
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #2
Professor M. J. Fischer September 19, 2006

Problem Set 1
Due in class on Tuesday, September 26, 2006.

Problem 1: Automatic Cryptanalysis of the Caeser Cipher

The goal of this problem is to show the feasibility of fully automating a brute-force attack on the
Caeser cipher. A brute force attack on a cryptosystem means trying all possible keys to see which
one “unlocks” the encrypted message.

The difficulty in automating such an attack, aside from the time it takes to explore a potentially
large key space, is knowing when you have succeeded. How can one distinguish the correct decryp-
tion from the wrong one? In general one cannot, but if some messages are more likely than others
to be the decryption of a given ciphertext string c, then it is sensible to guess the message m′ that
is the most likely among the possiblities. The guess m′ might or might not be equal to the original
message m. If it is, we say the attack succeeds; otherwise it fails.

For this problem, we assume a fixed known probability distribution P on single letters, so for
example, P (‘A’) is the probability of choosing letter ‘A’. Messages are of a fixed length r and are
composed of letters chosen independently at random according to P . Thus, if r = 3,

prob[m = ‘CAT’] = P (‘C’) · P (‘A’) · P (‘T’).

Given a ciphertext c = Ek(m) = (k + m) mod 26, the possible decryptions are Dk0(m),
. . . , Dk25(m) corresponding to each of the 26 possible keys. Each of these messages has a certain
a priori probability as defined above. Your program should select as its guess the message (and
corresponding key) with the highest probability, where ties are broken by choosing the message
corresponding to the smaller key.

An experiment takes two inputs: A probability distribution P on single letters and a length r.
The steps of conducting an experiment are:

(a) Choose a random message m of length r according to the distribution on length-r strings
induced by P .

(b) Choose a key k uniformly at random from {0, . . . , 25}.

(c) Compute c = Ek(m), where E is the Caeser encryption function on length-r strings.

(d) Run the procedure cryptanalyze(P, r, c), where “cryptanalyze” is the analysis procedure de-
scribed above to compute m′ and k′.

(e) If m′ = m, output “success” and the pair (m′, k′). Otherwise, output “failure”.

Finally, you should gather data by running a bunch of experiments. For each r = 1, 2, . . . up to
some reasonable number, run a large number of experiments (say 100) and compute the fraction of
successes. Repeat this several times to get a feeling for the variance in your results. Plot the results
and find numbers r1 and r2 (if possible) such that the observed success rate is less than 10% for
r < r1, between 10% and 90% for r1 ≤ r ≤ r2, and greater than 90% for r > r2.



2 Problem Set 1

You will be provided with one or more files describing probability distributions on which to
test your code. Each such file will contain 26 whitespace-delimited integers, where the ith integer
gives the frequency of occurrence of the ith letter in the alphabet. To convert these frequencies to
probabilities, you will need to normalize by dividing each by the sum of the frequencies.

Beyond this description, you are free to organize your code any way you see fit. However, your
code should produce enough intermediate output for you to be able to make a convincing case for
its correctness.

When your program is working, you should gather data by running the experiments described
above on the designated probability distribution. The results of your experiments should be pre-
sented in both tabular and graphical form.

You should submit your work using the submission script in the /c/cs467/bin course di-
rectory on the Zoo. Your submission should include the program or programs you have written, test
runs showing the correctness of the various pieces, and the data tables and graphs resulting from
your experiments. You should also submit written documentation describing in some detail what
you have done.


	Automatic Cryptanalysis of the Caeser Cipher

