Week 10 (rev. 2) |
Professor M. J. Fischer | March 29 & 31, 2005 |
Alice | Bob | ||
1. | Simultaneously choose a random isomorphic copy H of G0 and an isomorphism τ: G0 → H. | ||
→ H | |||
2. | ← b | Choose random b ∈ {0, 1}. | |
3. | If b=0, let σ = τ. | ||
If b=1, let σ = τ°π−1. | → σ | Check σ(Gb) = H. |
Alice | Bob | ||
1. | Choose random b ∈ {0, 1}. | ||
Compute a random isomorphic copy H of Gb. | |||
← H | |||
2. | If H ≅ G0 let b′ = 0. | ||
If H ≅ G1 let b′ = 1. | → b′ | Check b′ = b. |
1. | Choose a random value [^(b)] ∈ {0,1}. |
2. | Generate a valid random triple of the form (x, [^(b)], y). |
3. | Simulate Mallory up to the point where he requests a value from Alice. Pretend that Alice sent him x and continue. |
4. | Continue simulating Mallory until the point where Mallory is about to send a value b to Alice. |
5. | If b ≠ [^(b)], go back to step 1. Otherwise, continue. |
6. | Continue simulating Mallory up to the point where he requests another value from Alice. Pretend that Alice sent him y and continue. |
7. | Continue simulating Mallory until he halts with an output. |
Alice | Bob | ||
1. | Choose random r ∈ Zn − {0}. | ||
Choose random c ∈ {0,1}. | |||
Compute x = (−1)c r2 mod n | → x | ||
2. | ← b1, …, bk. | Choose random b1, …, bk ∈ {0, 1}. | |
3. | Compute y = r s1b1 …skbk mod n. | → y | |
4. | Compute z = y2 v1b1 …vkbk mod n. | ||
Check z ≡ ±x mod n and z ≠ 0. |
|
|