YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security

Handout #9 October 22, 2006

Professor M. J. Fischer

Study Guide for Midterm Examination

1 Exam Coverage

The midterm examination will cover the topics of the first 13 lectures of the course (through October 19). These topics are presented in several different formats:

- 1. In-person class lectures.
- 2. Written lecture notes, available on the course web site.
- 3. Written handouts, available on the course web site. I especially recommend handout 4 for reviewing number theory.
- 4. Textbook (Trappe and Washington), relevant sections from chapters 1–4, 6, 7, 15.
- 5. Supplementary textbook (Talbot and Welsh), sections 4.3, 5.1–5.3, 7.3, 7.4, 7.6, 7.7, 9.3.
- 6. Other resources available in the library and on the web.
- 7. Problem sets and solutions.

2 Review Outline

Below I give a list of topics, concepts, definitions, theorems, algorithms, and protocols that we have covered and that I expect you to know. This list is not inclusive, as I'm sure I have missed some things.

- 1. Secret-message transmission problem.
 - (a) Model.
 - Alice.
 - Bob.
 - Eve (passive eavesdropper).
 - Mallory (active eavesdropper).
 - Plaintext.
 - Ciphertext.
 - Key.
 - Encryption function.
 - Decryption function.
 - (b) Attacks.
 - Known plaintext.
 - Chosen plaintext.

- Known ciphertext.
- Chosen ciphertext.
- (c) Breaking system.
 - Finding key.
 - Decrypting ciphertext.
 - Extracting partial information from ciphertext.
- 2. Information security in the real world.
- 3. Classical cryptography.
 - (a) Cryptosystems.
 - Caeser cipher.
 - One-time pad.
 - Simple XOR system.
 - Monoalphabetic cipher.
 - Playfair cipher.
 - Hill cipher.
 - Polyalphabetic cipher.
 - Transposition techniques.
 - Rotor machines.
 - Steganography.
 - (b) Security.
 - Kerckhoffs's assumption (that only key is secret).
 - Statistical inference.
 - Brute force attack.
 - Redundancy.
 - Entropy.
 - Information-theoretic security.
 - (c) Stream cipher.
 - Keystream generator.
 - Next-state generator.
 - (d) Block cipher.
 - Block size.
 - Padding.
 - Chaining modes.
 - Electronic Codebook Mode (ECB).
 - Cipher Block Chaining Mode (CBC).
 - Cipher-Feedback Mode (CFB).
 - Output Feedback Mode (OFB).
 - Propagating Cipher-Block Chaining Mode (PCBC).
 - Recoverability from lost/damaged ciphertext blocks.

- 4. Data Encryption Standard (DES).
 - (a) Feistel network.
 - (b) Block size.
 - (c) Key size.
 - (d) Subkey.
 - (e) S-box.
 - (f) Rounds.
 - (g) Decryption.
 - (h) Group property of a cryptosystem.
 - (i) Double encryption.
 - (j) Birthday paradox.
- 5. Message Authentication Codes (MACs).
 - (a) Definition.
 - (b) Need for MACs; why encryption isn't enough.
 - (c) MACs from DES and other block ciphers.
- 6. Asymmetric cryptosystems.
 - (a) Definition and requirements.
 - (b) Public key model.
 - (c) Need for resistence against chosen plaintext attack.
 - (d) Man-in-the-middle attack.
- 7. RSA.
 - (a) Components.
 - Modulus.
 - Encryption key.
 - Decryption key.
 - Encryption function.
 - Decryption function.
 - (b) Algorithms needed.
 - Primality testing.
 - Finding modular inverse.
 - Fast modular exponentiation.
 - (c) Theoretical basis.
 - Prime number theorem.
 - Existence of modular inverse.
 - Proof that decryption function is inverse of encryption function.
 - (d) Computational efficiency.

- (e) Security properties.
 - Factoring problem.
 - Computing $\phi(n)$ given factorization of n.
 - Factoring n given $\phi(n)$.
 - \bullet Factoring n given public and private keys.
- (f) Hybrid system.
 - Use RSA for secure transmission of random session key.
 - Use symmetric cryptosystem for body of message.

8. Algebra.

- (a) Groups.
- (b) Abelian group
- (c) Subgroups.
- (d) Cyclic group, generator, and order of an element.
- (e) Order of subgroup divides order of group.
- 9. Number theory.
 - (a) Modular arithmetic.
 - Divides (a|b).
 - Division theorem: a = bq + r, $0 \le r < b$.
 - The remainder operator " $a \mod n$ "
 - The congruence relation $a \equiv b \pmod{n}$
 - Z.
 - Computing in \mathbf{Z}_n for large n.
 - Fast modular exponentiation.
 - (b) ${\bf Z}_n^*$
 - Relatively prime pairs of numbers.
 - Euler's totient function $\phi(n)$
 - Euler's theorem and Fermat's little theorem.
 - Consequence: $x \equiv y \pmod{\phi(n)}$ implies $a^x \equiv a^y \pmod{n}$.
 - Greatest common divisor (gcd).
 - Euclidean gcd algorithm.
 - Diophantine equations and modular inverses.
 - Extended Euclidean algorithm.
 - (c) Chinese remainder theorem.
 - (d) Prime number theorem.
 - (e) Primitive roots.
 - Lucas test.
 - Discrete logarithm.
 - (f) Quadratic residues.

- Square roots modulo a prime.
- Square roots modulo a product of two distinct primes.
- Euler criterion.
- Finding square roots modulo prime p when $p \equiv 3 \pmod{4}$.
- Shank's algorithm for finding square roots modulo an odd prime.
- Legendre symbol.
- Jacobi symbol.
- Jacobi symbol identities (don't memorize, but understand what they are).
- Computing the Jacobi symbol.
- (g) Probabilistic primality testing
 - General framework for tests of compositeness (from lecture notes 10).
 - Fermat test of compositness $\zeta_a(n)$.
 - Strassen-Solovay test of compositeness $\nu_a(n)$
 - Miller-Rabin test of compositeness $\mu_a(n)$.
- 10. Cryptographic protocols based on number theory (besides RSA).
 - (a) Diffie-Hellman key exchange.
 - (b) ElGamal key agreement.
 - (c) ElGamal public key cryptosystem.
 - (d) Goldwasser-Micali (QR) probabilistic cryptosystem.