Lecture Notes 16

1 Combining Signatures with Encryption

One often wants to encrypt messages for privacy and sign them for integrity and authenticity. Suppose Alice has a cryptosystem (E, D) and a signature system (S, V). Three possibilities come to mind for encrypting and signing a message m :

1. Alice signs the encrypted message, that is, she sends $(E(m), S(E(m)))$.
2. Alice encrypts the signed message, that is, she sends $E(m \circ S(m))$. Here we assume a standard way of representing the ordered pair $(m, S(m))$ as a string, which we denote by $m \circ S(m)$.
3. Alice encrypts only the first component of the signed message, that is, she sends $(E(m), S(m))$.

Note that method 3 is quite problematic since signature functions make no guarantee of privacy. In particular, if (S, V) is, say, an RSA signature scheme, we can define a new signature scheme $\left(S^{\prime}, V^{\prime}\right)$:

$$
\begin{gathered}
S^{\prime}(m)=m \circ S(m) \\
V^{\prime}(m, s)=\exists t(s=m \circ t \wedge V(m, t)) .
\end{gathered}
$$

Clearly, the ability to forge signatures in $\left(S^{\prime}, V^{\prime}\right)$ implies the ability to forge signatures in (S, V), for if (m, s) is a valid signed message in $\left(S^{\prime}, V^{\prime}\right)$, then (m, t) is a valid signed message in (S, V), where t is the second component of the ordered pair encoded by s. Thus, the new scheme is at least as secure as the original. But with $\left(S^{\prime}, V^{\prime}\right)$, the plaintext message is part of the signature itself, so if $\left(S^{\prime}, V^{\prime}\right)$ is used as the signature scheme in method 3 above, there is no privacy.

Think about the pros and cons of the other two possibilities.

2 ElGamal Signatures

The ElGamal signature scheme uses ideas similar to those of his encryption system, which we have already seen. The private signing key consists of a primitive root g of a prime p and an exponent x. The public verification key consists of g, p, and the number $a=g^{x} \bmod p$. The signing and verification algorithms are given below:

To sign m :

1. Choose random $y \in \mathbf{Z}_{\phi(p) \cdot}^{*} \cdot{ }^{1}$
2. Compute $b=g^{y} \bmod p$.
3. Compute $c=(m-x b) y^{-1} \bmod \phi(p)$.
4. Output signature $s=(b, c)$.

To verify (m, s), where $s=(b, c)$:

1. Check that $a^{b} b^{c} \equiv g^{m}(\bmod p)$.

Why does this work? Plugging in for a and b, we see that

$$
a^{b} b^{c} \equiv\left(g^{x}\right)^{b}\left(g^{y}\right)^{c} \equiv g^{x b+y c} \equiv g^{m}(\bmod p)
$$

since $x b+y c \equiv m(\bmod \phi(p))$.

3 Digital Signature Algorithm (DSA)

The commonly-used Digital Signature Algorithm (DSA) is a variant of ElGamal signatures. Also called the Digital Signature Standard (DSS), it is described in U.S. Federal Information Processing Standard (FIPS 186-2 $)^{2}$. It uses two primes: p, which is 1024 bits long. 3 and q, which is 160 bits long and satisfies $q \mid(p-1)$. Here's how to find them: Choose q first, then search for z such that $z q+1$ is prime and of the right length. Choose $p=z q+1$ for such a z.

Now let $g=h^{(p-1) / q} \bmod p$ for any $h \in \mathbf{Z}_{p}^{*}$ for which $g>1$. This ensures that $g \in \mathbf{Z}_{p}^{*}$ is a non-trivial $q^{\text {th }}$ root of unity modulo p. Let $x \in \mathbf{Z}_{q}^{*}$ and compute $a=g^{x} \bmod p$. The parameters p, q, and g are common to the public and private keys. In addition, the private signing key contains x and the public verification key contains a.

Here's how signing and verification work:
To sign m :

1. Choose random $y \in \mathbf{Z}_{q}^{*}$.
2. Compute $b=\left(g^{y} \bmod p\right) \bmod q$.
3. Compute $c=(m+x b) y^{-1} \bmod q$.
4. Output signature $s=(b, c)$.

To verify (m, s), where $s=(b, c)$:

1. Verify that $b, c \in \mathbf{Z}_{q}^{*}$; reject if not.
2. Compute $u_{1}=m c^{-1} \bmod q$.
3. Compute $u_{2}=b c^{-1} \bmod q$.
4. Compute $v=\left(g^{u_{1}} a^{u_{2}} \bmod p\right) \bmod q$.
5. Check $v=b$.

To see why this works, note that since $g^{q} \equiv 1(\bmod p)$, then

$$
r \equiv s(\bmod q) \quad \text { implies } \quad g^{r} \equiv g^{s}(\bmod p) .
$$

This follows from the fact that g is a $q^{\text {th }}$ root of unity modulo p, so $g^{r+u q} \equiv g^{r}\left(g^{q}\right)^{u} \equiv g^{r}(\bmod p)$ for any u. Hence,

$$
g^{u_{1}} a^{u_{2}} \equiv g^{m c^{-1}+x b c^{-1}} \equiv g^{y}(\bmod p) .
$$

It follows that

$$
g^{u_{1}} a^{u_{2}} \bmod p=g^{y} \bmod p
$$

and hence

$$
v=\left(g^{u_{1}} a^{u_{2}} \bmod p\right) \bmod q=\left(g^{y} \bmod p\right) \bmod q=b,
$$

as desired. (Notice the shift between equivalence modulo p and equality of remainders modulo p.)

[^0]
Remarks

DSA introduces this new element of computing a number modulo p and then modulo q. Call this function $f_{p, q}(n)=(n \bmod p) \bmod q$. This is not the same as $n \bmod r$ for any number r, nor is it the same as $(n \bmod q) \bmod p$.

To understand better what's going on, let's look at an example. Take $p=29$ and $q=7$. Then $7 \mid(29-1)$, so this is a valid DSA prime pair. The table below lists the first 29 values of $y=f_{29,7}(n)$:

The sequence of function values repeats after this point with a period of length 29 . Note that it both begins and ends with 0 , so there is a double 0 every 29 values. That behavior cannot occur modulo any number r. That behavior is also different from $f_{7,29}(n)$, which is equal to $n \bmod 7$ and has period 7. (Why?)

4 Common Hash Functions

Many cryptographic hash functions are currently in use. For example, the openssl library includes implementations of MD2, MD4, MD5, MDC2, RIPEMD, SHA, SHA-1, SHA-256, SHA-384, and SHA-512. The SHA-xxx methods are recommended for new applications, but these other functions are also in widespread use.

4.1 SHA-1

The revised Secure Hash Algorithm (SHA-1) is one of four algorithms described in U. S. Federal Information Processing Standard FIPS PUB 180-2 (Secure Hash Standard) ${ }^{1 / 4}$. states,
"Secure hash algorithms are typically used with other cryptographic algorithms, such as digital signature algorithms and keyed-hash message authentication codes, or in the generation of random numbers (bits)."

SHA-1 produces a 160 -bit message digest. The other algorithms in the SHA-xxx family produce longer message digests.

4.2 MD5

MD5 is an older algorithm (1992) devised by Rivest. We present an overview of it here. It generates a 128-bit message digest from an input message of any length. It is built from a basic block function $g: 128$-bit $\times 512$-bit $\rightarrow 128$-bit.

The MD5 hash function h is obtained as follows: First the original message is padded to length a multiple of 512 . The result m is split into a sequence of 512 -bit blocks $m_{1}, m_{2}, \ldots, m_{k}$. Finally, h is computed by chaining g on the first argument.

We look at these steps in greater detail. As with block encryption, it is important that the padding function be one-to-one, but for a different reason. For encryption, the one-to-one property is what allows unique decryption. For a hash function, it prevents there from being trivial colliding pairs. For example, if the last partial block is simply padded with 0 's, then all prefixes of the last message block will become the same after padding and will therefore collide with each other.

[^1]The function h can be regarded as a state machine, where the states are 128-bit strings and the inputs to the machine are 512-bit blocks. The machine starts in state s_{0}, specified by an initialization vector IV. Each input block m_{i} takes the machine from state s_{i-1} to new state $s_{i}=g\left(s_{i-1}, m_{i}\right)$. The last state s_{k} is the output of h, that is,

$$
h\left(m_{1} m_{2} \ldots m_{k}\right)=g\left(g\left(\ldots g\left(g\left(I V, m_{1}\right), m_{2}\right) \ldots, m_{k-1}\right), m_{k}\right)
$$

The basic block function $g(s, b)$ consists of 4 stages, each consisting of 16 substages. Recall that b is 512 -bits long, so we may divide b into 32 -bit words $b_{1} b_{2} \ldots b_{16}$. At stage i, substage j, a permutation π_{i} of $\{1, \ldots, 16\}$ is used to select word b_{ℓ}, where $\ell=\pi_{i}(j)$. A new state is generated by computing $f_{i, j}\left(s, b_{\ell}\right)$, where s is the old state and $f_{i, j}$ is a bit-scrambling function that depends on i and j. Since a state can be represented by four 32-bit words, the arguments to $f_{i, j}$ occupy only 5 machine words, which easily fit into the high-speed registers of modern processors.

[^0]: ${ }^{1}$ Recall that $\phi(p)=p-1$ since p is prime.
 ${ }^{2}$ See http://csrc.nist.gov/publications/fips/fips 186-2/fips186-2-change1.pdf .
 ${ }^{3}$ The original standard specified that the length L of p should be a multiple of 64 lying between 512 and 1024. However, Change Notice 1 of FIPS 186-2 requires $L=1024$.

[^1]: ${ }^{4}$ See http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf .

