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Solutions to Problem Set 3

Problem 9: Linear Diophantine Equations (3.13.1)

(a) This problem can be directly solved by using the extended Euclidean algorithm or just the basic
Euclidean algorithm as follows:

101 = 17 ∗ 5 + 16
17 = 16 ∗ 1 + 1

So gcd(101, 17) = 1, and 17x + 101y = 1 have integer solutions. We rewrite the above equations
as

16 = 101− 17 ∗ 5
1 = 17− 16

from which we obtain 1 = 17− 16 = 17− (101− 17 ∗ 5) = 17 ∗ 6− 101. So x = 6 and y = −1.

(b) From (a), we immediately know 17−1 (mod 101) ≡ 6.

Problem 10: Euclidean Algorithm (3.13.5)

(a) Using Euclidean algorithm, we have

4883 = 4369 ∗ 1 + 514
4369 = 514 ∗ 8 + 257
514 = 257 ∗ 2

So gcd(4883, 4369) = 257.

(b) From (a), fortunately 257 is a prime itself. So 4883 = 257 ∗ 19 and 4369 = 257 ∗ 17.

Problem 11: Quadratic Diophantine Equation (3.13.8)

The conclusion of 7(a) needs to be proved first if used in this problem, and that p is a prime is
definitely a necessary condition which must be used in the proof.

Now we prove 7(a) first.
7(a) Let p be prime. Suppose a and b are integers such that ab ≡ 0 (mod p). Show that either

a ≡ 0 or b ≡ 0 (mod p).
Proof : Since ab ≡ 0 (mod p), we have p|ab. Since p is prime, we obtain that either p|a or p|b

holds and is also necessary for p|ab. So either a ≡ 0 or b ≡ 0 (mod p) holds and is necessary and
also obviously sufficient.

Coming back to our problem, we know that p is a prime and x2 ≡ 1 (mod p). We rewrite the
above equation to x2 − 1 ≡ (x + 1)(x − 1) ≡ 0 (mod p). From the conclusion of 7(a), we get
that either x + 1 ≡ 0 (mod p) or x − 1 ≡ 0 (mod p) holds and is necessary and sufficient for
(x + 1)(x− 1) ≡ 0 (mod p). Since p ≥ 3, x ≡ ±1 (mod p) are two different solutions and also
the only solutions because they are necessary and sufficient for the problem.



2 Solutions to Problem Set 3

Problem 12: Chinese Remainder Theorem (3.13.10)

This problem can be formatted into a remainder problem as the following:

x ≡ 1 (mod 3)
x ≡ 2 (mod 4)
x ≡ 3 (mod 5),

in which x is the number of people.
Following the procedure of Exercise 24, we can solve the above problem as the following:

z1 = 4 ∗ 5 = 20, z2 = 3 ∗ 5 = 15, z3 = 3 ∗ 4 = 12,

and
y1 ≡ z−1

1 ≡ 2 (mod 3), y2 ≡ z−1
2 ≡ 3 (mod 4), y3 ≡ z−1

3 ≡ 3 (mod 5).

So we have x = 1 ∗ y1 ∗ z1 + 2 ∗ y2 ∗ z2 + 3 ∗ y3 ∗ z3 = 238. To get the smallest solution, we obtain
238 ≡ 58 (mod 3 ∗ 4 ∗ 5), and the next solution is 58 + (3 ∗ 4 ∗ 5) = 118.

Problem 13: RSA Encryption (6.8.2)

(a) Since φ(n) = (5−1)∗ (11−1) = 40, we just simply calculate the inverse of e as d ≡ e−1 ≡ 27
(mod φ(n)) using extended Euclidean algorithm.

(b) We try to prove a more general case that if c ≡ me (mod n), then m ≡ cd ≡ med (mod n)
in which gcd(m,n) = 1. From (a), we know that ed ≡ 1 (mod φ(n)), so ed = 1 + k ∗ φ(n), in
which k is an integer. So we obtain that med ≡ m1+k∗φ(n) ≡ m ∗mk∗φ(n) (mod n). From Euler’s
theorem, we know that if gcd(m,n) = 1, mφ(n) ≡ 1 (mod n). So mk∗φ(n) ≡ 1 (mod n) and
m ∗mk∗φ(n) ≡ m (mod n) and the proposition is proved.

Problem 14: RSA Attack (6.8.3)

We know c = 75, e = 3 and n = 437, so just try possible plaintext 8 and 9. And we get 83 ≡ 75
(mod 437), so 8 is the plaintext.

Problem 15: RSA Decryption Exponent (6.8.5)

Assume e 6= 0 and e 6= p−1 since it is ’suitably chosen’, otherwise, y will be a constant independent
of x and then there is no hope for us to recover x. Now we need to find d so that yd ≡ xed ≡ x
(mod p). According to Fermat’s Little Theorem, we know that if ed ≡ 1 (mod (p − 1)), then
xed ≡ x (mod p) which satisfies our requirement. So we can let d = e−1 (mod (p − 1)) if e−1

(mod (p− 1)) does exist.

Problem 16: Factoring (6.8.12)

From the problem, we have

5161072 ≡ 7 (mod n)
1877222 ≡ 22 ∗ 7 (mod n)

So we obtain (516107 ∗ 187722)2 ≡ (2 ∗ 7)2 (mod n) by multiplying the above two equations.
516107 ∗ 187722 ≡ 289038 6≡ ±14 (mod n), so if we compute gcd(289038 − 14, n), we can
get a non-trivial factor. Using Euclidean algorithm, we have gcd(289038, 642401) = 1129. So
n = 1129 ∗ 569, in which both factors are prime.
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