YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #11

Yinghua Wu October 23, 2006

Solutions to Problem Set 3

Problem 9: Linear Diophantine Equations (3.13.1)

(a) This problem can be directly solved by using the extended Euclidean algorithm or just the basic Euclidean algorithm as follows:

$$
101 = 17 * 5 + 16
$$

$$
17 = 16 * 1 + 1
$$

So gcd(101, 17) = 1, and $17x + 101y = 1$ have integer solutions. We rewrite the above equations as

$$
16 = 101 - 17 * 5
$$

$$
1 = 17 - 16
$$

from which we obtain $1 = 17 - 16 = 17 - (101 - 17 \times 5) = 17 \times 6 - 101$. So $x = 6$ and $y = -1$. (b) From (a), we immediately know 17^{-1} (mod 101) \equiv 6.

Problem 10: Euclidean Algorithm (3.13.5)

(a) Using Euclidean algorithm, we have

 $4883 = 4369 * 1 + 514$ $4369 = 514 * 8 + 257$ $514 = 257 * 2$

So gcd $(4883, 4369) = 257$.

(b) From (a), fortunately 257 is a prime itself. So $4883 = 257 * 19$ and $4369 = 257 * 17$.

Problem 11: Quadratic Diophantine Equation (3.13.8)

The conclusion of $7(a)$ needs to be proved first if used in this problem, and that p is a prime is definitely a necessary condition which must be used in the proof.

Now we prove $7(a)$ first.

 $7(a)$ Let p be prime. Suppose a and b are integers such that $ab \equiv 0 \pmod{p}$. Show that either $a \equiv 0$ or $b \equiv 0 \pmod{p}$.

Proof: Since $ab \equiv 0 \pmod{p}$, we have p|ab. Since p is prime, we obtain that either p|a or p|b holds and is also necessary for $p|ab$. So either $a \equiv 0$ or $b \equiv 0 \pmod{p}$ holds and is necessary and also obviously sufficient.

Coming back to our problem, we know that p is a prime and $x^2 \equiv 1 \pmod{p}$. We rewrite the above equation to $x^2 - 1 \equiv (x + 1)(x - 1) \equiv 0 \pmod{p}$. From the conclusion of $7(a)$, we get that either $x + 1 \equiv 0 \pmod{p}$ or $x - 1 \equiv 0 \pmod{p}$ holds and is necessary and sufficient for $(x + 1)(x - 1) \equiv 0 \pmod{p}$. Since $p \ge 3$, $x \equiv \pm 1 \pmod{p}$ are two different solutions and also the only solutions because they are necessary and sufficient for the problem.

Problem 12: Chinese Remainder Theorem (3.13.10)

This problem can be formatted into a remainder problem as the following:

$$
x \equiv 1 \pmod{3}
$$

\n
$$
x \equiv 2 \pmod{4}
$$

\n
$$
x \equiv 3 \pmod{5},
$$

in which x is the number of people.

Following the procedure of Exercise 24, we can solve the above problem as the following:

$$
z_1 = 4 * 5 = 20, z_2 = 3 * 5 = 15, z_3 = 3 * 4 = 12,
$$

and

$$
y_1 \equiv z_1^{-1} \equiv 2 \pmod{3}
$$
, $y_2 \equiv z_2^{-1} \equiv 3 \pmod{4}$, $y_3 \equiv z_3^{-1} \equiv 3 \pmod{5}$.

So we have $x = 1 * y_1 * z_1 + 2 * y_2 * z_2 + 3 * y_3 * z_3 = 238$. To get the smallest solution, we obtain $238 \equiv 58 \pmod{3 \times 4 \times 5}$, and the next solution is $58 + (3 \times 4 \times 5) = 118$.

Problem 13: RSA Encryption (6.8.2)

(a) Since $\phi(n) = (5-1)*(11-1) = 40$, we just simply calculate the inverse of e as $d \equiv e^{-1} \equiv 27$ $\pmod{\phi(n)}$ using extended Euclidean algorithm.

(b) We try to prove a more general case that if $c \equiv m^e \pmod{n}$, then $m \equiv c^d \equiv m^{ed} \pmod{n}$ in which $gcd(m, n) = 1$. From (a), we know that $ed \equiv 1 \pmod{\phi(n)}$, so $ed = 1 + k * \phi(n)$, in which k is an integer. So we obtain that $m^{ed} \equiv m^{1+k*\phi(n)} \equiv m * m^{k*\phi(n)} \pmod{n}$. From Euler's theorem, we know that if $gcd(m, n) = 1$, $m^{\phi(n)} \equiv 1 \pmod{n}$. So $m^{k * \phi(n)} \equiv 1 \pmod{n}$ and $m * m^{k * \phi(n)} \equiv m \pmod{n}$ and the proposition is proved.

Problem 14: RSA Attack (6.8.3)

We know $c = 75$, $e = 3$ and $n = 437$, so just try possible plaintext 8 and 9. And we get $8³ \equiv 75$ (mod 437), so 8 is the plaintext.

Problem 15: RSA Decryption Exponent (6.8.5)

Assume $e \neq 0$ and $e \neq p-1$ since it is 'suitably chosen', otherwise, y will be a constant independent of x and then there is no hope for us to recover x. Now we need to find d so that $y^d \equiv x^{ed} \equiv x$ (mod p). According to Fermat's Little Theorem, we know that if $ed \equiv 1 \pmod{(p-1)}$, then $x^{ed} \equiv x \pmod{p}$ which satisfies our requirement. So we can let $d = e^{-1} \pmod{p-1}$ if e^{-1} $\pmod{(p-1)}$ does exist.

Problem 16: Factoring (6.8.12)

From the problem, we have

 $516107^2 \equiv 7 \pmod{n}$ $187722^2 \equiv 2^2 * 7 \pmod{n}$

So we obtain $(516107 * 187722)^2 \equiv (2 * 7)^2 \pmod{n}$ by multiplying the above two equations. $516107 * 187722 \equiv 289038 \not\equiv \pm 14 \pmod{n}$, so if we compute $gcd(289038 - 14, n)$, we can get a non-trivial factor. Using Euclidean algorithm, we have $gcd(289038, 642401) = 1129$. So $n = 1129 * 569$, in which both factors are prime.