YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security

Professor M. J. Fischer

Handout #4 September 29, 2005

Number Theory Summary

Integers Let \mathbf{Z} denote the integers and \mathbf{Z}^+ the positive integers.

- **Division** For $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, there exist unique integers q, r such that a = nq + r and $0 \le r < n$. We denote the *quotient* q by $\lfloor a/n \rfloor$ and the *remainder* r by $a \mod n$. We say n divides a (written $n \mid a$) if $a \mod n = 0$. If $n \mid a, n$ is called a divisor of a. If also 1 < n < |a|, n is said to be a *proper divisor* of a.
- **Greatest common divisor** The greatest common divisor (gcd) of integers a, b (written gcd(a, b) or simply (a, b)) is the greatest integer d such that $d \mid a$ and $d \mid b$. If gcd(a, b) = 1, then a and b are said to be *relatively prime*.
- **Euclidean algorithm** Computes gcd(a, b). Based on two facts: gcd(0, b) = b; gcd(a, b) = gcd(b, a qb) for any $q \in \mathbb{Z}$. For rapid convergence, take $q = \lfloor a/b \rfloor$, in which case $a qb = a \mod b$.
- **Congruence** For $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, we write $a \equiv b \pmod{n}$ iff $n \mid (b a)$. Note $a \equiv b \pmod{n}$ iff $(a \mod n) = (b \mod n)$.
- **Modular arithmetic** Fix $n \in \mathbb{Z}^+$. Let $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ and let $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid gcd(a, n) = 1\}$. For integers a, b, define $a \oplus b = (a+b) \mod n$ and $a \otimes b = ab \mod n$. \oplus and \otimes are associative and commutative, and \otimes distributes over \oplus . Moreover, mod n distributes over both + and ×, so for example, $a + b \times (c + d) \mod n = (a \mod n) + (b \mod n) \times ((c \mod n) + (d \mod n)) = a \oplus b \otimes (c \oplus d)$. \mathbb{Z}_n is closed under \oplus and \otimes , and \mathbb{Z}_n^* is closed under \otimes .
- **Primes and prime factorization** A number $p \ge 2$ is *prime* if it has no proper divisors. Any positive number n can be written uniquely (up to the order of the factors) as a product of primes. Equivalently, there exist unique integers $k, p_1, \ldots, p_k, e_1, \ldots, e_k$ such that $n = \prod_{i=1}^k p_i^{e_i}$, $k \ge 0, p_1 < p_2 < \ldots < p_k$ are primes, and each $e_i \ge 1$. The product $\prod_{i=1}^k p_i^{e_i}$ is called the *prime factorization* of n. A positive number n is *composite* if $(\sum_{i=1}^k e_i) \ge 2$ in its prime factorization. By these definitions, n = 1 has prime factorization with k = 0, so 1 is neither prime nor composite.
- **Linear congruences** Let $a, b \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. Let $d = \operatorname{gcd}(a, n)$. If $d \mid b$, then there are d solutions x in \mathbb{Z}_n to the congruence equation $ax \equiv b \pmod{n}$. If $d \nmid b$, then $ax \equiv b \pmod{n}$ has no solution.
- **Extended Euclidean algorithm** Finds one solution of $ax \equiv b \pmod{n}$, or announces that there are none. Call a triple (g, u, v) valid if g = au + nv. Algorithm generates valid triples starting with (n, 0, 1) and (a, 1, 0). Goal is to find valid triple (g, u, v) such that $g \mid b$. If found, then u(b/g) solves $ax \equiv b \pmod{n}$. If none exists, then no solution. Given valid (g, u, v), (g', u', v'), can generate new valid triple (g-qg', u-qu', v-qv') for any $q \in Z$. For rapid convergence, choose $q = \lfloor g/g' \rfloor$, and retain always last two triples. Note: Sequence of generated g-values is exactly the same as the sequence of numbers generated by the Euclidean algorithm.

- **Inverses** Let $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}$. There exists unique $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{n}$ iff gcd(a, n) = 1. Such a b, when it exists, is called an *inverse* of a modulo n. We write a^{-1} for the unique inverse of a modulo n that is also in \mathbb{Z}_n . Can find $a^{-1} \mod n$ efficiently by using Extended Euclidean algorithm to solve $ax \equiv 1 \pmod{n}$.
- **Chinese remainder theorem** Let n_1, \ldots, n_k be pairwise relatively prime numbers in \mathbb{Z}^+ , let a_1, \ldots, a_k be integers, and let $n = \prod_i n_i$. There exists a unique $x \in Z_n$ such that $x \equiv a_i \pmod{n_i}$ for all $1 \le i \le k$. To compute x, let $N_i = n/n_i$ and compute $M_i = N_i^{-1} \mod n_i$, $1 \le i \le k$. Then $x = (\sum_{i=1}^k a_i M_i N_i) \mod n$.
- **Euler function** Let $\phi(n) = |\mathbf{Z}_n^*|$. One can show that $\phi(n) = \prod_{i=1}^k (p_i 1)p_i^{e_i 1}$, where $\prod_{i=1}^k p_i^{e_i}$ is the prime factorization of n. In particular, if p is prime, then $\phi(p) = p 1$, and if p, q are distinct primes, then $\phi(pq) = (p-1)(q-1)$.
- **Euler's theorem** Let $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}_n^*$. Then $a^{\phi(n)} \equiv 1 \pmod{n}$. As a consequence, if $r \equiv s \pmod{\phi(n)}$ then $a^r \equiv a^s \pmod{n}$.
- **Order of an element** Let $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}_n^*$. We define $\operatorname{ord}(a)$, the *order* of a modulo n, to be the smallest number $k \ge 1$ such that $a^k \equiv 1 \pmod{n}$. Fact: $\operatorname{ord}(a) | \phi(n)$.
- **Primitive roots** Let $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}_n^*$. *a* is a *primitive root* of *n* iff $\operatorname{ord}(a) = \phi(n)$. For a primitive root *a*, it follows that $\mathbb{Z}_n^* = \{a \mod n, a^2 \mod n, \dots, a^{\phi(n)} \mod n\}$. If *n* has a primitive root, then it has $\phi(\phi(n))$ primitive roots. Primitive roots exist for every prime *p* (and for some other numbers as well). *a* is a primitive root of *p* iff $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ for every prime divisor *q* of p 1.
- **Discrete log** Let p be a prime, a a primitive root of $p, b \in \mathbb{Z}_p^*$ such that $b \equiv a^k \pmod{p}$ for some $k, 0 \leq k \leq p-2$. We say k is the *discrete logarithm* of b to the base a.
- Quadratic residues Let $a \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. a is a quadratic residue modulo n if there exists y such that $a \equiv y^2 \pmod{n}$. a is sometimes called a square and y its square root.
- Quadratic residues modulo a prime If p is an odd prime, then every quadratic residue in \mathbb{Z}_p^* has exactly two square roots in \mathbb{Z}_p^* , and exactly half of the elements in \mathbb{Z}_p^* are quadratic residues. Let $a \in \mathbb{Z}_p^*$ be a quadratic residue. Then $a^{(p-1)/2} \equiv (y^2)^{(p-1)/2} \equiv y^{p-1} \equiv 1 \pmod{p}$, where y a square root of a modulo p. Let g be a primitive root modulo p. If $a \equiv g^k \pmod{p}$, then a is a quadratic residue modulo p iff k is even, in which case its two square roots are $g^{k/2} \mod p$ and $-g^{k/2} \mod p$. If $p \equiv 3 \pmod{4}$ and $a \in \mathbb{Z}_p^*$ is a quadratic residue modulo p, then $a^{(p+1)/4}$ is a square root of a, since $(a^{(p+1)/4})^2 \equiv aa^{(p-1)/2} \equiv a \pmod{p}$.
- **Quadratic residues modulo products of two primes** If n = pq for p, q distinct odd primes, then every quadratic residue in \mathbb{Z}_n^* has exactly four square roots in \mathbb{Z}_n^* , and exactly 1/4 of the elements in \mathbb{Z}_n^* are quadratic residues. An element $a \in \mathbb{Z}_n^*$ is a quadratic residue modulo n iff it is a quadratic residue modulo p and modulo q. The four square roots of a can be found from its two square roots modulo p and its two square roots modulo q using the Chinese remainder theorem.
- **Legendre symbol** Let $a \ge 0$, p an odd prime. $\left(\frac{a}{p}\right) = 1$ if a is a quadratic residue modulo p, -1 if a is a quadratic non-residue modulo p, and 0 if $p \mid a$. Fact: $\left(\frac{a}{p}\right) = a^{(p-1)/2}$.

- **Jacobi symbol** Let $a \ge 0$, n an odd positive number with prime factorization $\prod_{i=1}^{k} p_i^{e_i}$. We define $\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}$. (By convention, this product is 1 when k = 0, so $\left(\frac{a}{1}\right) = 1$.) The Jacobi and Legendre symbols agree when n is an odd prime. If $\left(\frac{a}{n}\right) = -1$ then a is definitely not a quadratic residue modulo n, but if $\left(\frac{a}{n}\right) = 1$, a might or might not be a quadratic residue.
- **Computing the Jacobi symbol** $\left(\frac{a}{n}\right)$ can be computed efficiently by a straightforward recursive algorithm, based on the following identities: $\begin{pmatrix} 0\\1 \end{pmatrix} = 1$; $\begin{pmatrix} 0\\n \end{pmatrix} = 0$ for $n \neq 1$; $\begin{pmatrix} a_1\\n \end{pmatrix} = \begin{pmatrix} \frac{a_2}{n} \end{pmatrix}$ if $a_1 \equiv a_2 \pmod{n}$; $\begin{pmatrix} 2\\n \end{pmatrix} = 1$ if $n \equiv \pm 1 \pmod{8}$; $\begin{pmatrix} 2\\n \end{pmatrix} = -1$ if $n \equiv \pm 3 \pmod{8}$; $\begin{pmatrix} \frac{2a}{n} \end{pmatrix} = \begin{pmatrix} \frac{2}{n} \end{pmatrix} \begin{pmatrix} \frac{a}{n} \end{pmatrix}$; $\begin{pmatrix} \frac{a}{n} \end{pmatrix} = \begin{pmatrix} \frac{n}{a} \end{pmatrix}$ if $a \equiv 1 \pmod{4}$ or $n \equiv 1 \pmod{4}$; $\begin{pmatrix} \frac{a}{n} \end{pmatrix} = -\begin{pmatrix} \frac{n}{a} \end{pmatrix}$ if $a \equiv n \equiv 3 \pmod{4}$.
- Solovay-Strassen test for compositeness Let $n \in \mathbb{Z}^+$. If n is composite, then for roughly 1/2 of the numbers $a \in \mathbb{Z}_n^*$, $(\frac{a}{n}) \not\equiv a^{(n-1)/2} \pmod{n}$. If n is prime, then for every $a \in \mathbb{Z}_n^*$, $(\frac{a}{n}) \equiv a^{(n-1)/2} \pmod{n}$.
- **Miller-Rabin test for compositeness** Let $n \in \mathbb{Z}^+$ and write $n-1 = 2^k m$, where m is odd. Choose $1 \le a \le n-1$. Compute $b_i = a^{m2^i} \mod n$ for $i = 0, 1, \ldots, k-1$. If n is composite, then for roughly 3/4 of the possible values for $a, b_0 \ne 1$ and $b_i \ne -1$ for $0 \le i \le k-1$. If n is prime, then for every a, either $b_0 = 1$ or $b_i = -1$ for some $i, 0 \le i \le k-1$.

Michael J. Fischer (Thanks to Miklós Csűrös, Andrei Serjantov, and Jerry Moon for pointing out errors in previous drafts.)

Last modified: October 26, 2000.