Number Theory Summary

Integers Let \mathbf{Z} denote the integers and \mathbf{Z}^{+}the positive integers.
Division For $a \in \mathbf{Z}$ and $n \in \mathbf{Z}^{+}$, there exist unique integers q, r such that $a=n q+r$ and $0 \leq r<n$. We denote the quotient q by $\lfloor a / n\rfloor$ and the remainder r by $a \bmod n$. We say n divides $a($ written $n \mid a)$ if $a \bmod n=0$. If $n \mid a, n$ is called a divisor of a. If also $1<n<|a|$, n is said to be a proper divisor of a.

Greatest common divisor The greatest common divisor (gcd) of integers a, b (written $\operatorname{gcd}(a, b)$ or simply (a, b)) is the greatest integer d such that $d \mid a$ and $d \mid b$. If $\operatorname{gcd}(a, b)=1$, then a and b are said to be relatively prime.

Euclidean algorithm Computes $\operatorname{gcd}(a, b)$. Based on two facts: $\operatorname{gcd}(0, b)=b ; \operatorname{gcd}(a, b)=$ $\operatorname{gcd}(b, a-q b)$ for any $q \in \mathbf{Z}$. For rapid convergence, take $q=\lfloor a / b\rfloor$, in which case $a-q b=a \bmod b$.

Congruence For $a, b \in \mathbf{Z}$ and $n \in \mathbf{Z}^{+}$, we write $a \equiv b(\bmod n)$ iff $n \mid(b-a)$. Note $a \equiv b$ $(\bmod n)$ iff $(a \bmod n)=(b \bmod n)$.

Modular arithmetic Fix $n \in \mathbf{Z}^{+}$. Let $\mathbf{Z}_{n}=\{0,1, \ldots, n-1\}$ and let $\mathbf{Z}_{n}^{*}=\left\{a \in \mathbf{Z}_{n} \mid\right.$ $\operatorname{gcd}(a, n)=1\}$. For integers a, b, define $a \oplus b=(a+b) \bmod n$ and $a \otimes b=a b \bmod n . \oplus$ and \otimes are associative and commutative, and \otimes distributes over \oplus. Moreover, $\bmod n$ distributes over both + and \times, so for example, $a+b \times(c+d) \bmod n=(a \bmod n)+(b \bmod n) \times$ $((c \bmod n)+(d \bmod n))=a \oplus b \otimes(c \oplus d) . \mathbf{Z}_{n}$ is closed under \oplus and \otimes, and \mathbf{Z}_{n}^{*} is closed under \otimes.

Primes and prime factorization A number $p \geq 2$ is prime if it has no proper divisors. Any positive number n can be written uniquely (up to the order of the factors) as a product of primes. Equivalently, there exist unique integers $k, p_{1}, \ldots, p_{k}, e_{1}, \ldots, e_{k}$ such that $n=\prod_{i=1}^{k} p_{i} e_{i}$, $k \geq 0, p_{1}<p_{2}<\ldots<p_{k}$ are primes, and each $e_{i} \geq 1$. The product $\prod_{i=1}^{k} p_{i}{ }^{e_{i}}$ is called the prime factorization of n. A positive number n is composite if $\left(\sum_{i=1}^{k} e_{i}\right) \geq 2$ in its prime factorization. By these definitions, $n=1$ has prime factorization with $k=0$, so 1 is neither prime nor composite.

Linear congruences Let $a, b \in \mathbf{Z}, n \in \mathbf{Z}^{+}$. Let $d=\operatorname{gcd}(a, n)$. If $d \mid b$, then there are d solutions x in \mathbf{Z}_{n} to the congruence equation $a x \equiv b(\bmod n)$. If $d \uparrow b$, then $a x \equiv b(\bmod n)$ has no solution.

Extended Euclidean algorithm Finds one solution of $a x \equiv b(\bmod n)$, or announces that there are none. Call a triple (g, u, v) valid if $g=a u+n v$. Algorithm generates valid triples starting with $(n, 0,1)$ and $(a, 1,0)$. Goal is to find valid triple (g, u, v) such that $g \mid b$. If found, then $u(b / g)$ solves $a x \equiv b(\bmod n)$. If none exists, then no solution. Given valid $(g, u, v),\left(g^{\prime}, u^{\prime}, v^{\prime}\right)$, can generate new valid triple $\left(g-q g^{\prime}, u-q u^{\prime}, v-q v^{\prime}\right)$ for any $q \in Z$. For rapid convergence, choose $q=\left\lfloor g / g^{\prime}\right\rfloor$, and retain always last two triples. Note: Sequence of generated g-values is exactly the same as the sequence of numbers generated by the Euclidean algorithm.

Inverses Let $n \in \mathbf{Z}^{+}, a \in \mathbf{Z}$. There exists unique $b \in \mathbf{Z}$ such that $a b \equiv 1(\bmod n)$ iff $\operatorname{gcd}(a, n)=$ 1. Such a b, when it exists, is called an inverse of a modulo n. We write a^{-1} for the unique inverse of a modulo n that is also in \mathbf{Z}_{n}. Can find $a^{-1} \bmod n$ efficiently by using Extended Euclidean algorithm to solve $a x \equiv 1(\bmod n)$.

Chinese remainder theorem Let n_{1}, \ldots, n_{k} be pairwise relatively prime numbers in \mathbf{Z}^{+}, let a_{1}, \ldots, a_{k} be integers, and let $n=\prod_{i} n_{i}$. There exists a unique $x \in Z_{n}$ such that $x \equiv a_{i}$ $\left(\bmod n_{i}\right)$ for all $1 \leq i \leq k$. To compute x, let $N_{i}=n / n_{i}$ and compute $M_{i}=N_{i}^{-1} \bmod n_{i}$, $1<=i<=k$. Then $x=\left(\sum_{i=1}^{k} a_{i} M_{i} N_{i}\right) \bmod n$.

Euler function Let $\phi(n)=\left|\mathbf{Z}_{n}^{*}\right|$. One can show that $\phi(n)=\prod_{i=1}^{k}\left(p_{i}-1\right) p_{i}{ }^{e_{i}-1}$, where $\prod_{i=1}^{k} p_{i}{ }^{e_{i}}$ is the prime factorization of n. In particular, if p is prime, then $\phi(p)=p-1$, and if p, q are distinct primes, then $\phi(p q)=(p-1)(q-1)$.

Euler's theorem Let $n \in \mathbf{Z}^{+}, a \in \mathbf{Z}_{n}^{*}$. Then $a^{\phi(n)} \equiv 1(\bmod n)$. As a consequence, if $r \equiv s$ $(\bmod \phi(n))$ then $a^{r} \equiv a^{s}(\bmod n)$.

Order of an element Let $n \in \mathbf{Z}^{+}, a \in \mathbf{Z}_{n}^{*}$. We define ord (a), the order of a modulo n, to be the smallest number $k \geq 1$ such that $a^{k} \equiv 1(\bmod n)$. Fact: ord $(a) \mid \phi(n)$.

Primitive roots Let $n \in \mathbf{Z}^{+}, a \in \mathbf{Z}_{n}^{*}$. a is a primitive root of n iff $\operatorname{ord}(a)=\phi(n)$. For a primitive root a, it follows that $\mathbf{Z}_{n}^{*}=\left\{a \bmod n, a^{2} \bmod n, \ldots, a^{\phi(n)} \bmod n\right\}$. If n has a primitive root, then it has $\phi(\phi(n))$ primitive roots. Primitive roots exist for every prime p (and for some other numbers as well). a is a primitive root of p iff $a^{(p-1) / q} \not \equiv 1(\bmod p)$ for every prime divisor q of $p-1$.

Discrete \log Let p be a prime, a a primitive root of $p, b \in \mathbf{Z}_{p}^{*}$ such that $b \equiv a^{k}(\bmod p)$ for some $k, 0 \leq k \leq p-2$. We say k is the discrete logarithm of b to the base a.

Quadratic residues Let $a \in \mathbf{Z}, n \in \mathbf{Z}^{+} . a$ is a quadratic residue modulo n if there exists y such that $a \equiv y^{2}(\bmod n) . a$ is sometimes called a square and y its square root.

Quadratic residues modulo a prime If p is an odd prime, then every quadratic residue in \mathbf{Z}_{p}^{*} has exactly two square roots in \mathbf{Z}_{p}^{*}, and exactly half of the elements in \mathbf{Z}_{p}^{*} are quadratic residues. Let $a \in \mathbf{Z}_{p}^{*}$ be a quadratic residue. Then $a^{(p-1) / 2} \equiv\left(y^{2}\right)^{(p-1) / 2} \equiv y^{p-1} \equiv 1(\bmod p)$, where y a square root of a modulo p. Let g be a primitive root modulo p. If $a \equiv g^{k}(\bmod p)$, then a is a quadratic residue modulo p iff k is even, in which case its two square roots are $g^{k / 2} \bmod p$ and $-g^{k / 2} \bmod p$. If $p \equiv 3(\bmod 4)$ and $a \in \mathbf{Z}_{p}^{*}$ is a quadratic residue modulo p, then $a^{(p+1) / 4}$ is a square root of a, since $\left(a^{(p+1) / 4}\right)^{2} \equiv a a^{(p-1) / 2} \equiv a(\bmod p)$.

Quadratic residues modulo products of two primes If $n=p q$ for p, q distinct odd primes, then every quadratic residue in \mathbf{Z}_{n}^{*} has exactly four square roots in \mathbf{Z}_{n}^{*}, and exactly $1 / 4$ of the elements in \mathbf{Z}_{n}^{*} are quadratic residues. An element $a \in \mathbf{Z}_{n}^{*}$ is a quadratic residue modulo n iff it is a quadratic residue modulo p and modulo q. The four square roots of a can be found from its two square roots modulo p and its two square roots modulo q using the Chinese remainder theorem.

Legendre symbol Let $a \geq 0, p$ an odd prime. $\left(\frac{a}{p}\right)=1$ if a is a quadratic residue modulo $p,-1$ if a is a quadratic non-residue modulo p, and 0 if $p \mid a$. Fact: $\left(\frac{a}{p}\right)=a^{(p-1) / 2}$.

Jacobi symbol Let $a \geq 0, n$ an odd positive number with prime factorization $\prod_{i=1}^{k} p_{i} e_{i}$. We define $\left(\frac{a}{n}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)^{e_{i}}$. (By convention, this product is 1 when $k=0$, so $\left(\frac{a}{1}\right)=1$.) The Jacobi and Legendre symbols agree when n is an odd prime. If $\left(\frac{a}{n}\right)=-1$ then a is definitely not a quadratic residue modulo n, but if $\left(\frac{a}{n}\right)=1$, a might or might not be a quadratic residue.

Computing the Jacobi symbol $\left(\frac{a}{n}\right)$ can be computed efficiently by a straightforward recursive algorithm, based on the following identities: $\left(\frac{0}{1}\right)=1 ;\left(\frac{0}{n}\right)=0$ for $n \neq 1 ;\left(\frac{a_{1}}{n}\right)=\left(\frac{a_{2}}{n}\right)$ if $a_{1} \equiv a_{2}(\bmod n) ;\left(\frac{2}{n}\right)=1$ if $n \equiv \pm 1(\bmod 8) ;\left(\frac{2}{n}\right)=-1$ if $n \equiv \pm 3(\bmod 8)$; $\left(\frac{2 a}{n}\right)=\left(\frac{2}{n}\right)\left(\frac{a}{n}\right) ;\left(\frac{a}{n}\right)=\left(\frac{n}{a}\right)$ if $a \equiv 1(\bmod 4)$ or $n \equiv 1(\bmod 4) ;\left(\frac{a}{n}\right)=-\left(\frac{n}{a}\right)$ if $a \equiv n \equiv 3(\bmod 4)$.

Solovay-Strassen test for compositeness Let $n \in \mathbf{Z}^{+}$. If n is composite, then for roughly $1 / 2$ of the numbers $a \in \mathbf{Z}_{n}^{*},\left(\frac{a}{n}\right) \not \equiv a^{(n-1) / 2}(\bmod n)$. If n is prime, then for every $a \in \mathbf{Z}_{n}^{*}$, $\left(\frac{a}{n}\right) \equiv a^{(n-1) / 2}(\bmod n)$.

Miller-Rabin test for compositeness Let $n \in \mathbf{Z}^{+}$and write $n-1=2^{k} m$, where m is odd. Choose $1 \leq a \leq n-1$. Compute $b_{i}=a^{m 2^{i}} \bmod n$ for $i=0,1, \ldots, k-1$. If n is composite, then for roughly $3 / 4$ of the possible values for $a, b_{0} \neq 1$ and $b_{i} \neq-1$ for $0 \leq i \leq k-1$. If n is prime, then for every a, either $b_{0}=1$ or $b_{i}=-1$ for some $i, 0 \leq i \leq k-1$.

Michael J. Fischer
(Thanks to Miklós Csûrös, Andrei Serjantov, and Jerry Moon for pointing out errors in previous drafts.)

