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1 Some Classical Encryption Methods

1.1 Monoalphabetic ciphers

The Caeser cipher uses only the 26 rotations out of the 26! permutations on the alphabet. The
monoalphabetic cipher uses them all. A key k is an arbitrary permutation of the alphabet. Ek(m)
replaces each letter a of m by k(a) to yield c. To decrypt, Dk(c) replaces each letter b of c by
k−1(b).

The size of the key space is |K| = 26! > 274, which is too large for a successful brute force
attack. However, monoalphabetic ciphers can be readily broken using letter frequency analysis,
given a long enough message. Because each occurrence of a letter a in the message is replaced
by the same letter k(a), the most frequently-occurring letter of m will correspond to the most
frequently-occurring letter of c. While Eve might not know what the most frequently-occurring
letter of m is, if the message is long enough and she knows that it is English, then it is quite likely
that the most frequently-occurring letter in m is one of the most frequently-occurring letters in
English, i.e., ‘e’ or maybe ‘t’. She can then assume that the most frequent letter b1 in c is ‘e’, the
next most frequent letter b2 is ‘t’, and so forth. Of course, not all of these guesses will be correct,
but the number of likely candidates for each ciphertext letter is greatly reduced. Moreover, many
wrong guesses can be quickly discarded even without constructing the entire trial key because they
lead to unlikely letter combinations.

1.2 Playfair cipher

A cipher that encrypts two letters at a time is much harder to break than a monoalphabetic cipher
since it tends to mask the letter frequencies. The Playfair cipher, popularized by L. Playfair in
England circa 1854, is one such example.1 Here, the key is a 5 × 5 matrix of letters. Pairs of
plaintext letters are located in the matrix and used to produce a corresponding pair of ciphertext
letters.

For example, consider the key matrix that might result from the passphrase, “CRYPTOGRA-
PHY REQUIRES STRONG KEYS”:

C R Y P T
O G A H E
Q U I/J S N
K B D F L
M V W X Z

The matrix is constructed by writing the passphrase into the matrix cells from left to right and top
to bottom, omitting any letters that have previously been used. It is filled out with the letters of the
alphabet that do not occur in the passphrase, in alphabetical order. (In carrying out this process, “I”

1See Memezes et. al., “Handbook of Applied Cryptography”, p. 239–240, for details.
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and “J” are identified, so we are effectively working over a 25-character alphabet.) Note that each
letter of the alphabet occurs exactly once in the resulting matrix.

A message to be encrypted is first broken up into pairs of letters. For example, the message
“MEET ME AT THE SUBWAY” would be broken into the pairs “ME” “ET” “ME” “AT” “TH”
“ES” “UB” “WA” “YX”. Note that we have padded the message with a trailing “X” in order to make
its length even, and spaces have been suppressed. Now, each pair of plaintext letters is encrypted.
For example, the pair “AT” would be encrypted by taking the rectangle with “A” and “T” as its
corners and then using the letters from the other two corners as the cipher text. In this example, the
encryption of “AT” is “EY”. Decryption is by a similar procedure. The cipher also contains rules
for handling various special cases such as when both plaintext letters occur in the same row or the
same column or both. In decrypting, one also must resolve the I/J ambiguity and figure out when to
remove the padding character.

1.3 Hill cipher

The Hill cipher is another example of a cipher that encrypts groups of letters at once, thereby tending
to mask letter frequencies. It is based on linear algebra. The key is, say, a non-singular 3× 3 matrix
K. The message m is divided into vectors mi of 3 letters each. Encryption is just the matrix-vector
product Kv. Decryption is the same using K−1.

Unfortunately, the Hill cipher succumbs to a known plaintext attack. Given three linearly in-
dependent vectors m1, m2, and m3 and the corresponding ciphertexts ci = Kmi, i = 1, 2, 3, it is
straightforward to solve for K.

1.4 Polyalphabetic ciphers

Another way to strengthen monoalphabetic ciphers is to use different substitutions for different let-
ter positions. For example, one might choose 10 different alphabet permutations k1, . . . , k10, use k1

for the first letter of m, k2 for the second letter, and so forth, repeating this sequence after every 10
letters. While this is much harder to break than monoalphabetic ciphers, it turns out that letter fre-
quency analysis can still be used. Every 10th letter is encrypted using the same permutation, so the
submessage consisting of just those letters still exhibits normal English language letter frequencies.

1.5 Transposition techniques

All of the methods discussed so far are based on letter substitution. Another technique is to rearrange
the letters of the plaintext. For example, one might write a plaintext message into a matrix by rows
and then read it out by columns. While transposition does not seem like a very powerful technique
by itself, when used in combination with substitution techniques it can be quite effective. Most
practical symmetric cryptosystems are built by composing together many stages of substitutions
and transpositions.

1.6 Rotor machines

Rotor machines had an important history during the Second World War. The Germans believed their
Enigma machine was unbreakable, but the Allies, with great effort, succeeded in breaking it and in
reading many of the top-secret military communications. This is said to have changed the course of
the war.

The basic idea of a rotor machine is to use electrical switches to create a permutation of 26 input
wires to 26 output wires. Each input wire is attached to a key on a keyboard. Each output wire is
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attached to a lamp. The keys are associated with letters just like on a computer keyboard. Each
lamp is also labeled by a letter from the alphabet. Pressing a key on the keyboard causes one of
the lamps to light, which indicates the ciphertext character corresponding to the key pressed. The
operator types the message one character at a time and writes down for each letter the corresponding
lamp. To decrypt, one could switch inputs and outputs obtain the inverse permutation, type in the
ciphertext, and read out the plaintext.

What I have described so far is just an electro-mechanical device for implementing a monoalpha-
betic cipher. However, rotor machine gain their power by changing the permutation after each letter.
Each rotor is individually wired to produce some random-looking fixed permutation π. Several ro-
tors stacked together produce the composition of the permutations implemented by the individual
rotors. In addition, the rotors can rotate relative to each other, implementing in effect a rotation
permutation (like the Caeser cipher uses). Let ρk(x) = x + k mod 26. Then rotor in position k
implements permutation ρkπρ−1

k . Several rotors could be stacked together to implement the compo-
sition of the permutations computed by each. For example, three rotors implementing permutations
π1, π2, and π3, placed in positions r1, r2, and r3, respectively, would produce the permutation

ρr1 · π1 · ρ−r1 · ρr2 · π2 · ρ−r2 · ρr3 · π3 · ρ−r3
= ρr1 · π1 · ρr2−r1 · π2 · ρr3−r2 · π3 · ρ−r3 (1)

After each letter is typed, some of the rotors change position, much like the mechanical odome-
ter used in older cars. The period before the rotor positions repeat is quite long, allowing long
messages to be sent without ever repeating the same permutation. Thus, a rotor machine is much
like a polyalphabetic substitution cipher, but with a very long period. However, unlike a pure polyal-
phabetic cipher, the successive permutations until the cycle repeats are not independent of each other
but are related to each other by (1). This gives the first toehold into methods for breaking the cipher
(which are far beyond the scope of this course).

Several different kinds of rotor machines were built and used, both by the Germans and by
others, some of which work somewhat differently from what I described above. However, the
basic principles are the same. The interested reader can find much detailed material on the web by
searching for “enigma cipher machine” and “rotor cipher machine”. One nice description may be
found at http://home.ecn.ab.ca/˜jsavard/crypto/jscrypt.htm.

1.7 Steganography

Steganography, hiding one message inside another, is an old technique that is still in use. For
example, a message can be hidden inside a graphics image file by using the low-order bit of each
pixel to encode the message. The visual effect of these tiny changes is probably too small to be
noticed by the user. The message can be hidden further by compressing it or by encrypting it with
a conventional cryptosystem. Unlike conventional cryptosystems, where we assume the attacker
knows everything about the cryptosystem except for the secret key, steganography relies on the
secrecy of the method of hiding for its security. If Eve does not even recognize the message as
ciphertext, then she is not likely to attempt to decrypt it.

2 Symmetric Cryptosystems

Symmetric (one-key) cryptosystems fall into two broad classes, block ciphers and stream ciphers.
A block cipher takes as inputs a key and a fixed-length plaintext block and produces a fixed-length
ciphertext block as output. Most of the ciphers we have been discussing so far are of this type. A

http://home.ecn.ab.ca/~jsavard/crypto/jscrypt.htm
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stream cipher on the other hand process a stream of characters in an on-line fashion, emitting the
ciphertext characters as it goes. The rotor machines are examples of stream ciphers.

2.1 Stream ciphers

A stream cipher has two components, the cipher that is used to encrypt a given character, and a
keystream generator that produces a different key to be used for each successive letter.

A simple stream cipher can be built from the XOR cryptosystem used in the one-time pad.
However, rather than using a random key as long as the message, we instead generate the keystream
on the fly using a state machine. A keystream generator consists of three parts: an internal state,
a next-state generator, and an output function. The next-state generator and output functions can
both depend on (original) key. At each stage, the state is updated and the output function applied
to obtain the next component of the keystream. Like a one-time pad, one must use different key for
each message; otherwise the system is easy to break.

To be secure, the keystream generator must be a good pseudorandom sequence generator. Any
regularities in the output of the keystream generator will give an attacker information about the
plaintext. In particular, if the attacker is ever able to figure out the internal state of the keystream
generator, then she will be able to predict all future outputs of the generator and decipher the re-
mainder of the ciphertext. It turns out that the linear congruential pseudorandom number generators
typically found in software libraries are quite insecure. After observing a relatively short sequence
of outputs from the generator, one can solve for the state and correctly predict all future outputs. For
the simple XOR cipher to be secure, a cryptographically strong pseudorandom number generator
must be used. Even so, the fact that a different key must be used for each message sent makes it
problematic in practice. It’s at least an improvement to make the next-state generator depend on the
current plaintext or ciphertext characters so that the generated keystreams will diverge on different
messages, even if the key is the same.

2.2 Block ciphers

A block cipher operates on an entire block of plaintext to produce a block of ciphertext. So does a
stream cipher, but with a stream cipher the block size is very small (typically one bit or one byte),
whereas a block cipher operates on fairly long blocks, e.g., 64-bits for DES, 128-bits for Rijndal
(AES). With a stream cipher, security rests with the keystream generator, for the ciphers used to
encrypt the individual characters are all subject to known-plaintext attacks. On the other hand,
block ciphers can be designed to resist known-plaintext attacks and can therefore be pretty secure,
even if the same key is used to encrypt a succession of blocks, as is often the case.

Of course, the length messages one wants to send are rarely exactly the block length. To use a
block cipher to encrypt long messages, one first divides the message into blocks of the right length,
padding the last partial block according to a suitable padding rule. Then the block cipher is used
in some chaining mode to encrypt the sequence of resulting blocks. A chaining mode tells how
to encrypt a sequence of plaintext blocks m1,m2, . . . ,mt to produce a corresponding sequence of
ciphertext blocks c1, c2, . . . , ct, and conversely, how to recover the mi’s given the ci’s.

Some standard chaining modes are:

• Electronic Codebook Mode (ECB) – apply cipher to each plaintext block. That is, ci =
Ek(mi) for each i. This becomes in effect a monoalphabetic cipher, where the “alphabet” is
the set of all possible blocks and the permutation is defined by Ek. To decrypt, Bob computes
mi = Dk(ci).
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• Cipher Block Chaining Mode (CBC) – encrypt the XOR of the current plaintext block with the
previous ciphertext block to produce the current ciphertext block. That is, ci = Ek(mi⊕ci−1).
To get started, we take c0 = IV, where IV is a fixed initialization vector which we assume is
publicly known. To decrypt, Bob computes mi = Dk(ci)⊕ ci−1.

• Cipher-Feedback Mode (CFB) – XOR the current plaintext block with the encryption of the
previous ciphertext block. That is, ci = mi⊕Ek(ci−1), where again, c0 is a fixed initialization
vector. To decrypt, Bob computes mi = ci ⊕ Ek(ci−1). Note that Bob is able to decrypt
without using the block decryption function Dk. In fact, it is not even necessary for Ek to be
a one-to-one function (but using a non one-to-one function might weaken security).

• Output Feedback Mode (OFB) – the encryption function is iterated on an initial vector (IV) to
produce a stream of block keys, which in turn are XORed with the successive plaintext blocks
to produce the successive ciphertext blocks. (This is similar to a simple keystream generator.)
That is, ci = mi⊕ki, where ki = Ek(ki−1) is a block key. k0 is a fixed initialization vector IV.
To decrypt, Bob can apply exactly the same method to the ciphertext to get the plaintext, that
is, mi = ci ⊕ ki, where ki = Ek(ki−1).

• Propagating Cipher-Block Chaining Mode (PCBC) – encrypt the XOR of the current plaintext
block, previous plaintext block, and previous ciphertext block. That is, ci = Ek(mi⊕mi−1⊕
ci−1). Here, both m0 and c0 are fixed initialization vectors. To decrypt, Bob computes
mi = D(ci)⊕mi−1 ⊕ ci−1.

Remarks

1. Both CFB and OFB are closely related to stream ciphers since in both cases, ci is mi XORed
with some function of stuff that came before stage i. Like a one-time pad and other simple
XOR stream ciphers, OFB becomes insecure if the same key is ever reused, for the sequence
of ki’s generated will be the same. CFB, however, avoids this problem, for even if the same
key k is used for two different message sequences mi andm′i, it will not generally be the case
thatmi⊕m′i = ci⊕c′i; rather,mi⊕m′i = ci⊕c′i⊕Ek(ci−1)⊕Ek(c′i−1), and the dependency
on k does not drop out.

2. The different modes differ in their sensitivity to data corruption. With ECB and OFB, if Bob
receives a bad block ci, then he cannot recover the corresponding mi, but all good ciphertext
blocks can be decrypted. With CBC and CFB, he needs both good ci and ci−1 blocks in order
to decrypt mi. Therefore, a bad block ci renders both mi and mi+1 unreadable. With PCBC,
a bad block ci renders mj unreadable for all j ≥ i.

3. Other modes can be easily invented. We see that in all cases, ci is computed by some ex-
pression (which may depend on i) built from Ek() and ⊕ applied to blocks c1, . . . , ci−1,
m1, . . . ,mi, and the initialization vectors. Any such equation that can be “solved” for mi

(by possibly using Dk() to invert Ek()) is a suitable chaining mode in the sense that Alice is
able to produce the ciphertext and Bob is able to decrypt it. Of course, the resulting security
properties depend heavily on the particular expression chosen.
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