
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 16 (rev. 1)

Professor M. J. Fischer October 27, 2005

Lecture Notes 16

1 Combining Signatures with Encryption

One often wants to encrypt messages for privacy and sign them for integrity and authenticity. Sup-
pose Alice has a cryptosystem (E,D) and a signature system (S, V ). Three possibilities come to
mind for encrypting and signing a message m:

1. Alice signs the encrypted message, that is, she sends (E(m), S(E(m))).

2. Alice encrypts the signed message, that is, she sends E(m ◦ S(m)). Here we assume a
standard way of representing the ordered pair (m,S(m)) as a string, which we denote by
m ◦ S(m).

3. Alice encrypts only the first component of the signed message, that is, she sends
(E(m), S(m)).

Note that method 3 is quite problematic since signature functions make no guarantee of privacy.
In particular, if (S, V ) is, say, an RSA signature scheme, we can define a new signature scheme
(S′, V ′):

S′(m) = m ◦ S(m) ;

V ′(m, s) = ∃t(s = m ◦ t ∧ V (m, t)) .

Clearly, the ability to forge signatures in (S′, V ′) implies the ability to forge signatures in (S, V ),
for if (m, s) is a valid signed message in (S′, V ′), then (m, t) is a valid signed message in (S, V ),
where t is the second component of the ordered pair encoded by s. Thus, the new scheme is at least
as secure as the original. But with (S′, V ′), the plaintext message is part of the signature itself, so if
(S′, V ′) is used as the signature scheme in method 3 above, there is no privacy.

Think about the pros and cons of the other two possibilities.

2 ElGamal Signatures

The ElGamal signature scheme uses ideas similar to those of his encryption system, which we have
already seen. The private signing key consists of a primitive root g of a prime p and an exponent
x. The public verification key consists of g, p, and the number a = gx mod p. The signing and
verification algorithms are given below:

To sign m:
1. Choose random y ∈ Z∗

φ(p).
1

2. Compute b = gy mod p.
3. Compute c = (m− xb)y−1 mod φ(p).
4. Output signature s = (b, c).



2 CPSC 467a Lecture Notes 16 (rev. 1)

To verify (m, s), where s = (b, c):
1. Check that abbc ≡ gm (mod p).

Why does this work? Plugging in for a and b, we see that

abbc ≡ (gx)b(gy)c ≡ gxb+yc ≡ gm (mod p)

since xb + yc ≡ m (mod φ(p)).

3 Digital Signature Algorithm (DSA)

The commonly-used Digital Signature Algorithm (DSA) is a variant of ElGamal signatures. Also
called the Digital Signature Standard (DSS), it is described in U.S. Federal Information Processing
Standard (FIPS 186–2)2. It uses two primes: p, which is 1024 bits long,3 and q, which is 160 bits
long and satisfies q | (p − 1). Here’s how to find them: Choose q first, then search for z such that
zq + 1 is prime and of the right length. Choose p = zq + 1 for such a z.

Now let g = h(p−1)/q mod p for any h ∈ Z∗
p for which g > 1. This ensures that g ∈ Z∗

p is a
non-trivial qth root of unity modulo p. Let x ∈ Z∗

q and compute a = gx mod p. The parameters p,
q, and g are common to the public and private keys. In addition, the private signing key contains x
and the public verification key contains a.

Here’s how signing and verification work:

To sign m:
1. Choose random y ∈ Z∗

q .
2. Compute b = (gy mod p) mod q.
3. Compute c = (m + xb)y−1 mod q.
4. Output signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Verify that b, c ∈ Z∗

q ; reject if not.
2. Compute u1 = mc−1 mod q.
3. Compute u2 = bc−1 mod q.
4. Compute v = (gu1au2 mod p) mod q.
5. Check v = b.

To see why this works, note that since gq ≡ 1 (mod p), then

r ≡ s (mod q) implies gr ≡ gs (mod p).

This follows from the fact that g is a qth root of unity modulo p, so gr+uq ≡ gr(gq)u ≡ gr (mod p)
for any u. Hence,

gu1au2 ≡ gmc−1+xbc−1 ≡ gy (mod p).

It follows that
gu1au2 mod p = gy mod p

and hence
v = (gu1au2 mod p) mod q = (gy mod p) mod q = b,

as desired. (Notice the shift between equivalence modulo p and equality of remainders modulo p.)
1Recall that φ(p) = p− 1 since p is prime.
2See http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf .
3The original standard specified that the length L of p should be a multiple of 64 lying between 512 and 1024.

However, Change Notice 1 of FIPS 186–2 requires L = 1024.

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf


CPSC 467a Lecture Notes 16 (rev. 1) 3

Remarks

DSA introduces this new element of computing a number modulo p and then modulo q. Call this
function fp,q(n) = (n mod p) mod q. This is not the same as n mod r for any number r, nor is it
the same as (n mod q) mod p.

To understand better what’s going on, let’s look at an example. Take p = 29 and q = 7. Then
7|(29−1), so this is a valid DSA prime pair. The table below lists the first 29 values of y = f29,7(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
y 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

The sequence of function values repeats after this point with a period of length 29. Note that it both
begins and ends with 0, so there is a double 0 every 29 values. That behavior cannot occur modulo
any number r. That behavior is also different from f7,29(n), which is equal to n mod 7 and has
period 7. (Why?)

4 Common Hash Functions

Many cryptographic hash functions are currently in use. For example, the openssl library includes
implementations of MD2, MD4, MD5, MDC2, RIPEMD, SHA, SHA–1, SHA–256, SHA–384, and
SHA–512. The SHA–xxx methods are recommended for new applications, but these other functions
are also in widespread use.

4.1 SHA–1

The revised Secure Hash Algorithm (SHA–1) is one of four algorithms described in U. S. Federal
Information Processing Standard FIPS PUB 180–2 (Secure Hash Standard)4. It states,

“Secure hash algorithms are typically used with other cryptographic algorithms, such
as digital signature algorithms and keyed-hash message authentication codes, or in the
generation of random numbers (bits).”

SHA–1 produces a 160-bit message digest. The other algorithms in the SHA–xxx family produce
longer message digests.

4.2 MD5

MD5 is an older algorithm (1992) devised by Rivest. We present an overview of it here. It generates
a 128-bit message digest from an input message of any length. It is built from a basic block function
g : 128-bit × 512-bit → 128-bit.

The MD5 hash function h is obtained as follows: First the original message is padded to length
a multiple of 512. The result m is split into a sequence of 512-bit blocks m1,m2, . . . ,mk. Finally,
h is computed by chaining g on the first argument.

We look at these steps in greater detail. As with block encryption, it is important that the padding
function be one-to-one, but for a different reason. For encryption, the one-to-one property is what
allows unique decryption. For a hash function, it prevents there from being trivial colliding pairs.
For example, if the last partial block is simply padded with 0’s, then all prefixes of the last message
block will become the same after padding and will therefore collide with each other.

4See http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf .

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf


4 CPSC 467a Lecture Notes 16 (rev. 1)

The function h can be regarded as a state machine, where the states are 128-bit strings and the
inputs to the machine are 512-bit blocks. The machine starts in state s0, specified by an initialization
vector IV. Each input block mi takes the machine from state si−1 to new state si = g(si−1,mi).
The last state sk is the output of h, that is,

h(m1m2 . . .mk) = g(g(. . . g(g(IV,m1),m2) . . . , mk−1),mk).

The basic block function g(s, b) consists of 4 stages, each consisting of 16 substages. Recall
that b is 512-bits long, so we may divide b into 32-bit words b1b2 . . . b16. At stage i, substage j, a
permutation πi of {1, . . . , 16} is used to select word b`, where ` = πi(j). A new state is generated
by computing fi,j(s, b`), where s is the old state and fi,j is a bit-scrambling function that depends
on i and j. Since a state can be represented by four 32-bit words, the arguments to fi,j occupy only
5 machine words, which easily fit into the high-speed registers of modern processors.


	Combining Signatures with Encryption
	ElGamal Signatures
	Digital Signature Algorithm (DSA)
	Common Hash Functions
	SHA--1
	MD5


