
a
n

)
;

5.
(

a
n

)
= −

(
n
a

)
if a ≡ n ≡ 3 (mod 4).

6.
(

a
n

)
=

(
n
a

)
if a ≡ 1 (mod 4) or (a ≡ 3 (mod 4) and n ≡ 1 (mod 4));

There are many ways to turn these identities into an algorithm. Below is a straightforward
recursive approach. Slightly more efficient iterative implementations are also possible.

int jacobi(int a, int n)
/* Precondition: a, n >= 0; n is odd */
{
if (a == 0) /* identity 1 */
return (n==1) ? 1 : 0;

if (a == 2) { /* identity 2 */
switch (n%8) {
case 1:
case 7:
return 1;

case 3:
case 5:
return -1;

}
}
if (a >= n) /* identity 3 */
return jacobi(a%n, n);

if (a%2 == 0) /* identity 4 */
return jacobi(2,n)*jacobi(a/2, n);

/* a is odd */ /* identities 5 and 6 */
return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);

}

2 Strassen-Solovay Test of Compositeness

Recall that a test of compositeness for n is a set of predicates {τa(n)}a∈Z∗
n

such that if τ(n) succeeds
(is true), then n is composite. The Strassen-Solovay Test is the set of predicates {νa(n)}a∈Z∗

n
, where

νa(n) = true iff
(

a

n

)
6≡ a(n−1)/2 (mod n).

If n is prime, the test always fails by Theorem 1 of lecture 13, section 3. Equivalently, if some νa(n)
succeeds, then n must be composite. Hence, the test is a valid- test of compositeness.

Let b = a(n−1)/2. There are two possible reasons why the test might succeed. One possibility
is that b2 ≡ an−1 6≡ 1 (mod n) in which case b 6≡ ±1 (mod n). This is just the Fermat test
ζa(n) from section 1.4 of lecture notes 11. A second possibility is that an−1 ≡ 1 (mod n) but
nevertheless, b 6≡

(
a
n

)
(mod n). In this case, b is a square root of 1 (mod n), but it might have

the opposite sign from
(

a
n

)
, or it might not even be±1 since 1 has additional square roots when n is

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln13.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln11.pdf

CPSC 467a Lecture Notes 14 (rev. 2) 3

composite. We claim without proof that for some constant c > 0 and all composite numbers n, the
probability that νa(n) succeeds for a randomly-chosen a ∈ Z∗

n is at least c. I believe that c ≥ 1/4,
but this fact must be checked.

3 Miller-Rabin Test of Compositeness

The Miller-Rabin Test is more complicated to describe than the Solovay-Strassen Test, but the
probability of error (that is, the probability that it fails when n is composite) seems to be lower than
for Solovay-Strassen, so that the same degree of confidence can be achieved using fewer iterations of
the test. This makes it faster when incorporated into a primality-testing algorithm. It is also closely
related to the algorithm presented in lecture notes 12, section 1.3 for factoring an RSA modulus
given the encryption and decryption keys.

3.1 The test

The test µa(n) is based on computing a sequence b0, b1, . . . , bk of integers in Z∗
n. If n is prime, this

sequence ends in 1, and the last non-1 element, if any, is n − 1 (≡ −1 (mod n)). If the observed
sequence is not of this form, then n is composite, and the Miller-Rabin Test succeeds. Otherwise,
the test fails.

The sequence is computed as follows:

1. Write n− 1 = 2km, where m is an odd positive integer. Computationally, k is the number of
0’s at the right (low-order) end of the binary expansion of n, and m is the number that results
from n when the k low-order 0’s are removed.

2. Let b0 = am mod n.

3. For i = 1, 2, . . . , k, let bi = (bi−1)2 mod n.

An easy inductive proof shows that bi = a2im mod n for all i, 0 ≤ i ≤ k. In particular, bk ≡
a2km = an−1 (mod n).

3.2 Validity

To see that the test is valid, we must show that µa(p) fails for all a ∈ Z∗
p when p is prime. By Euler’s

theorem1, ap−1 ≡ 1 (mod p), so we see that bk = 1. Since 1 has only two square roots, 1 and −1,
modulo p, and bi−1 is a square root of bi modulo p, the last non-1 element in the sequence (if any)
must be −1 mod p. This is exactly the condition for which the Miller-Rabin test fails. Hence, it
fails whenever n is prime, so if it succeeds, n is indeed composite.

3.3 Accuracy

How likely is it to succeed when n is composite? It succeeds whenever an−1 6≡ 1 (mod n), so it
succeeds whenever the Fermat test ζa(n) would succeed. (See lecture notes 11, section 1.4.) But
even when an−1 ≡ 1 (mod n) and the Fermat test fails, the Miller-Rabin test will succeed if the
last non-1 element in the sequence of b’s is one of the square roots of 1 other than ±1. It can be
proved that µa(n) succeeds for at least 3/4 of the possible values of a. Empirically, the test almost
always succeeds when n is composite, and one has to work to find a such that µa(n) fails.

1This is also called Fermat’s little theorem.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln12.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln11.pdf

4 CPSC 467a Lecture Notes 14 (rev. 2)

3.4 Example

For example, take n = 561 = 3 ·11 ·17. This number is interesting because it is the first Carmichael
number. A Carmichael number is an odd composite number n that satisfies an−1 ≡ 1 (mod n)
for all a ∈ Z∗

n. (See http://mathworld.wolfram.com/CarmichaelNumber.html.)
These are the numbers that I have been calling “pseudoprimes”. Let’s go through the steps of
computing µ37(561).

We begin by finding m and k. 561 in binary is 1000110001 (a palindrome!). Then n − 1 =
560 = (1000110000)2, so k = 4 and m = (100011)2 = 35. We compute b0 = am = 3735 mod
561 = 265 with the help of the computer. We now compute the sequence of b’s, also with the help
of the computer. The results are shown in the table below:

i bi

0 265
1 100
2 463
3 67
4 1

This sequence ends in 1, but the last non-1 element b3 6≡ −1 (mod 561), so the test µ37(561)
succeeds. In fact, the test succeeds for every a ∈ Z∗

561 except for a = 1, 103, 256, 460, 511. For
each of those values, b0 = am ≡ 1 (mod 561).

3.5 Optimization

In practice, one only wants to compute as many of the b’s as necessary to determine whether or not
the test succeeds. In particular, one can stop after computing bi if bi ≡ ±1 (mod n). If bi ≡ −1
(mod n) and i < k, the test fails. If bi ≡ 1 (mod n) and i ≥ 1, the test succeeds. This is because
we know in this case that bi−1 6≡ −1 (mod n), for if it were, the algorithm would have stopped
after computing bi−1.

4 Digital Signatures

4.1 Definition

A digital signature is a string attached to a message that is used to guarantee the integrity and au-
thenticity of the message. It is very much like the message authentication codes (MACs) discussed
in lecture notes 7, section 1. Recall that Alice can protect a message m (encrypted or not) by attach-
ing a MAC ξ = Ck(m) to the message m. The pair (m, ξ) is an authenticated message. To produce
a MAC requires possession of the secret key k. To verify the integrity and authenticity of m, Bob,
who also must know k, checks a received pair (m′, ξ′) by verifying that ξ = Ck(m). Assuming
Alice and Bob are the only parties who share k, then Bob knows that either he or Alice must have
sent the message.

A digital signature can be viewed as a 2-key MAC, just as a public key cryptosystem is a 2-key
version of a classical cryptosystem. The basic idea is the same. Let M be a message space and S a
signature space. A signature scheme consists of a private signing key d, a public verification key e,
a signature function Sd : M → S, and a verification predicate Ve ⊆ M× S.2 A signed message

2As with RSA, we denote the private component of the key pair by the letter d and the public component by the letter
e, although they no longer have same same mnemonic significance.

http://mathworld.wolfram.com/CarmichaelNumber.html
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln07.pdf

CPSC 467a Lecture Notes 14 (rev. 2) 5

is a pair (m, s) ∈ M× S. A signed message is valid if Ve(m, s) holds, and we say that (m, s) is
signed with e.

The basic property of a signature scheme is that the signing function always produces valid
signatures, that is,

Ve(m,Sd(m)) (2)

always holds. Assuming d is Alice’s private signing key, and only Alice knows d, then a valid
message signed with Alice’s key d identifies her with m (possibly erroneously, as we shall see).

	Jacobi Symbol
	Definition
	Identities

	Strassen-Solovay Test of Compositeness
	Miller-Rabin Test of Compositeness
	The test
	Validity
	Accuracy
	Example
	Optimization

	Digital Signatures
	Definition

