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Solutions to Problem Set 4
Problem 11, 12, 13 count 10 points each. Problem 14 counts 20 points.

Problem 11: Primitive roots

Does the modulus n = pq in RSA have primitive roots? Explain why or why not.

Solution: The answer is NO. Here are two proofs:

Proof 1: Trivially, by Gauss’s theorem, the numbers having primitive roots are 1, 2, 4, pk, 2pk,
where p is an odd prime and k ≥ 1. However, in RSA, we need to choose two large distinct primes
p and q, so the resulting number n = pq is not in above set and hence does not have primitive roots.

Proof 2: Here we can prove our result by showing a contradiction. (Avoid using previous method
which is kind of so called “proof by intimidation”1)

Suppose we have n = pq, where p and q are large prime numbers. Suppose Z∗n has a primitive
root r. Then gcd(r, n) = 1 and ord(r) = φ(n) by definition. Since gcd(r, n) = 1 then gcd(r, p) =
1, and gcd(r, q) = 1. By Euler’s theorem, we know that rφ(p) ≡ 1 (mod p) and rφ(q) ≡ 1
(mod q). Let u be the Least Common Multiple of φ(p) and φ(q). Because φ(p) = p − 1 and
φ(q) = q − 1 are even numbers, they share a common factor of 2, so u < φ(p) · φ(q). Also,
since φ(p) | u and φ(q) | u, we have ru ≡ 1 (mod p) and ru ≡ 1 (mod q), which means ru ≡ 1
(mod n). So ord(r) ≤ u < φ(p) · φ(q) = φ(n), contradicting the assumption that r is a primitive
root. Hence, there is no such r in Z∗n.

Problem 12: Quadratic Residues

Problem 6.13 in the textbook:

“Let n = pq with p and q being distinct primes. Under what condition −1 ∈ QRn?
Under what condition

(

−1
n

)

= −1?”

Solution: First, we should notice that one of p and q can be 2. That’s what a lot of people missed
in their answers. Second, the perfect answers we are looking for are the conditions on n, i.e., the
properties of p and q that make the statements true.

(a) −1 ∈ QRn: For distinct primes p and q, a number is a quadratic residue modulo n = pq iff
it is a quadratic residue modulo both p and q. Hence, −1 ∈ QRn iff both −1 ∈ QRp and
−1 ∈ QRq.

We now characterize those primes p for which −1 ∈ QRp.

Case 1: p = 2. Then −1 ∈ QRp since −1 ≡ 1 ≡ 12 (mod 2).

Case 2: p is odd. By the Euler Criterion, −1 ∈ QRp iff (−1)
p−1

2 ≡ 1 (mod p). This holds
iff p−1

2 is even. Hence, −1 ∈ QRp iff p ≡ 1 (mod 4).

1http://www.ling.ed.ac.uk/ heycock/proof.html
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It follows from these two cases that −1 ∈ QRp iff p 6≡ 3 (mod 4). Using similar reasoning,
−1 ∈ QRq iff q 6≡ 3 (mod 4). We conclude that −1 ∈ QRn iff p 6≡ 3 (mod 4) and q 6≡ 3
(mod 4).

(b)
(

−1
n

)

= −1: The Jacobi symbol
(

−1
n

)

is only defined for odd n; hence, n = pq must be

odd, so both p and q must be odd. In that case,
(

−1
n

)

=
(

−1
p

)

·
(

−1
q

)

by definition. Since

(−1
p

)

,

(−1
q

)

∈ {−1, 1},

it follows that
(

−1
n

)

= −1 iff one of
(

−1
p

)

,
(

−1
q

)

is 1 and the other is −1. From the
definition of the Legendre symbol and part (a) above, we see for odd primes p that

(−1
p

)

= 1 iff − 1 ∈ QRp iff p ≡ 1 (mod 4),

and
(−1
p

)

= −1 iff p ≡ 3 (mod 4).

Hence,
(

−1
n

)

= −1 iff one of p, q is congruent to 1 modulo 4 and the other is congruent to
3 modulo 4.

Problem 13: Generators over Z∗p

Prove or disprove the following: Let g, h be generators for Z∗p, where p is an odd prime. Suppose
x ≡ g2u ≡ h2v (mod p). Then gu ≡ hv (mod p).

Solution: The statement is false. We can see it from the following counter-example: When p = 5,
then g = 2 and h = 3 are generators. Let v = 3. Then g2v ≡ h2v ≡ 4 (mod p). However, we can
see that gv ≡ 3 (mod p) and hv = 2 (mod p).

The following argument gives some insight into what is going on for arbitrary odd primes p: If
g2v ≡ h2v (mod p) then

g2v − h2v ≡ (gv − hv)(gv + hv) ≡ 0 (mod p).

So we can see gv − hv ≡ 0 (mod p) or gv + hv ≡ 0 (mod p). The first of these possibilities
implies the desired conclusion, gv ≡ hv (mod p), but the other does not. It can happen (as shown
above) that gv + hv ≡ 0 (mod p) but gv − hv 6≡ 0 (mod p). That’s why the original statement
fails.

Problem 14: DSA Signature Scheme Implementation

In this problem, you will implement the key generation, signature, and verification functions of the
DSA Signature Scheme. (See lecture notes week 8.) In particular, you should write the following
three programs that take the indicated command line arguments:

dsa key <keyfile>
This program generates random DSA parameters p, g, and x. The primes p and q should
be exactly 1024 bits long and 160 bits long, respectively. Next it computes a. It then cre-
ates two files named <keyfile>.pub and <keyfile>.prv, where <keyfile> is the
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command line argument. It writes p, g, and a to <keyfile>.pub, in decimal, one number
per line. It writes p, g, and x to <keyfile>.prv, also one decimal number per line. The
lines should contain only digits (no labels) so that the key file may be easily read back by
another program.

dsa sign <keyfile> <msgfile>
Reads p, g, and x from the private key file, <keyfile>.prv. Reads a decimal integerm ∈
Zp (the message) from <msgfile>. Signs m using the DSA signature scheme to produce a
signature s = (b, c), which it writes to <msgifle>.sig as two decimal numbers, one per
line.

dsa verify <keyfile> <msgfile>
Reads p, g, and a from the public key file, <keyfile>.pub. Reads m from <msgfile>.
Reads the signature s = (b, c) from <msgifle>.sig. Checks the signature of m using
DSA signature verification and writes ”good” or ”bad” to standard output accordingly.

(continued on next page)
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You may use either the GMP or ln3 bignum package, as well as any of the functions that they
provide.

The hardest part of this assignment is probably the generation of large random primes of the de-
sired length. The GMP functions mpz random() and mpz random2() are obsolete and should
not be used. Use mpz urandomb() or mpz urandomn() instead. In ln3, you might use either
Random() or RandomPrime(), but note that the desired size arguments to both of them is in
terms of decimal digits rather than bits. If you’d prefer, you can call the standard Unix random
number generator random() repeatedly and shift the bits in to form a large number. Note that
random() returns 31 bits, not 32.

Of course, code for DSA signatures is undoubtedly available from various places on the web.
You’re welcome to read it but not to copy it. In any case, I expect you to use the routines in the GMP
or ln3 packages rather than solve the problem in some other way. Start early on this assignment,
and feel free to ask me for help if there are things you don’t understand. This is not a difficult
assignment, but whenever you program, there are bound to be hidden pitfalls.
Solution:
I use the following criteria in grading the programming assignment:

-------------------------------------------------------------
| I used the following criteria in grading this assignment: |
| Grade of 20 is broken down as: |
| |
| 1. Key generation (8 points) |
| 2. Signing (6 points) |
| 3. Verification (6 points) |
| |
| Things I looked for: |
| - large random primes are generated correctly |
| - signing/verification produces consistent answers |
| - msgfile and keyfile are in correct format |
| - source code is written in a coherent way and documented |
| - DSA signature is implemented correctly |
-------------------------------------------------------------

The following programs are due to Melody Chan:
dsa key.cc

/* dsa_key.cc: Generating random DSA keys */

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <ctype.h>
#include <string.h>

#include <lnv3/lnv3.h>
#include <nttl/isPrime.h>

/* Generate a random long integer of n bits */
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ln random_ln (int n) {

int i;
ln r, bit;

if (n <=0) exit(1);

/* The leading bit must be 1. */
r = "1";

/* Generate rightmost n-1 bits */
for (i = 0; i < n-1; i++) {
/* A hack to get a random bit */
bit = ln().Random(1) % 2;
r = 2 * r + bit;

}

return r;

}

/* Generate a random long number mod m */
ln random_mod (ln m) {

ln r;
r = ln().Random(m.NumBits()) % m;
/* the random number is therefore chosen from a range that
is a constant factor bigger than m. this is what i want */

return r;

}

int main (int argc, char* argv[]) {

ln p, q, g, x, a;

ln lower, upper;
ln z, zmin, zmax, zrange, rem;
ln h;

char* pubkey;
char* prvkey;
char buffer[2000];

/* Check command line */
if (argc != 2) {
printf("Please specify a filename in the command line\n");
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exit(1);
}

pubkey = new char[strlen(argv[1])+5];
prvkey = new char[strlen(argv[1])+5];
strcpy(pubkey, argv[1]);
strcpy(prvkey, argv[1]);
strcat(pubkey, ".pub");
strcat(prvkey, ".prv");

ofstream pubfile;
pubfile.open (pubkey, ios::out);
ofstream prvfile;
prvfile.open (prvkey, ios::out);

/* lower = 2ˆ1023 - 1, upper = 2ˆ1024 - 1. a hack */
lower = "8988465674311579538646525953945123668089884894711532
8636715040578866337902750481566354238661203768010560056939935
6966788293948844072083112464237153197370621888839467124327426
3815110980062304705972654147604250288441907534117123144073695
6555270413618581675255342293149119973622969239858152417678164
812112068607";
upper = 2 * lower + 1;

/* q is a random 160-bit prime */
while (!IsPrime(q = random_ln(160), 20));

/* p is a 1024-bit prime in the form zq+1 */
/* compute bounds for z */
lower.Divide (q, &zmin, &rem);
if (rem != 0) zmin++;
upper.Divide (q, &zmax, &rem);
if (rem == 0) zmax--;
/* find p */
zrange = zmax-zmin;
do {
z = zmin + random_mod(zrange+1);
} while (!IsPrime((p = z * q + 1), 20));

/* now z = (p-1)/q. */

/* Find random h in Z*_p and compute g = hˆz, */
/* such that g is a zˆth root of unity. */
do {
h = random_mod(p);

} while ((g = h.FastExp(z,p)) <= 1);
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/* x in Z*_q */
while ((x = random_mod(q)) == 0);

/* a is gˆx mod p */
a = g.FastExp(x,p);

/* Write to files */
pubfile<<p<<endl<<q<<endl<<g<<endl<<a<<endl;
prvfile<<p<<endl<<q<<endl<<g<<endl<<x<<endl;
pubfile.close();
prvfile.close();

return 0;

}

dsa sign.cc

/* dsa_sign.cc Sign a message */

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <ctype.h>
#include <string.h>

#include <lnv3/lnv3.h>
#include <nttl/isPrime.h>
#include <nttl/inverse.h>

int main (int argc, char* argv[]) {

ln p, q, g, x, m, b, c, y;

if (argc != 3) {
cout<<"Specify a keyfile and message file"<<endl;
exit(1);

}

/* Read keyfile */
char *keyfilename = new char[strlen(argv[1])+5];
strcpy(keyfilename, argv[1]);
strcat(keyfilename, ".prv");

ifstream keyfile;
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keyfile.open(keyfilename, ios::in);
if (!keyfile.is_open()) {
cout<<"Invalid keyfile"<<endl;
exit(1);

}
keyfile >> p >> q >> g >> x;
keyfile.close();

/* Read message file */
char* msgfilename = new char[strlen(argv[2])+5];
strcpy(msgfilename, argv[2]);

ifstream msgfile;
msgfile.open(msgfilename, ios::in);
if (!msgfile.is_open()) {
cout<<"Invalid message file" << endl;
exit(1);

}
msgfile >> m;
msgfile.close();

/* Choose y in Zˆ*_q */
while ((y = ln().Random(q.NumBits()) % q) == 0);

/* Compute b and c */
b = g.FastExp(y,p) % q;
c = (m + x * b)*Inverse(y,q) % q;

/* Write to msfile.sig */
char* msignedname = new char[strlen(msgfilename)+1];
ofstream msigned;
strcpy(msignedname, msgfilename);
strcat(msignedname, ".sig");
msigned.open(msignedname, ios::out);
if (!msigned.is_open()) {
cout<<"Could not open" << msignedname <<endl;
exit(1);

}

msigned << b << endl << c << endl;
msigned.close();

return 0;
}

dsa verify.cc:

/* dsa_verify.cc Verify a signature */
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#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <ctype.h>
#include <string.h>

#include <lnv3/lnv3.h>
#include <nttl/isPrime.h>
#include <nttl/inverse.h>

/* If bad */
void bad (void) {

cout<<"bad";
exit (0);

}

int main (int argc, char* argv[]) {

ln p, q, g, a, m, b, c, u1, u2, v;

if (argc != 3) {
cout<<"Specify a keyfile and message file"<<endl;
exit(1);

}

/* Read keyfile */
char *keyfilename = new char[strlen(argv[1])+5];
strcpy(keyfilename, argv[1]);
strcat(keyfilename, ".pub");

ifstream keyfile;
keyfile.open(keyfilename, ios::in);
if (!keyfile.is_open()) {
cout<<"Invalid keyfile"<<endl;
exit(1);

}
keyfile >> p >> q >> g >> a;
keyfile.close();

/* Read message file */
char* msgfilename = new char[strlen(argv[2])+5];



10 Solutions to Problem Set 4

strcpy(msgfilename, argv[2]);

ifstream msgfile;
msgfile.open(msgfilename, ios::in);
if (!msgfile.is_open()) {
cout<<"Invalid message file" << endl;
exit(1);

}
msgfile >> m;
msgfile.close();

/* Read signature */
char* msignedname = new char[strlen(msgfilename)+1];
ifstream msigned;
strcpy(msignedname, msgfilename);
strcat(msignedname, ".sig");
msigned.open(msignedname, ios::in);
if (!msigned.is_open()) {
cout<<"Invalid signature file"<<endl;
exit(1);

}
msigned >> b >> c;
msigned.close();

/* Verify! */
if (b <=0 || b >= q) bad();
if (c <=0 || c >= q) bad();

u1 = m * Inverse(c,q) % q;
u2 = b * Inverse(c,q) % q;
v = (g.FastExp(u1, p) * a.FastExp(u2, p) % p) % q;
if (v != b) bad();

cout<<"good";
return 0;

}
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